The Combination of Untargeted Metabolomics with Response Surface Methodology to Optimize the Functional Potential of Common Duckweed (Lemna minor L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. Experimental Design and Determination of the Optimum Conditions
2.4. Untargeted Metabolomics Profiling by High-Resolution Mass Spectrometry
2.4.1. Screening of Phenolic Compounds and Glucosinolates
2.4.2. Screening of Apolar Compounds
2.5. In Vitro Assays
2.5.1. Antioxidant Activity
2.5.2. Enzyme Inhibition Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Profile of L. minor Extracts by UHPLC-HRMS
3.2. Effect of Extraction Parameters on the Duckweed Extract Properties
3.3. Multivariate Statistics and Discriminant Marker Compounds
3.4. Pearson’s Correlations and Canonical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Snafi, A. Lemna minor: Traditional uses, chemical constituents and pharmacological effects—A review. IOSR J. Pharm. 2019, 9, 6–11. [Google Scholar]
- Del Buono, D.; Bartucca, M.L.; Ballerini, E.; Senizza, B.; Lucini, L.; Trevisan, M. Physiological and biochemical effects of an aqueous extract of Lemna minor L. as a potential biostimulant for maize. J. Plant Growth Regul. 2022, 41, 3009–3018. [Google Scholar] [CrossRef]
- Wahman, R.; Moser, S.; Bieber, S.; Cruzeiro, C.; Schröder, P.; Gilg, A.; Lesske, F.; Letzel, T. Untargeted analysis of lemna minor metabolites: Workflow and prioritization strategy comparing highly confident features between different mass spectrometers. Metabolites 2021, 11, 832. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 2021, 1–15. [Google Scholar] [CrossRef]
- Mes, J.J.; Esser, D.; Somhorst, D.; Oosterink, E.; van der Haar, S.; Ummels, M.; Siebelink, E.; van der Meer, I.M. Daily intake of Lemna minor or spinach as vegetable does not show significant difference on health parameters and taste preference. Plant Foods Hum. Nutr. 2022, 77, 121–127. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Wolffia globosa powder as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06938. [Google Scholar] [CrossRef]
- Rocchetti, G.; Ferronato, G.; Sarv, V.; Kerner, K.; Venskutonis, P.R.; Lucini, L. Meat extenders from different sources as protein-rich alternatives to improve the technological properties and functional quality of meat products. Curr. Opin. Food Sci. 2023, 49, 100967. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef] [PubMed]
- Nicolescu, A.; Babotă, M.; Zhang, L.; Bunea, C.I.; Gavrilaș, L.; Vodnar, D.C.; Mocan, A.; Crișan, G.; Rocchetti, G. Optimized ultrasound-assisted enzymatic extraction of phenolic compounds from Rosa canina L. pseudo-fruits (Rosehip) and their biological activity. Antioxidants 2022, 11, 1123. [Google Scholar] [CrossRef] [PubMed]
- Panfili, I.; Bartucca, M.L.; Del Buono, D. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine. Sci. Total Environ. 2019, 646, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Lenth, R. Response-Surface Illustration. Available online: https://cran.r-project.org/web/packages/rsm/rsm.pdf (accessed on 31 December 2022).
