Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Husbandry
2.2. Diets and Experimental Design
2.3. Laboratory Analysis
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Meat Quality
4. Discussion
4.1. Growth Performance
4.2. Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [PubMed]
- Carvalho, R.; Shimokomaki, M.; Estévez, M. Poultry meat color and oxidation. In Poultry Quality Evaluation; Woodhead Publishing Series in Food Science, Technology and Nutrition; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 133–157. [Google Scholar]
- Khan, R.U.; Rahman, Z.U.; Nikousefat, Z.; Javdani, M.; Tufarelli, V.; Dario, C.; Selvaggi, M.; Laudadio, V. Immunomodulating effects of vitamin E in broilers. World’s Poult. Sci. J. 2012, 68, 31–40. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry: Ninth Revised Edition, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Hidiroglou, N.; Cave, N.; Atwal, A.S.; Farnworth, E.R.; McDowell, L.R. Comparative vitamin E requirements and metabolism in livestock. Ann. Rech. Vet. 1992, 23, 337–359. [Google Scholar] [PubMed]
- Fundación Española Desarrollo Nutrición Animal (FEDNA). Necesidades Nutricionales para Avicultura. Normas FEDNA, 2nd ed.; Santomá, G., Mateos, G.G., Eds.; Fundación Española Desarrollo Nutrición Animal (FEDNA): Madrid, Spain, 2018. [Google Scholar]
- Chae, B.J.; Lohakare, J.D.; Choi, J.Y.; Han, K.N.; Yong, J.S.; Won, H.K.; Park, Y.H.; Hahan, T.W. The efficacy of vitamin E-polyethylene glycol complex on growth performance, chicken meat quality and immunity in broilers. J. Anim. Feed Sci. 2005, 14, 125–138. [Google Scholar] [CrossRef]
- Weiss, B. How much supplemental vitamins do cows really need? In Proceedings of the 27th Annual Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 16–18 April 2018. [Google Scholar]
- Leeson, S. Vitamin requirements: Is there basis for re-evaluating dietary specifications? World’s Poult. Sci. J. 2007, 63, 255–266. [Google Scholar] [CrossRef]
- Santomá, G.; Perez de Ayala, P. Evolución de la producción y los programas de alimentación de broilers: Estudio comparativo (2022 vs. 2014). In XXXVII Curso de Especialización FEDNA, 1st ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2022; pp. 101–164. ISBN 978-84-09-46116-5. [Google Scholar]
- Tufarelli, V.; Passantino, L.; Zupa, R.; Crupi, P.; Laudadio, V. Suitability of dried olive pulp in slow-growing broilers: Performance, meat quality, oxidation products, and intestinal mucosa features. Poult. Sci. 2022, 101, 102230. [Google Scholar]
- Fernández-Lobato, L.; García-Ruiz, R.; Jurado, F.; Vera, D. Life cycle assessment, C footprint and carbon balance of virgin olive oils production from traditional and intensive olive groves in southern Spain. J. Environ. Manag. 2021, 293, 112951. [Google Scholar]
- International Olive Council. Available online: https://www.internationaloliveoil.org/ (accessed on 12 November 2022).
