Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Extraction Procedure
2.4. Total Phenolic Content (TPC)
2.5. Total Anthocyanin Content (TAC)
2.6. Antioxidant Capacity (AC)
2.7. Chemical Profile of Extracts
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC)
3.2. Total Anthocyanin Content (TAC)
3.3. Antioxidant Capacity (AC)
3.4. Chemical Profile of Extracts
3.5. Multivariate Data Analysis
- Depending on significant levels of factor loadings, the most important variables are TPC, TAC, AC, PA, CA, and VA for PC1 as well as RH and Q for PC2;
- Extract samples P1 (cet = 50% and t = 30 °C) and P12 (cet = 50% and t = 60 °C) had higher values of TPC, TAC, AC, PA, CA, and VA than sample P4 (cet = 100% and t = 30 °C) (discrimination on PC1 highlighted in Figure 11 using blue ellipses);
- Extract samples P2 (cet = 66.67% and t = 30 °C) and P3 (cet = 75% and t = 30 °C) had higher values of RH and Q than samples P4 (cet = 100% and t = 30 °C) and P12 (cet = 50% and t = 60 °C) (discrimination on PC2);
- TPC, TAC, AC, PA, CA, and VA were strongly directly correlated (0.722 ≤ r ≤ 0.995); TPC, TAC, and AC were inversely correlated with Q (−0.748 ≤ r ≤ −0.634); RH was directly correlated with CA (r = 0.642) and Q (r = 0.515).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinacho, R.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D.; Calvo, M.I. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. J. Funct. Foods 2015, 19, 49–62. [Google Scholar] [CrossRef]
- Sikora, E.; Bieniek, M.I.; Borczak, B. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Sci. Pol. Technol. Aliment. 2013, 12, 365–372. [Google Scholar]
- Veličković, J.M.; Kostić, D.A.; Stojanović, G.S.; Mitić, S.S.; Mitić, M.N.; Ranđelović, S.S.; Đorđević, A.S. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hem. Ind. 2014, 68, 297–303. [Google Scholar] [CrossRef]
- Tiboni, M.; Coppari, S.; Casettari, L.; Guescini, M.; Colomba, M.; Fraternale, D.; Gorassini, A.; Verardo, G.; Ramakrishna, S.; Guidi, L.; et al. Prunus spinosa extract loaded in biomimetic nanoparticles evokes in vitro anti-inflammatory and wound healing activities. Nanomaterials 2020, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Ganhao, R.; Estévez, M.; Kylli, P.; Heinonen, M.; Morcuende, D. Characterization of selected wild Mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties. J. Agric. Food Chem. 2010, 58, 8854–8861. [Google Scholar] [CrossRef]
- Babalau-Fuss, V.; Grebla, O.B.; Cadar, O.; Hoaghia, M.A.; Kovacs, M.H.; Moldovan, A.; Tofana, M. Determination of chemical composition and fatty acids of blackthorn fruits (Prunus spinosa) grown near Cluj-Napoca, NW Romania. Agricultura 2018, 105, 90–95. [Google Scholar]
- Gironés-Vilaplana, A.; Valentão, P.; Moreno, D.A.; Ferreres, F.; García-Viguera, C.; Andrade, P.B. New beverages of lemon juice enriched with the exotic berries maqui, açaı, and blackthorn: Bioactive components and in vitro biological properties. J. Agric. Food Chem. 2012, 60, 6571–6580. [Google Scholar] [CrossRef]