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Babotă, M.; Frumuzachi, O.; Gâvan, A.; Iacoviță, C.; Pinela, J.; Barros, L.; Ferreira, I.C.F.R.; Zhang, L.; Lucini, L.; Rocchetti, G.; et al. Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrason. Sonochem. 2022, 84, 105954. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vandergheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 2–4. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Wahman, R.; Cruzeiro, C.; Graßmann, J.; Schröder, P.; Letzel, T. The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. Chemosphere 2022, 287, 132078. [Google Scholar] [CrossRef]
- Kim, Y.; Hyun, S.-H.; Park, H.E.; Choi, H.-K. Metabolic profiling, free-radical scavenging and tyrosinase inhibitory activities of Lemna minor whole plants cultivated in various concentrations of proline and sucrose. Process Biochem. 2012, 47, 62–68. [Google Scholar] [CrossRef]
- Hoe, B.C.; Priyangaa, A.; Nagarajan, J.; Ooi, C.W.; Ramanan, R.N.; Nagendra Prasad, K. In Chapter 8—Carotenoids. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques, 2nd ed.; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 313–362. ISBN 978-0-323-85052-0. [Google Scholar]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Wang, M.; Jian, Y.; Zhang, F.; Zhu, J.; Wang, Q.; Sun, B. Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Sci. Rep. 2019, 9, 20344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.; Zhao, Y.; Jiang, Y.; Yu, L.; Zeng, X.; Yang, J.; Tian, M.; Liu, H.; Yang, B. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radic. Biol. Med. 2017, 110, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Dang, Y. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohydr. Polym. 2008, 74, 603–610. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Liu, J.-C.; Kennedy, J.F. Extraction optimization of antioxidant polysaccharides from the fruiting bodies of Chroogomphis rutilus (Schaeff.: Fr.) O.K. Miller by Box-Behnken statistical design. Carbohydr. Polym. 2010, 82, 209–214. [Google Scholar] [CrossRef]
- Paini, M.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Binello, A.; Cravotto, G. Influence of ethanol/water ratio in ultrasound and high-pressure/high-temperature phenolic compound extraction from agri-food waste. Int. J. Food Sci. Technol. 2016, 51, 349–358. [Google Scholar] [CrossRef]