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation mehod for oliveoil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Salmoral, G.; Aldaya, M.M.; Chico, D.; Garrido, A.; Llamas, M.R. The water footprint of olive oil in Spain. Span. J. Agric. Res. 2010, 9, 1089–1104. [Google Scholar]
- Berbel, J.; Posadillo, A. Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products. Sustainability 2018, 10, 237. [Google Scholar]
- Nasopolou, C.; Zabetaquis, I. Agricultural and aquacultural potential of olive pomace a review. J. Agric. Sci. 2013, 5, 116–127. [Google Scholar] [CrossRef]
- Nasopoulou, C.; Lytoudi, K.; Zabetakis, I. Evaluation of olive pomace in the production of novel broilers with enhanced in vitro antithrombotic properties. Eur. J. Lipid Sci. Technol. 2018, 120, 1700290. [Google Scholar]
- King, A.J.; Griffin, J.K.; Roslan, F. In vivo and in vitro addition of dried olive extract in poultry. J. Agric. Food Chem. 2014, 62, 7915–7919. [Google Scholar]
- Liehr, M.; Mereu, A.; Pastor, J.J.; Quintela, J.C.; Staats, S.; Rimbach, G.; Ipharraguerre, I.R. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota. PLoS ONE 2017, 12, e0174239. [Google Scholar]
- Fernández-Prior, M.Á.; Fatuarte, J.C.P.; Oria, A.B.; Viera-Alcaide, I.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. New Liquid Source of Antioxidant Phenolic Compounds in the Olive Oil Industry: Alperujo Water. Foods 2020, 9, 962. [Google Scholar] [PubMed]
- Rigacci, S.; Stefani, M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int. J. Mol. Sci. 2016, 17, 843. [Google Scholar]
- Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 2002, 50, 596–601. [Google Scholar] [CrossRef]
- El-Albbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Luque de Castro, M.D. Static-dynamic superheated liquid extraction of hydroxytyrosol and other biophenols from alperujo (a semisolid residue of the olive oil industry). J. Agric. Food Chem. 2007, 55, 3629–3634. [Google Scholar]
- Gerasopoulos, K.; Stagos, D.; Kokkas, S.; Petrotos, K.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 2015, 82, 42–49. [Google Scholar] [CrossRef]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Mereu, A.; Ipharraguerre, I.R.; Menoyo, D. Effects of bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 2019, 99, 2–10. [Google Scholar] [CrossRef] [PubMed]
- De la Torre-Carbot, K.; Jauregui, O.; Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; López-Sabater, M.C. Characterization and quantification of phenolic compounds in olive oils by solid-phase extraction, HPLC-DAD, and HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 4331–4340. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Florou-Paneri, P.; Christaki, E.; Fletouris, D.J.; Spais, A.B. Effect of dietary oregano essential oil on performance of chickens and on iron-reduced lipid oxidation of breast, thigh and abdominal fat tissues. Br. Poult. Sci. 2002, 43, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Chen, X.; Zhang, H.; Zhou, Y.M. Effects of dietary concentrations of methionine on growth performance and oxidative status of broiler chickens with different hatching weight. Br. Poult. Sci. 2013, 54, 531–537. [Google Scholar] [CrossRef]
- Balzan, S.; Cardazzo, B.; Novelli, E.; Carraro, L.; Fontana, F.; Currò, S.; Laghetto, M.; Trocino, A.; Xiccato, G.; Taticchi, A.; et al. Employment of phenolic compounds from olive vegetation water in broiler chickens: Effects on gut microbiota and on the shelf life of breast fillets. Molecules 2021, 26, 4307. [Google Scholar] [CrossRef]
- BOE. RD 53/2013, de 21 de octubre por la que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia, Spain. Boletín Of. Estado 2013, 252, 34367–34391. [Google Scholar]
- Cobb Broiler. Management Guide. Available online: https://www.cobb-vantress.com (accessed on 20 November 2022).
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Rey, A.I.; Daza, A.; López-Carrasco, C.; López-Bote, C.J. Quantitative study of the α-and γ-tocopherols accumulation in muscle and backfat from Iberian pigs kept free-range as affected by time of free-range feeding or weight gain. Anim. Sci. 2006, 82, 901–908. [Google Scholar] [CrossRef]
- International Olive Council. Determination of Biophenols in Olive Oils by HPLC. COI/T.20/Doc.nº.29. 2009/Rev.1 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/06/Doc.-No-29-REV-2_ENK.pdf (accessed on 10 July 2023).