- Veličković, I.; Žižak, Ž.; Rajčević, N.; Ivanov, M.; Soković, M.; Marin, P.D.; Grujić, S. Prunus spinosa L. leaf extracts: Polyphenol profile and bioactivities. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12137. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, B.M.; De Ancos, B.; Sánchez-Moreno, C.; Fernández-Ruiz, V.; de Cortes Sánchez-Mata, M.; Cámara, M.; Tardío, J. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.A.; Barbero, G.F.; Ayuso, J. Optimization of analytical ultrasound-assisted methods for the extraction of total phenolic compounds and anthocyanins from sloes (Prunus spinosa L.). Agronomy 2020, 10, 966. [Google Scholar] [CrossRef]
- Marchelak, A.; Kolodziejczyk-Czepas, J.; Wasielewska, P.; Nowak, P.; Olszewska, M.A. The effects of Prunus spinosa L. flower extracts, model polyphenols and phenolic metabolites on oxidative/nitrative modifications of human plasma components with particular emphasis on fibrinogen in vitro. Antioxidants 2021, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Aliyazicioglu, R.; Yildiz, O.; Sahin, H.; Eyupoglu, O.E.; Ozkan, M.T.; Karaoglu, S.A.; Kolayli, S. Phenolic components and antioxidant activity of Prunus spinosa from Gumushane, Turkey. Chem. Nat. Compd. 2015, 51, 346–349. [Google Scholar] [CrossRef]
- Magiera, A.; Czerwińska, M.E.; Owczarek, A.; Marchelak, A.; Granica, S.; Olszewska, M.A. Polyphenol-enriched extracts of Prunus spinosa fruits: Anti-inflammatory and antioxidant effects in human immune cells ex vivo in relation to phytochemical profile. Molecules 2022, 27, 1691. [Google Scholar] [CrossRef] [PubMed]
- Gegiu, G.; Branza, A.-D.; Bucur, L.; Grigorian, M.; Tache, T.; Badea, V. Contributions to the antimicrobial and antifungaln study of the aqueous extract of Prunus spinosa L. Farmacia 2015, 63, 275–279. [Google Scholar] [CrossRef]
- Pozzo, L.; Russo, R.; Frassinetti, S.; Vizzarri, F.; Árvay, J.; Vornoli, A.; Longo, V. Wild Italian Prunus spinosa L. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods 2019, 9, 5. [Google Scholar] [CrossRef]
- Meschini, S.; Pellegrini, E.; Condello, M.; Occhionero, G.; Delfine, S.; Condello, G.; Mastrodonato, F. Cytotoxic and apoptotic activities of Prunus spinosa Trigno ecotype extract on human cancer cells. Molecules 2017, 22, 1578. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Cutrim, C.S.; Cortez, M.A.S. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int. J. Dairy Technol. 2018, 71, 564–578. [Google Scholar] [CrossRef]
- Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.; D’Amen, E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef]
- Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A 2011, 1218, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Bórquez, J.; Schmeda-Hirschmann, G. Antioxidant capacity, polyphenolic content and tandem HPLC–DAD–ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem. 2013, 139, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Karakas, N.; Okur, M.E.; Ozturk, I.; Ayla, S.; Karadag, A.E.; Polat, D.Ç. Antioxidant activity of blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeni. Med. J. 2019, 34, 297. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Sólyom, K.; Solá, R.; Cocero, M.J.; Mato, R.B. Thermal degradation of grape marc polyphenols. Food Chem. 2014, 159, 361–366. [Google Scholar] [CrossRef]