- Doheny-Adams, T.; Redeker, K.; Kittipol, V.; Bancroft, I.; Hartley, S.E. Development of an efficient glucosinolate extraction method. Plant Methods 2017, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Ishida, M.; Kakizaki, T.; Ohara, T.; Morimitsu, Y. Development of a simple and rapid extraction method of glucosinolates from radish roots. Breed. Sci. 2011, 61, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Lafarga, T.; Bobo, G.; Viñas, I.; Collazo, C.; Aguiló-Aguayo, I. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. J. Food Sci. Technol. 2018, 55, 1973–1981. [Google Scholar] [CrossRef]
- Oerlemans, K.; Barrett, D.M.; Suades, C.B.; Verkerk, R.; Dekker, M. Thermal degradation of glucosinolates in red cabbage. Food Chem. 2006, 95, 19–29. [Google Scholar] [CrossRef]
T (°C) | EtOH (%) | Power Level | Anthocyanins | Flavanols | Other Flavonoids | Flavonols | LMW Phenolics | Phenolic Acids | Stilbenes | Total Flavonoids | Total Phenolics | Carotenoids | Glucosinolates | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Independent Variables | Dependent Variables | |||||||||||||
x1 | x2 | x3 | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 | y11 | |
1 | 50 (0) | 50 (0) | 3 (0) | 9.4 ± 1.0 abc | 32.7 ± 3.5 abcd | 46.9 ± 3.8 c | 64.4 ± 15.9 de | 104.5 ± 14.8 | 226.1 ± 48.4 ab | 2.8 ± 0.2 cdefg | 153.5 ± 24.1 ef | 333.3 ± 63.0 ab | 229.6 ± 23.8 de | 30.8 ± 3.3 a |
2 | 30 (−1) | 20 (−1) | 3 (0) | 8.3 ± 2.6 abc | 36.9 ± 11.4 ab | 40.4 ± 3.4 c | 47.8 ± 31.3 e | 108.9 ± 48.5 | 168.8 ± 79.1 abcde | 3.9 ± 0.2 abc | 133.4 ± 45.4 ef | 281.6 ± 106.5 ab | 21.5 ± 3.0 h | 13.5 ± 1.5 c |
3 | 50 (0) | 80 (1) | 1 (−1) | 6.0 ± 2.7 bc | 3.6 ± 0.7 e | 90.5 ± 8.8 ab | 125.3 ± 23.3 abcd | 98.7 ± 18.2 | 62.9 ± 29.6 de | 2.0 ± 0.0 g | 225.5 ± 33.4 abcde | 163.6 ± 16.6 b | 251.9 ± 8.8 cd | 14.9 ± 6.4 c |
4 | 70 (1) | 80 (1) | 3 (0) | 8.0 ± 1.8 abc | 3.6 ± 0.8 e | 116.4 ± 16.0 a | 150.9 ± 41.6 a | 110.3 ± 5.8 | 84.8 ± 61.0 bcde | 2.0 ± 0.0 g | 279.0 ± 57.7 abc | 197.1 ± 59.3 ab | 188.2 ± 7.4 g | 18.1 ± 10.1 bc |
5 | 50 (0) | 20 (−1) | 5 (1) | 11.5 ± 3.5 ab | 31.1 ± 1.4 abcde | 36.8 ± 1.8 c | 43.6 ± 28.4 e | 97.9 ± 44.7 | 177.5 ± 6.1 abcde | 3.3 ± 0.3 bcde | 123.0 ± 28.6 f | 278.7 ± 39.9 ab | 20.1 ± 3.6 h | 12.6 ± 1.1 c |
6 | 50 (0) | 80 (1) | 5 (1) | 8.9 ± 0.9 abc | 6.3 ± 0.9 cde | 119.3 ± 10.8 a | 148.4 ± 47.9 ab | 158.5 ± 26.8 | 64.1 ± 23.0 de | 2.0 ± 0.0 g | 283.1 ± 59.0 ab | 224.7 ± 36.1 ab | 196.2 ± 7.4 g | 14.9 ± 5.4 c |
7 | 30 (−1) | 50 (0) | 5 (1) | 9.8 ± 2.8 abc | 31.7 ± 7.8 abcde | 50.6 ± 3.4 c | 69.0 ± 7.1 cde | 93.0 ± 21.1 | 211.6 ± 9.2 abc | 3.0 ± 0.2 bcdefg | 161.2 ± 18.4 ef | 307.6 ± 23.8 ab | 247.7 ± 10.8 cd | 32.0 ± 1.8 a |
8 | 70 (1) | 50 (0) | 5 (1) | 9.9 ± 1.2 abc | 44.4 ± 13.7 ab | 53.9 ± 1.8 c | 72.4 ± 2.9 cde | 104.1 ± 10.4 | 141.5 ± 60.8 abcde | 3.1 ± 0.0 bcdefg | 180.8 ± 16.9 cdef | 248.6 ± 51.6 ab | 243.7 ± 6.7 cd | 29.4 ± 1.3 ab |