- Capannesi, C.; Palchetti, I.; Mascini, M.; Parenti, A. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 2000, 71, 553–562. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Pompeu, M.A.; Cavalcanti, L.F.L.; Toral, F.L.B. Effect of vitamin E supplementation on growth performance, meat quality, and immune response of male broiler chickens: A meta-analysis. Livest. Sci. 2018, 208, 5–13. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defense systems and oxidative stress in poultry biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Sarica, S.; Toptas, S. Effects of dietary oleuropein supplementation on growth performance, serum lipid concentrations and lipid oxidation of Japanese quails. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Deng, Y.; Huang, L.; Zhang, C. Effect of olive leaf (Olea europaea L.) extract addition to broiler diets on growth performance, breast meat quality, antioxidant capacity and caecal bacterial populations. Ital. J. Anim. Sci. 2022, 21, 1246–1258. [Google Scholar] [CrossRef]
- Varmaghany, S.; Rahimi, S.; Karimi Torshizi, M.A.; Lotfollahian, H.; Hassanzadeh, M. Effect of olive leaves on ascites incidence, hematological parameters and growth performance in broilers reared under standard and cold temperature conditions. Anim. Feed Sci. Technol. 2013, 185, 60–69. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef]
- Ghazanfari, S.; Mohammadi, Z.; Adib Moradi, M. Effects of coriander essential oil on the performance, blood characteristics, intestinal microbiota and histology of broilers. Braz. J. Poult. Sci. 2015, 17, 419–426. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed. Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Leskovec, J.; Levart, A.; Zgur, S.; Jordan, D.; Pirman, T.; Salobir, J.; Rezar, V. Effects of olive leaf and marigold extracts on the utilization of nutrients and on bone mineralization using two different oil sources in broilers. J. Poult. Sci. 2018, 55, 17–27. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Ortenzi, R.; Roila, R.; Trabalza-Marinucci, M.; Servili, M.; Papa, P.; Galarini, R.; Valiani, A. Dietary administration of olive mill wastewater extract reduces Campylobacter spp. prevalence in broiler chickens. Sustainability 2016, 8, 837. [Google Scholar]
- Herrero-Encinas, J.; Huerta, A.; Blanch, M.; Pastor, J.J.; Morais, S.; Menoyo, D. Impact of Dietary Supplementation of Spice Extracts on Growth Performance, Nutrient Digestibility and Antioxidant Response in Broiler Chickens. Animals 2023, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Abdollahi, M.R. Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals 2021, 11, 2795. [Google Scholar]
- Machlin, L.J.; Bendich, A. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1987, 1, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.; Wong, J.T.; Lee, E.; Chan, A.C.; Choy, P.C. Vitamin E potentiates arachidonate release and phospholipase A2 activity in rat heart myoblastic cells. Biochem. J. 1996, 319, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernández, J.; Ramirez-Tortosa, C.; Rodríguez-García, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar]