- Handa, S.S.; Khanuja, S.P.S.; Longo, G.; Rakesh, D.D. Extraction technologies for medicinal and aromatic plants. Int. J. Sci. Technol. Manag. 2008, 99, 34012. [Google Scholar]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods: Mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Alupului, A.; Calinescu, I.; Lavric, V. Microwave extraction of active principles from medicinal plants. UPB Sci. Bull. Ser. B 2012, 74, 129–142. [Google Scholar]
- Chen, S.; Meng, X.; Wang, Y.; Sun, X. Antioxidant activity and optimisation of ultrasonic-assisted extraction by response surface methodology of Aronia Melanocarpa anthocyanins. Matrix Sci. Pharma 2018, 2, 6–9. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Çelik, S.E.; Baki, S.; Yıldız, L.; Karaman, Ş.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Brezoiu, A.M.; Bajenaru, L.; Berger, D.; Mitran, R.A.; Deaconu, M.; Lincu, D.; Stoica Guzun, A.; Matei, C.; Moisescu, M.G.; Negreanu-Pirjol, T. Effect of nanoconfinement of polyphenolic extract from grape pomace into functionalized mesoporous silica on its biocompatibility and radical scavenging activity. Antioxidants 2020, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Brezoiu, A.M.; Matei, C.; Deaconu, M.; Stanciuc, A.M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food Chem. Toxicol. 2019, 133, 110787. [Google Scholar] [CrossRef]
- Bucşe, A.; Pârvulescu, O.C.; Vasiliu, D.; Mureșan, M. The contents of some trace elements (As, Br, Cu, Hg, Se, and Zn) in Mytilus galloprovincialis mussels from Agigea Port, Romania. Front. Mar. Sci. 2022, 9, 899555. [Google Scholar] [CrossRef]
- Egri, D.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Calcan, S.I.; Bădulescu, L.; Madjar, R.; Orbeci, C.; Dobre, T.; Mot, A.; et al. Vine Pruning-derived biochar for agronomic benefits. Agronomy 2022, 12, 2730. [Google Scholar] [CrossRef]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Madjar, R.; Dobre, T.; Egri, D.; Andrei, M.; Iliescu, L.M.; et al. Effects of biochar on soil properties and tomato growth. Agronomy 2022, 12, 1824. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Opriş, O.; Soran, M.L.; Lung, I.; Stegarescu, A.; Guţoiu, S.; Podea, R.; Podea, P. Optimization of extraction conditions of polyphenols, antioxidant capacity and sun protection factor from Prunus spinosa fruits. Application in sunscreen formulation. J. Iran. Chem. Soc. 2021, 18, 2625–2636. [Google Scholar] [CrossRef]
- Tahirovic, A.; Basic, N.; Copra-Janicijevic, A. Effect of solvents on phenolic compounds extraction and antioxidant activity of Prunus spinosa L. fruits. Bull. Chem. Technol. Bosnia Herzeg. 2018, 50, 19–24. [Google Scholar]