9 | 50 (0) | 50 (0) | 3 (0) | 10.1 ± 0.9 abc | 50.2 ± 8.2 ab | 50.9 ± 4.0 c | 72.5 ± 8.9 cde | 145.4 ± 35.9 | 213.3 ± 11.9 abc | 2.6 ± 0.1 defg | 183.8 ± 11.5 bcdef | 361.3 ± 47.8 a | 200.2 ± 5.8 fg | 30.3 ± 0.8 a |
10 | 50 (0) | 20 (−1) | 1 (−1) | 9.7 ± 0.9 abc | 48.3 ± 6.4 ab | 41.9 ± 12.7 c | 73.5 ± 11.4 cde | 95.0 ± 11.5 | 167.2 ± 16.7 abcde | 3.4 ± 0.3 bcde | 173.3 ± 8.3 def | 265.6 ± 26.3 ab | 208.9 ± 9.1 efg | 27.1 ± 4.4 ab |
11 | 70 (1) | 20 (−1) | 3 (0) | 10.8 ± 0.8 ab | 40.4 ± 3.5 ab | 38.2 ± 5.2 c | 54.4 ± 9.5 de | 125.6 ± 92.1 | 170.8 ± 15.0 abcde | 4.2 ± 1.1 ab | 143.8 ± 10.4 ef | 300.7 ± 96.3 ab | 19.9 ± 1.5 h | 9.3 ± 4.3 c |
12 | 30 (−1) | 50 (0) | 1 (−1) | 11.4 ± 2.8 ab | 36.3 ± 10.7 ab | 49.9 ± 2.4 c | 66.7 ± 15.4 de | 108.1 ± 38.9 | 247.3 ± 11.5 a | 2.4 ± 0.1 efg | 164.3 ± 11.9 ef | 357.8 ± 147.3 a | 394.5 ± 12.4 a | 30.5 ± 0.9 a |
13 | 30 (−1) | 80 (1) | 3 (0) | 4.3 ± 1.6 c | 3.2 ± 1.5 e | 64.5 ± 14.3 bc | 93.2 ± 29.6 abcde | 122.7 ± 19.5 | 36.6 ± 5.9 e | 2.0 ± 0.0 fg | 165.2 ± 19.4 ef | 161.4 ± 17.5 b | 386.8 ± 12.5 a | 14.9 ± 5.2 c |
14 | 70 (1) | 50 (0) | 1 (−1) | 10.9 ± 2.6 ab | 47.7 ± 12.9 ab | 53.2 ± 5.5 c | 77.8 ± 9.5 bcde | 98.9 ± 36.5 | 171.2 ± 42.4 abcde | 3.5 ± 0.8 abcde | 189.6 ± 26.3 abcdef | 273.7 ± 14.5 ab | 189.9 ± 3.9 g | 28.6 ± 0.3 ab |
15 | 50 (0) | 50 (0) | 3 (0) | 10.2 ± 2.3 abc | 27.4 ± 8.5 bcde | 39.6 ± 4.1 c | 50.2 ± 12.4 e | 69.9 ± 8.7 | 131.2 ± 57.3 abcde | 3.3 ± 0.2 bcdef | 127.5 ± 24.4 ef | 204.4 ± 52.4 ab | 22.3 ± 2.2 h | 12.0 ± 2.3 c |
16 | 50 (0) | 50 (0) | 3 (0) | 11.5 ± 0.7 ab | 28.1 ± 8.5 bcde | 52.1 ± 1.9 c | 66.1 ± 23.2 de | 91.4 ± 21.3 | 152.9 ± 58.3 abcde | 3.1 ± 0.6 bcdefg | 157.8 ± 18.6 ef | 247.4 ± 77.0 ab | 211.9 ± 5.6 efg | 30.0 ± 2.0 a |
17 | 70 (1) | 80 (1) | 1 (−1) | 8.2 ± 1.7 abc | 3.6 ± 1.1 e | 116.5 ± 20.4 a | 158.4 ± 12.8 a | 127.7 ± 19.3 | 70.9 ± 36.9 cde | 2.0 ± 0.0 g | 286.7 ± 32.3 a | 200.6 ± 53.1 ab | 290.3 ± 9.5 b | 13.3 ± 1.4 c |
18 | 30 (−1) | 80 (1) | 5 (1) | 7.8 ± 2.5 abc | 5.7 ± 0.9 de | 117.5 ± 18.9 a | 139.9 ± 28.4 abc | 124.5 ± 12.8 | 42.9 ± 7.4 e | 2.1 ± 0.0 fg | 270.9 ± 45.5 abcd | 169.4 ± 5.5 b | 269.6 ± 1.9 bc | 12.0 ± 0.8 c |
19 | 70 (1) | 20 (−1) | 1 (−1) | 10.0 ± 2.3 abc | 35.1 ± 3.3 abc | 38.0 ± 6.9 c | 50.3 ± 17.2 e | 116.0 ± 63.3 | 120.9 ± 70.1 abcde | 4.7 ± 0.5 a | 133.5 ± 24.9 ef | 241.7 ± 43.3 ab | 20.1 ± 1.1 h | 13.1 ± 0.5 c |
20 | 50 (0) | 50 (0) | 3 (0) | 9.7 ± 2.1 abc | 45.2 ± 28.2 ab | 52.9 ± 9.0 c | 70.6 ± 5.1 cde | 140.4 ± 49.2 | 182.3 ± 31.1 abcde | 3.3 ± 0.6 bcde | 178.3 ± 36.7 def | 326.1 ± 34.3 ab | 266.9 ± 4.3 bc | 31.3 ± 3.9 a |