- Salami, S.A.; Guinguina, A.; Agboola, J.O.; Omede, A.A.; Agbonlahor, E.M.; Tayyab, U. Review: In vivo and postmortem effects of feed antioxidants in livestock: A review of the implications on authorization of antioxidant feed additives. Animal 2016, 10, 1375–1390. [Google Scholar]
- Lourenço, C.F.; Gago, B.; Barbosa, R.M.; de Freitas, V.; Laranjinha, J. LDL isolated from plasma-loaded red wine procyanidins resist lipid oxidation and tocopherol depletion. J. Agric. Food Chem. 2008, 56, 3798–3804. [Google Scholar]
- Herrero-Encinas, J.; Corrales, N.L.; Sevillano, F.; Ringseis, R.; Eder, K.; Menoyo, D. Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome. Antioxidants 2023, 12, 1751. [Google Scholar] [CrossRef]
- Fletcher, D.L. Poultry meat quality. World’s Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- Sirri, F.; Bianchi, M.; Petracci, M.; Meluzzi, A. Influence of partial and complete caponization on chicken meat quality. Poult. Sci. 2009, 88, 1466–1473. [Google Scholar] [PubMed]
- Rhee, K.S.; Ziprin, Y.A. Lipid oxidation in retail beef, pork and chicken muscles as affected by concentrations of heme pigments and nonheme iron and microsomal enzymic lipid peroxidation activity. J. Food Biochem. 1987, 11, 1–15. [Google Scholar] [CrossRef]
HT0 | HT7.5 | HT15 | HT22.5 | HT30 | |
---|---|---|---|---|---|
Ingredient | |||||
Corn | 58.7 | 58.7 | 58.7 | 58.7 | 58.7 |
Soybean meal, 47% CP | 36.4 | 36.4 | 36.4 | 36.4 | 36.4 |
Soy oil | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
Calcium carbonate | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 |
Monocalcium phosphate | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
DL-methionine, 99% | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
L-Lysine HCL, 78% | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
L-Threonine | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
L-Valine | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Vitamin–mineral premix 1 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Sodium chloride | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
OLIVOX® 2 mg/kg | 0 | 824 | 1648 | 2473 | 3297 |
Vitamin E 3, mg/kg | 40.0 | 30.0 | 20.0 | 10.0 | 0.0 |
Calculated analysis | |||||
Moisture | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |
AMEn, kcal/kg | 2920 | 2920 | 2920 | 2920 | 2920 |
Crude protein | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 |
Ether extract | 3.93 | 3.93 | 3.93 | 3.93 | 3.93 |
Ash | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 |
Calcium | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
Digestible phosphorus | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Vitamin E, mg/kg | 53.7 | 43.7 | 33.7 | 23.7 | 13.7 |
Determined analysis | |||||
Moisture | 12.2 | 12.5 | 11.7 | 11.6 | 11.8 |
Gross energy, kcal/kg | 3938 | 3967 | 3981 | 3970 | 3962 |
Crude protein | 22.5 | 22.7 | 22.6 | 22.7 | 22.5 |
Ash | 5.07 | 4.70 | 5.09 | 4.92 | 5.08 |
Vitamin E 4, mg/kg | 44.7 | 37.5 | 26.8 | 18.2 | 9.31 |
HT0 | HT7.5 | HT15 | HT22.5 | HT30 | |
---|---|---|---|---|---|
Ingredients | |||||
Corn | 64.0 | 64.0 | 64.0 | 64.0 | 64.0 |
Soybean meal, 47% CP | 29.9 | 29.9 | 29.9 | 29.9 | 29.9 |
Soy oil | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 |