- Dima, A.D.; Pârvulescu, O.C.; Mateescu, C.; Dobre, T. Optimization of substrate composition in anaerobic co-digestion of agricultural waste using central composite design. Biomass Bioenerg. 2020, 138, 105602. [Google Scholar] [CrossRef]
- Stanković, M.I.; Savić, V.L.; ŽIvković, J.V.; Tadić, V.M.; Arsić, I.A. Tyrosinase inhibitory and antioxidant activity of wild Prunus spinosa L. fruit extracts as natural source of bioactive compounds. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 651–657. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef]
- Ghaste, M.; Mistrik, R.; Shulaev, V. Applications of Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int. J. Mol. Sci. 2016, 17, 816. [Google Scholar] [CrossRef] [PubMed]
- Luță, E.A.; Biță, A.; Moroșan, A.; Mihaiescu, D.E.; Ghica, M.; Mihai, D.P.; Olaru, O.T.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; et al. The influence of phytosociological cultivation and fertilization on polyphenolic content of Menthae and Melissae folium and evaluation of antioxidant properties through in vitro and in silico methods. Plants 2022, 11, 2398. [Google Scholar] [CrossRef] [PubMed]
i | Sample | cet (%) | τ (min) | t (°C) | TPCm,i (mg GAE/g DM) | TPCpred,i (mg GAE/g DM) | ΔTPCi (mg GAE/g DM) |
---|---|---|---|---|---|---|---|
1 | P1 | 50 | 30 | 30 | 32.21 | 27.49 | 4.7 |
2 | P2 | 66.67 | 30 | 30 | 23.96 | 24.49 | −0.5 |
3 | P3 | 75 | 30 | 30 | 21.75 | 21.28 | 0.5 |
4 | P4 | 100 | 30 | 30 | 4.71 | 4.77 | −0.1 |
5 | P5 | 50 | 5 | 30 | 21.38 | 22.44 | −1.1 |
6 | P6 | 50 | 15 | 30 | 22.23 | 24.61 | −2.4 |
7 | P7 | 50 | 60 | 30 | 32.69 | 31.89 | 0.8 |
8 | P8 | 50 | 120 | 30 | 32.81 | 35.30 | −2.5 |
9 | P9 | 50 | 180 | 30 | 32.44 | 31.52 | 0.9 |
10 | P10 | 50 | 30 | 40 | 32.06 | 32.36 | −0.3 |
11 | P11 | 50 | 30 | 50 | 34.00 | 35.17 | −1.2 |
12 | P12 | 50 | 30 | 60 | 37.23 | 35.92 | 1.3 |
13 | P13 | 50 | 30 | 82.5 | 29.84 | 30.09 | −0.2 |
RMSE | 1.767 | ||||||
Multiple R | 0.977 | ||||||
Multiple R2 | 0.955 | ||||||
Adjusted R2 | 0.909 | ||||||
F | 21.06 | ||||||
p | 0.001 |
i | Sample | cet (%) | τ (min) | t (°C) | TACm,i (mg C3GE/g DM) | TACpred,i (mg C3GE/g DM) | ΔTACi (mg C3GE/g DM) |
---|---|---|---|---|---|---|---|
1 | P1 | 50 | 30 | 30 | 0.297 | 0.279 | 0.018 |
2 | P2 | 66.67 | 30 | 30 | 0.199 | 0.211 | −0.012 |
3 | P3 | 75 | 30 | 30 | 0.182 | 0.172 | 0.010 |
4 | P4 | 100 | 30 | 30 | 0.034 | 0.035 | −0.001 |
5 | P5 | 50 | 5 | 30 | 0.214 | 0.226 | −0.012 |
6 | P6 | 50 | 15 | 30 | 0.249 | 0.249 | 0.000 |
7 | P7 | 50 | 60 | 30 | 0.333 | 0.325 | 0.007 |
8 | P8 | 50 | 120 | 30 | 0.347 | 0.362 | −0.015 |
9 | P9 | 50 | 180 | 30 | 0.329 | 0.323 | 0.005 |
10 | P10 | 50 | 30 | 40 | 0.345 | 0.351 | −0.006 |
11 | P11 | 50 | 30 | 50 | 0.407 | 0.398 | 0.008 |
12 | P12 | 50 | 30 | 60 | 0.415 | 0.420 | −0.004 |
13 | P13 | 50 | 30 | 82.5 | 0.375 | 0.374 | 0.000 |
RMSE | 0.009 | ||||||
Multiple R | 0.996 | ||||||
Multiple R2 | 0.992 | ||||||
Adjusted R2 | 0.983 | ||||||
F | 118.5 | ||||||
p | 0.00001 |
Sample | cet (%) | t (°C) | PA (mg/100 g DM) | CA (mg/100 g DM) | VA (mg/100 g DM) | RH (mg/100 g DM) | Q (mg/100 g DM) |