21 | 50 (0) | 50 (0) | 5 (1) | 12.8 ± 0.8 a | 57.7 ± 8.0 a | 58.2 ± 11.1 c | 78.7 ± 30.2 bcde | 110.5 ± 48.34 | 207.1 ± 16.7 abcd | 3.8 ± 0.2 abcd | 207.4 ± 49.4 abcdef | 321.4 ± 45.3 ab | 225.4 ± 3.6 def | 28.9 ± 0.8 ab |
T (°C) | EtOH (%) | Power Level | DPPH• | ABTS•+ | CUPRAC | MCA | PMD | AChE | BChE | Tyrosinase | α-Amylase | α-Glucosidase | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Independent Variables | Dependent Variables | ||||||||||||
x1 | x2 | x3 | y12 | y13 | y14 | y15 | y16 | y17 | y18 | y19 | Y20 | y21 | |
1 | 50 (0) | 50 (0) | 3 (0) | 16.3 ± 0.6 ef | 6.6 ± 0.7 d | 21.7 ± 0.2 ef | 29.6 ± 2.7 def | 193.7 ± 0.6 cd | 5.7 ± 0.02 ab | 7.3 ± 0.01 ef | 97.3 ± 0.8 ef | 0.42 ± 0.00 bcde | 1.94 ± 0.00 abc |
2 | 30 (−1) | 20 (−1) | 3 (0) | 14.8 ± 0.6 f | 1.6 ± 0.4 f | 15.3 ± 0.4 i | 28.0 ± 0.5 fg | 117.9 ± 7.7 fghi | 5.6 ± 0.01 bcde | 7.7 ± 0.06 cd | 94.3 ± 2.3 fgh | 0.32 ± 0.01 g | 1.94 ± 0.00 abc |
3 | 50 (0) | 80 (1) | 1 (−1) | 27.4 ± 0.8 bc | 21.9 ± 0.8 b | 33.3 ± 0.6 c | 39.5 ± 0.5 a | 216.8 ± 5.9 bc | 5.6 ± 0.03 bcde | 7.2 ± 0.01 f | 107.6 ± 0.7 abc | 0.43 ± 0.01 ab | 1.94 ± 0.00 abc |
4 | 70 (1) | 80 (1) | 3 (0) | 26.0 ± 0.9 c | 22.3 ± 0.7 b | 34.8 ± 1.0 b | 40.8 ± 0.4 a | 208.5 ± 1.2 bc | 5.6 ± 0.02 bcde | 6.6 ± 0.11 g | 107.7 ± 0.8 ab | 0.42 ± 0.01 ab | 1.94 ± 0.01 abc |
5 | 50 (0) | 20 (−1) | 5 (1) | 15.1 ± 0.9 f | 0.4 ± 0.0 f | 14.8 ± 0.1 i | 28.1 ± 0.7 fg | 74.0 ± 1.8 l | 5.7 ± 0.01 ab | 8.1 ± 0.0 a | 100.6 ± 1.2 de | 0.27 ± 0.01 h | 1.95 ± 0.00 ab |
6 | 50 (0) | 80 (1) | 5 (1) | 24.9 ± 1.0 c | 23.8 ± 0.8 ab | 34.6 ± 0.4 bc | 40.8 ± 0.5 a | 230.1 ± 11.2 b | 5.4 ± 0.02 f | 6.4 ± 0.09 h | 107.1 ± 0.2 abc | 0.42 ± 0.02 abc | 1.91 ± 0.01 d |
7 | 30 (−1) | 50 (0) | 5 (1) | 15.4 ± 0.3 ef | 3.7 ± 0.1 e | 17.5 ± 0.4 h | 34.0 ± 0.3 b | 117.3 ± 7.1 fghi | 5.7 ± 0.03 abcd | 8.2 ± 0.11 a | 102.9 ± 0.4 cd | 0.39 ± 0.01 cdef | 1.95 ± 0.00 abc |
8 | 70 (1) | 50 (0) | 5 (1) | 16.4 ± 1.2 ef | 8.2 ± 0.7 cd | 22.4 ± 0.2 e | 34.4 ± 0.4 b | 147.5 ± 2.9 e | 5.7 ± 0.04 abcd | 7.5 ± 0.07 de | 103.1 ± 1.8 bcd | 0.42 ± 0.01 abcd | 1.92 ± 0.01 cd |
9 | 50 (0) | 50 (0) | 3 (0) | 15.6 ± 0.3 ef | 7.3 ± 0.2 d | 20.4 ± 0.4 fg | 32.4 ± 0.1 bcd | 132.1 ± 5.3 efgh | 5.6 ± 0.04 cde | 7.6 ± 0.11 cd | 110.7 ± 0.5 a | 0.43 ± 0.01 ab | 1.95 ± 0.00 ab |
10 | 50 (0) | 20 (−1) | 1 (−1) | 16.4 ± 1.5 ef | 6.9 ± 0.8 d | 19.9 ± 0.1 g | 32.0 ± 0.2 cde | 129.7 ± 5.3 efgh | 5.6 ± 0.05 abcd | 8.1 ± 0.04 a | 103.8 ± 1.3 bcd | 0.45 ± 0.02 a | 1.96 ± 0.00 a |
11 | 70 (1) | 20 (−1) | 3 (0) | 19.9 ± 2.2 d | 6.6 ± 0.7 d | 14.9 ± 0.2 i | 25.8 ± 0.8 g | 112.4 ± 10.8 ghi | 5.6 ± 0.05 abcd | 8.0 ± 0.11 abc | 82.4 ± 0.2 m | 0.26 ± 0.02 h | 1.93 ± 0.02 bcd |