Calcium carbonate | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Monocalcium phosphate | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
DL-methionine, 99% | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
L-Lysine HCL, 78% | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
L-Threonine | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
L-Valine | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Vitamin–mineral premix 1 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Sodium chloride | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
OLIVOX® 2 mg/kg | 0 | 824 | 1648 | 2473 | 3297 |
Vitamin E 3, mg/kg | 40.0 | 30.0 | 20.0 | 10.0 | 0.0 |
Calculated analysis | |||||
Moisture | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |
AMEn, kcal/kg | 3100 | 3100 | 3100 | 3100 | 3100 |
Crude protein | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 |
Ether extract | 5.87 | 5.87 | 5.87 | 5.87 | 5.87 |
Ash | 4.65 | 4.65 | 4.65 | 4.65 | 4.65 |
Calcium | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
Digestible phosphorus | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Vitamin E, mg/kg | 54.5 | 44.5 | 34.5 | 24.5 | 14.5 |
Determined analysis | |||||
Moisture | 10.3 | 11.0 | 11.1 | 10.9 | 11.1 |
Gross energy, kcal/kg | 4136 | 4103 | 4088 | 4117 | 4093 |
Crude protein | 19.5 | 19.2 | 19.3 | 19.6 | 19.1 |
Ash | 4.53 | 4.45 | 4.42 | 4.34 | 4.24 |
Vitamin E 4, mg/kg | 48.9 | 35.7 | 26.0 | 19.0 | 11.3 |
HT0 | HT7.5 | HT15 | HT22.5 | HT30 | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|---|---|---|
Hydroxytyrosol, mg/kg | 0 | 7.5 | 15 | 22.5 | 30 | ||||
Vitamin E, mg/kg | 40 | 30 | 20 | 10 | 0 | (n = 7) | Diet | L 3 | Q 4 |
0 to 7 days | |||||||||
Body weight 0 d, g | 41.2 | 41.5 | 41.7 | 41.2 | 41.1 | 0.266 | 0.474 | 0.190 | 0.118 |
Body weight 7 d, g | 189 | 194 | 191 | 195 | 191 | 2.010 | 0.218 | 0.136 | 0.175 |
Average daily gain, g/d | 21.1 | 21.8 | 21.5 | 21.9 | 21.4 | 0.261 | 0.182 | 0.053 | 0.076 |
Average daily feed intake, g/d | 20.5 | 20.9 | 20.6 | 20.9 | 20.5 | 0.260 | 0.726 | 0.346 | 0.328 |
Feed conversion ratio, g/g | 0.973 | 0.956 | 0.955 | 0.947 | 0.958 | 0.011 | 0.605 | <0.001 | 0.002 |
8 to 14 days | |||||||||
Body weight 14 d, g | 524 | 533 | 520 | 525 | 517 | 4.388 | 0.141 | 0.660 | 0.408 |
Average daily gain, g/d | 47.8 | 48.4 | 47.0 | 47.3 | 46.6 | 0.497 | 0.117 | 0.785 | 0.731 |
Average daily feed intake, g/d | 57.0 | 57.5 | 57.0 | 56.6 | 55.7 | 0.624 | 0.341 | 0.501 | 0.228 |
Feed conversion ratio, g/g | 1.192 | 1.186 | 1.206 | 1.198 | 1.195 | 0.011 | 0.833 | 0.521 | 0.604 |
15 to 21 days | |||||||||
Body weight 21 d, g | 1095 | 1100 | 1078 | 1096 | 1091 | 9.72 | 0.566 | 0.499 | 0.533 |
Average daily gain, g/d | 81.7 | 81.3 | 79.8 | 81.6 | 81.8 | 1.06 | 0.683 | 0.273 | 0.231 |
Average daily feed intake, g/d | 105.8 | 106.0 | 104.7 | 104.0 | 106.3 | 1.43 | 0.777 | 0.430 | 0.504 |
Feed conversion ratio, g/g | 1.296 | 1.306 | 1.297 | 1.276 | 1.309 | 0.011 | 0.244 | 0.549 | 0.564 |
22 to 39 days | |||||||||
Body weight 39 d, g | 3096 | 3174 | 3129 | 3167 | 3154 | 38.0 | 0.594 | 0.266 | 0.368 |
Average daily gain, g/d | 111.2 | 115.3 | 113.9 | 115.0 | 115.1 | 1.91 | 0.506 | 0.213 | 0.359 |