---|---|---|---|---|---|---|---|
P12 | 50 | 60 | 4.47 ± 0.06 a | 2.96 ± 0.02 d | 2.65 ± 0.11 a | 1.87 ± 0.00 b | - |
P1 | 50 | 30 | 3.97 ± 0.02 b | 3.34 ± 0.02 a | 2.37 ± 0.03 b | 3.42 ± 0.17 a | 0.26 ± 0.00 d |
P2 | 66.67 | 30 | 3.83 ± 0.02 c | 3.15 ± 0.03 b | 2.55 ± 0.02 a | 3.43 ± 0.33 a | 0.83 ± 0.01 b |
P3 | 75 | 30 | 3.75 ± 0.03 d | 3.04 ± 0.02 c | 2.51±0.01 ab | 3.56 ± 0.02 a | 1.02 ± 0.01 a |
P4 | 100 | 30 | 2.08 ± 0.03 e | 1.06 ± 0.01 e | 1.46 ± 0.10 c | 1.96 ± 0.09 b | 0.68 ± 0.01 c |
Compound | Molecular Formula | Mass-to-Charge Ratio (m/z) | ||
---|---|---|---|---|
Predicted | Measured in Sample P1 | Measured in Sample P2 | ||
Protocatechuic acid (PA) | C7H6O4 | 153.019332 | 153.019354 | 153.019339 |
Vanillic acid (VA) | C8H8O4 | 167.034982 | 167.035008 | 167.034891 |
Caffeic acid (CA) | C9H8O4 | 179.034982 | 179.034941 | 179.034941 |
Quercetin (Q) | C15H10O7 | 301.035376 | 301.035407 | 301.035380 |
Rutin (R) | C27H30O16 | 609.146108 | 609.146473 | 609.145659 |
Variable | PC1 | PC2 |
---|---|---|
Total phenolic content (TPC) | 0.992 | −0.110 |
Total anthocyanin content (TAC) | 0.950 | −0.308 |
Antioxidant capacity (AC) | 0.986 | −0.155 |
Protocatechuic acid content (PA) | 0.989 | 0.090 |
Caffeic acid content (CA) | 0.900 | 0.423 |
Vanillic acid content (VA) | 0.916 | 0.301 |
Rutin hydrate content (RH) | 0.257 | 0.920 |
Quercetin content (Q) | −0.535 | 0.798 |
Variable | TPC | TAC | AC | PA | CA | VA | RH | Q |
---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.975 | 0.995 | 0.965 | 0.851 | 0.860 | 0.170 | −0.634 |
TAC | 0.975 | 1 | 0.985 | 0.914 | 0.722 | 0.780 | −0.042 | −0.748 |
AC | 0.995 | 0.985 | 1 | 0.961 | 0.820 | 0.856 | 0.112 | −0.650 |
PA | 0.965 | 0.914 | 0.961 | 1 | 0.919 | 0.957 | 0.305 | −0.427 |
CA | 0.851 | 0.722 | 0.820 | 0.919 | 1 | 0.929 | 0.642 | −0.165 |
VA | 0.860 | 0.780 | 0.856 | 0.957 | 0.929 | 1 | 0.440 | −0.186 |
RH | 0.170 | −0.042 | 0.112 | 0.305 | 0.642 | 0.440 | 1 | 0.515 |
Q | −0.634 | −0.748 | −0.650 | −0.427 | −0.165 | −0.186 | 0.515 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drăghici-Popa, A.-M.; Boscornea, A.C.; Brezoiu, A.-M.; Tomas, Ș.T.; Pârvulescu, O.C.; Stan, R. Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts. Antioxidants 2023, 12, 1897. https://doi.org/10.3390/antiox12101897
Drăghici-Popa A-M, Boscornea AC, Brezoiu A-M, Tomas ȘT, Pârvulescu OC, Stan R. Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts. Antioxidants. 2023; 12(10):1897. https://doi.org/10.3390/antiox12101897
Chicago/Turabian StyleDrăghici-Popa, Ana-Maria, Aurelian Cristian Boscornea, Ana-Maria Brezoiu, Ștefan Theodor Tomas, Oana Cristina Pârvulescu, and Raluca Stan. 2023. "Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts" Antioxidants 12, no. 10: 1897. https://doi.org/10.3390/antiox12101897
APA StyleDrăghici-Popa, A. -M., Boscornea, A. C., Brezoiu, A. -M., Tomas, Ș. T., Pârvulescu, O. C., & Stan, R. (2023). Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts. Antioxidants, 12(10), 1897. https://doi.org/10.3390/antiox12101897