12 | 30 (−1) | 50 (0) | 1 (−1) | 14.8 ± 0.6 f | 7.4 ± 0.1 d | 19.9 ± 0.4 g | 32.2 ± 2.6 bcde | 133.9 ± 11.8 efg | 5.7 ± 0.04 abc | 8.2 ± 0.09 a | 84.8 ± 1.6 lm | 0.37 ± 0.00 f | 1.95 ± 0.02 abc |
13 | 30 (−1) | 80 (1) | 3 (0) | 29.7 ± 0.3 ab | 22.0 ± 0.7 b | 33.8 ± 0.2 bc | 33.2 ± 0.7 bc | 181.3 ± 5.9 d | 5.5 ± 0.07 de | 7.1 ± 0.06 f | 94.6 ± 1.1 fgh | 0.38 ± 0.00 f | 1.94 ± 0.00 abc |
14 | 70 (1) | 50 (0) | 1 (−1) | 16.7 ± 1.0 def | 9.4 ± 0.6 c | 25.0 ± 0.4 d | 30.4 ± 2.1 cdef | 177.7 ± 8.3 d | 5.7 ± 0.03 abc | 8.3 ± 0.08 a | 89.2 ± 2.4 il | 0.39 ± 0.00 def | 1.95 ± 0.00 ab |
15 | 50 (0) | 50 (0) | 3 (0) | 15.8 ± 0.9 ef | 0.9 ± 0.0 f | 14.9 ± 0.2 i | 27.9 ± 0.1 fg | 106.6 ± 17.8 hi | 5.6 ± 0.03 bcde | 8.0 ± 0.08 ab | 87.9 ± 0.4 il | 0.27 ± 0.00 h | 1.95 ± 0.00 ab |
16 | 50 (0) | 50 (0) | 3 (0) | 15.8 ± 1.1 ef | 7.9 ± 0.7 cd | 22.3 ± 0.1 e | 32.3 ± 0.9 bcd | 141.0 ± 7.1 ef | 5.6 ± 0.04 abcd | 7.8 ± 0.08 cd | 90.7 ± 2.5 hi | 0.38 ± 0.01 f | 1.96 ± 0.00 a |
17 | 70 (1) | 80 (1) | 1 (−1) | 30.9 ± 1.3 a | 25.5 ± 1.2 a | 36.5 ± 0.4 a | 39.0 ± 2.1 a | 504.7 ± 7.8 a | 5.5 ± 0.03 ef | 6.5 ± 0.07 gh | 97.3 ± 0.4 ef | 0.41 ± 0.00 bcde | 1.95 ± 0.00 ab |
18 | 30 (−1) | 80 (1) | 5 (1) | 27.5 ± 0.5 bc | 23.3 ± 1.0 b | 35.0 ± 0.6 b | 38.7 ± 0.3 a | 218.0 ± 9.5 bc | 5.6 ± 0.07 bcde | 6.7 ± 0.08 g | 96.6 ± 3.3 efg | 0.38 ± 0.00 ef | 1.94 ± 0.00 abc |
19 | 70 (1) | 20 (−1) | 1 (−1) | 18.7 ± 1.2 de | 6.5 ± 0.8 d | 14.7 ± 0.2 i | 28.7 ± 0.2 efg | 95.9 ± 1.2 il | 5.8 ± 0.00 a | 7.7 ± 0.06 cd | 89.5 ± 0.5 il | 0.28 ± 0.01 h | 1.95 ± 0.01 ab |
20 | 50 (0) | 50 (0) | 3 (0) | 16.3 ± 1.8 ef | 7.5 ± 0.1 cd | 22.4 ± 0.3 e | 33.2 ± 0.3 bc | 145.1 ± 2.9 e | 5.6 ± 0.04 cde | 7.8 ± 0.08 bcd | 92.7 ± 2.4 fghi | 0.38 ± 0.02 def | 1.95 ± 0.00 ab |
21 | 50 (0) | 50 (0) | 5 (1) | 16.6 ± 0.5 ef | 9.5 ± 0.2 c | 24.4 ± 0.83 d | 33.6 ± 0.4 bc | 149.89 ± 17.2 e | 5.6 ± 0.03 abcd | 8.1 ± 0.10 a | 92.5 ± 0.7 ghi | 0.39 ± 0.01 cdef | 1.96 ± 0.00 a |
Anthocyanins | Flavanols | Other Flavonoids | Flavonols | LMW Phenolics | Phenolic Acids | Stilbenes | Total Flavonoids | Total Phenolics | Carotenoids | Glucosinolates | |
---|---|---|---|---|---|---|---|---|---|---|---|
y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 | y11 | |
β0 | 10.091 *** | 40.721 *** | 47.145 *** | 64.091 *** | 114.905 *** | 197.446 *** | 3.074 *** | 162.049 *** | 315.426 *** | 233.914 *** | 30.837 *** |
β1 | 0.384 | −0.141 | 4.681 • | 4.015 | 2.923 | −11.594 | 0.116 | 8.940 | −8.553 | −45.328 ** | −1.108 |
β11 | −0.059 | 0.097 | 2.165 | −4.183 *** | 0.359 | −0.581 | −0.069 | 6.386 | −0.291 | 8.845 | −0.690 |
β2 | −1.339 ** | −15.810 *** | 27.989 *** | 33.961 | 6.892 | −48099 *** | −0.873 *** | 44.801 *** | −42.880 ** | 113.231 *** | 0.148 |