Average daily feed intake, g/d | 167.5 b | 175.8 a | 175.4 a | 174.0 a | 175.0 a | 2.04 | 0.024 | 0.019 | 0.055 |
Feed conversion ratio, g/g | 1.508 | 1.527 | 1.521 | 1.513 | 1.521 | 0.012 | 0.783 | 0.601 | 0.657 |
Global, 0 to 39 days | |||||||||
Average daily gain, g/d | 78.3 | 80.5 | 79.4 | 80.1 | 79.8 | 0.959 | 0.539 | 0.271 | 0.375 |
Average daily feed intake, g/d | 110.2 | 114.5 | 113.2 | 112.6 | 113.1 | 1.131 | 0.125 | 0.072 | 0.122 |
Feed conversion ratio, g/g | 1.407 | 1.422 | 1.412 | 1.405 | 1.417 | 0.008 | 0.569 | 0.900 | 0.937 |
Control | HT7.5 | HT15 | HT22.5 | HT30 | SEM 1 | p-Value 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Hydroxytyrosol, mg/kg | 0 | 7.5 | 15 | 22.5 | 30 | |||||
Vitamin E, mg/kg | 40 | 30 | 20 | 10 | 0 | (n = 7) | Diet | Time 3 | L 4 | Q 5 |
MDA 6, mg/kg meat | ||||||||||
1 day of storage | 0.438 | 0.461 | 0.406 | 0.430 | 0.467 | 0.024 | 0.417 | - | 0.382 | 0.324 |
3 days of storage | 0.605 bc | 0.582 c | 0.773 ab | 0.640 bc | 0.856 a | 0.067 | 0.036 | - | 0.858 | 0.592 |
7 days of storage | 0.880 b | 0.900 b | 1.286 ab | 1.242 b | 2.354 a | 0.206 | <0.001 | <0.001 | 0.483 | 0.038 |
Color | ||||||||||
L* (Lightness) | ||||||||||
1 day of storage | 58.1 | 55.3 | 56.7 | 57.0 | 58.9 | 0.992 | 0.121 | - | 0.077 | 0.010 |
3 days of storage | 58.5 | 54.5 | 57.5 | 57.1 | 58.1 | 1.094 | 0.105 | - | 0.235 | 0.070 |
7 days of storage | 54.0 | 50.8 | 53.6 | 54.0 | 54.7 | 1.448 | 0.361 | <0.001 | 0.272 | 0.104 |
a* (Redness) | ||||||||||
1 day of storage | 1.52 | 2.70 | 2.01 | 2.40 | 2.15 | 0.321 | 0.126 | - | 0.116 | 0.165 |
3 days of storage | 1.68 b | 2.96 a | 1.65 b | 1.82 b | 2.10 b | 0.267 | 0.005 | - | 0.737 | 0.666 |
7 days of storage | 1.46 b | 3.06 a | 1.81 ab | 1.68 ab | 2.07 ab | 0.314 | 0.007 | 0.483 | 0.394 | 0.353 |
b* (Yellowness) | ||||||||||
1 day of storage | 10.1 | 9.09 | 8.94 | 10.1 | 9.92 | 0.543 | 0.387 | - | 0.226 | 0.167 |
3 days of storage | 11.4 | 10.4 | 9.97 | 10.9 | 11.1 | 0.560 | 0.418 | - | 0.088 | 0.080 |
7 days of storage | 10.8 | 10.1 | 10.3 | 11.2 | 11.0 | 0.458 | 0.361 | <0.001 | 0.538 | 0.338 |
pH | 6.01 | 6.12 | 5.87 | 6.03 | 5.99 | 0.074 | 0.233 | - | 0.568 | 0.662 |
Drip loss, % | 4.97 | 3.86 | 5.27 | 4.86 | 4.64 | 0.631 | 0.590 | - | 0.951 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrales, N.L.; Sevillano, F.; Escudero, R.; Mateos, G.G.; Menoyo, D. Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality. Antioxidants 2023, 12, 1940. https://doi.org/10.3390/antiox12111940
Corrales NL, Sevillano F, Escudero R, Mateos GG, Menoyo D. Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality. Antioxidants. 2023; 12(11):1940. https://doi.org/10.3390/antiox12111940
Chicago/Turabian StyleCorrales, Nereida L., Fernando Sevillano, Rosa Escudero, Gonzalo G. Mateos, and David Menoyo. 2023. "Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality" Antioxidants 12, no. 11: 1940. https://doi.org/10.3390/antiox12111940
APA StyleCorrales, N. L., Sevillano, F., Escudero, R., Mateos, G. G., & Menoyo, D. (2023). Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality. Antioxidants, 12(11), 1940. https://doi.org/10.3390/antiox12111940