β22 | −2.012 ** | −18.742 *** | 15.950 ** | 18.093 ** | −0.584 | −76.935 *** | −0.154 | 13.288 | −77.674 *** | −59.995 * | −14.386 *** |
β3 | 0.583 | 0.175 | 5.016 | 1.658 | 2.698 | −8.892 | 0.019 | 7.434 | −6.174 | −33.469 • | −1.578 • |
β33 | 0.710 | 0.268 | 7.360 • | 9.841 | −4.310 | 4.865 | −0.006 | 18.180 • | 0.548 | −2.789 | −0.083 |
β12 | 0.247 | 2.352 | 11.421 | 14.756 * | 4.588 | 16.391 | −0.039 | 28.778 * | 20.939 | −17.312 | 2.572 • |
β13 | −0.115 | 1.327 | −4.227 | −5.299 | −0.419 | 10.429 | −0.287 | −8.315 | 9.723 | 40.734 | 1.261 |
β23 | 0.156 | 3.874 | 8.270 • | 9.127 | 11.419 | −4.696 | 0.113 | 21.428 • | 6.835 | 6.095 | 2.891 * |
R2 | 0.7086 | 0.8561 | 0.9015 | 0.8587 | 0.1836 | 0.8548 | 0.8352 | 0.7973 | 0.7545 | 0.8471 | 0.9194 |
p-value | 0.0053 | 0.0000 | 0.0000 | 0.0000 | 0.9173 | 0.0000 | 0.0000 | 0.0004 | 0.0016 | 0.0000 | 0.0000 |
DPPH• | ABTS•+ | CUPRAC | MCA | PMD | AChE | BChE | Tyrosinase | α-Amylase | α-Glucosidase | |
---|---|---|---|---|---|---|---|---|---|---|
y12 | y13 | y14 | y15 | y16 | y17 | y18 | y19 | Y20 | y21 | |
β0 | 15.986 *** | 7.187 *** | 21.832 *** | 31.499 *** | 138.590 *** | 5.636 ** | 7.807 ** | 96.065 *** | 0.401 *** | 1.947 *** |
β1 | 1.102 ** | 2.439 *** | 1.522 ** | 0.703 | 20.688 | −0.007 | −0.201 ** | 0.147 | 0.001 | −0.016 • |
β11 | 0.593 • | 0.730 | −0.286 | 0.178 | 8.503 | 0.003 | −0.092 | −1.325 | −0.009 | −0.016 * |
β2 | 5.761 *** | 9.767 *** | 9.348 *** | 4.081 *** | 64.141 *** | −0.058 * | −0.597 *** | 3.679 • | 0.047 *** | −0.017 |
β22 | 5.319 *** | 4.479 *** | 2.650 ** | 1.115 | 21.499 | −0.027 | −0.370 ** | 1.680 | −0.036 * | −0.008 |
β3 | −0.380 | −0.772 | −0.364 | 0.943 | −16.171 | −0.005 | −0.100 | 2.720 | −0.009 | −0.002 |
β33 | −0.270 | 1.061 | 0.847 | 1.277 | 14.691 | 0.009 | 0.085 | 1.570 | 0.001 | −0.001 |
β12 | −1.178 • | 0.095 | 0.875 | 2.164 * | 38.159 • | −0.016 | −0.195 • | 5.287 • | 0.035 * | −0.001 |
β13 | −0.764 | 0.308 | 0.039 | 0.140 | −33.900 | −0.013 | −0.008 | 0.534 | 0.010 | −0.019 |
β23 | −0.658 | 1.824 | 1.220 | 1.449 | −17.649 | −0.022 | −0.233 • | 1.566 | 0.0334 * | −0.008 |
R2 | 0.9572 | 0.9376 | 0.9564 | 0.8063 | 0.7359 | 0.5343 | 0.857 | 0.4677 | 0.7805 | 0.4023 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0027 | 0.1024 | 0.0000 | 0.2090 | 0.0007 | 0.3607 |
Discriminant Compounds | Chemical Class | VIP Score | Marker |
---|---|---|---|
2′-apo-beta-carotenal | Carotenoids | 1.68 ± 0.10 | 80% ethanol |
Methyl 3-(methylthio)butanoate | Glucosinolates | 1.82 ± 0.10 | 50% ethanol |
7-hydroxysecoisolariciresinol | Phenolic compounds | 1.73 ± 0.19 | 50% ethanol |
1′-carboxy-gamma-tocotrienol | Tocotrienols | 1.72 ± 0.33 | 50% ethanol |
Dependent Variables | Temperature (°C) | Ethanol (%) | Ultrasound Power (W) | Estimated Yield/Activity | ||
---|---|---|---|---|---|---|
y1 | Anthocyanins | 43.92 | 43.34 | 294.48 | 28.15 | μg/g |
y2 | Flavanols | 25.08 | 30.95 | 0.48 | 51.85 | μg/g |
y3 | Other flavonoids | 58.98 | 97.91 | 98.88 | 154.68 | μg/g |
y4 | Flavonols | 60.30 | 97.52 | 101.04 | 190.25 | μg/g |
y6 | Phenolic acids | 98.06 | 44.63 | 251.28 | 296.77 | μg/g |
y7 | Stilbenes | −3.98 | −0.70 | 238.56 | 5.12 | μg/g |
y8 | Total flavonoids | 39.56 | 96.14 | 102.48 | 272.23 | μg/g |
y9 | Total phenolics | 22.16 | 35.24 | 6.00 | 376.14 | μg/g |
y10 | Total carotenoids | 2.60 | 83.69 | 12.00 | 638.08 | μg/g |
y11 | Total glucosinolates | 33.52 | 44.69 | 12.48 | 34.94 | μg/g |
y12 | DPPH• | 24.64 | 90.89 | 90.96 | 35.15 | mg TE/g |
y13 | ABTS•+ | 11.72 | 93.56 | 198.48 | 39.31 | mg TE/g |
y14 | CUPRAC | 50.86 | 86.93 | 202.80 | 46.88 | mg TE/g |
y15 | MCA | 32.24 | 92.63 | 113.52 | 39.78 | mg ETDAE/g |
y16 | PMD | 70.38 | 95.06 | 31.68 | 446.88 | mmol TE/g |
y17 | AChE | 2.78 | 34.88 | 106.32 | 5.71 | mg GALAE/g |
y18 | BChE | 49.14 | 1.61 | 244.08 | 9.89 | mg GALAE/g |
y19 | Tyrosinase | 60.54 | 93.83 | 73.44 | 108.98 | mg KAE/g |
y20 | α-Amylase | 82.90 | 98.03 | 136.50 | 0.54 | mmol ACAE/g |
y21 | α-Glucosidase | 16.86 | 1.10 | 219.60 | 2.07 | mmol ACAE/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Rocchetti, G.; Zengin, G.; Del Buono, D.; Trevisan, M.; Lucini, L. The Combination of Untargeted Metabolomics with Response Surface Methodology to Optimize the Functional Potential of Common Duckweed (Lemna minor L.). Antioxidants 2023, 12, 313. https://doi.org/10.3390/antiox12020313
Zhang L, Rocchetti G, Zengin G, Del Buono D, Trevisan M, Lucini L. The Combination of Untargeted Metabolomics with Response Surface Methodology to Optimize the Functional Potential of Common Duckweed (Lemna minor L.). Antioxidants. 2023; 12(2):313. https://doi.org/10.3390/antiox12020313
Chicago/Turabian StyleZhang, Leilei, Gabriele Rocchetti, Gokhan Zengin, Daniele Del Buono, Marco Trevisan, and Luigi Lucini. 2023. "The Combination of Untargeted Metabolomics with Response Surface Methodology to Optimize the Functional Potential of Common Duckweed (Lemna minor L.)" Antioxidants 12, no. 2: 313. https://doi.org/10.3390/antiox12020313
APA StyleZhang, L., Rocchetti, G., Zengin, G., Del Buono, D., Trevisan, M., & Lucini, L. (2023). The Combination of Untargeted Metabolomics with Response Surface Methodology to Optimize the Functional Potential of Common Duckweed (Lemna minor L.). Antioxidants, 12(2), 313. https://doi.org/10.3390/antiox12020313