Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia
Abstract
:1. Introduction
2. Patients and Methods
2.1. Echocardiography Studies
2.2. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. ACOG practice bulletin no. 202: Gestational hypertension and preeclampsia. Obstet. Gynecol. 2019, 133, e1–e25. [Google Scholar] [CrossRef]
- Myatt, L.; Roberts, J.M. Preeclampsia: Syndrome or Disease? Curr. Hypertens. Rep. 2015, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, S. High-altitude hypoxia and preeclampsia. Front. Biosci. 2007, 12, 2967–2977. [Google Scholar] [CrossRef] [PubMed]
- Ducsay, C.A.; Goyal, R.; Pearce, W.J.; Wilson, S.; Hu, X.-Q.; Zhang, L. Gestational Hypoxia and Developmental Plasticity. Physiol. Rev. 2018, 98, 1241–1334. [Google Scholar] [CrossRef] [PubMed]
- Keyes, L.E.; Armaza, F.J.; Niermeyer, S.; Vargas, E.; Young, A.D.; Moore, L.G. Intrauterine Growth Restriction, Preeclampsia, and Intrauterine Mortality at High Altitude in Bolivia. Pediatr. Res. 2003, 54, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Niermeyer, S.; Andrade-M, M.P.; Vargas, E.; Moore, L.G. Neonatal Oxygenation, Pulmonary Hypertension, and Evolutionary Adaptation to High Altitude (2013 Grover Conference series). Pulm. Circ. 2015, 5, 48–62. [Google Scholar] [CrossRef]
- Julian, C.G. High Altitude During Pregnancy. Clin. Chest Med. 2011, 32, 21–31. [Google Scholar] [CrossRef]
- Moore, L.; Shriver, M.; Bemis, L.; Hickler, B.; Wilson, M.; Brutsaert, T.; Parra, E.J.; Vargas, E. Maternal Adaptation to High-altitude Pregnancy: An Experiment of Nature—A Review. Placenta 2004, 25, S60–S71. [Google Scholar] [CrossRef]
- Wilsterman, K.; Cheviron, Z.A. Fetal growth, high altitude, and evolutionary adaptation: A new perspective. Am. J. Physiol. Integr. Comp. Physiol. 2021, 321, R279–R294. [Google Scholar] [CrossRef]
- Farias, J.G.; Herrera, E.A.; Carrasco-Pozo, C.; Sotomayor-Zárate, R.; Cruz, G.; Morales, P.; Castillo, R.L. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol. Ther. 2016, 158, 1–23. [Google Scholar] [CrossRef]
- Heath-Freudenthal, A.; Toledo-Jaldin, L.; von Alvensleben, I.; Lazo-Vega, L.; Mizutani, R.; Stalker, M.; Yasini, H.; Mendizabal, F.; Madera, J.D.; Mundo, W.; et al. Vascular Disorders of Pregnancy Increase Susceptibility to Neonatal Pulmonary Hypertension in High-Altitude Populations. Hypertension 2022, 79, 1286–1296. [Google Scholar] [CrossRef]
- Giussani, D.A.; Davidge, S.T. Developmental programming of cardiovascular disease by prenatal hypoxia. J. Dev. Orig. Health Dis. 2013, 4, 328–337. [Google Scholar] [CrossRef]
- Jayet, P.-Y.; Rimoldi, S.F.; Stuber, T.; Salmòn, C.S.; Hutter, D.; Rexhaj, E.; Thalmann, S.; Schwab, M.; Turini, P.; Sartori-Cucchia, C.; et al. Pulmonary and Systemic Vascular Dysfunction in Young Offspring of Mothers with Preeclampsia. Circulation 2010, 122, 488–494. [Google Scholar] [CrossRef]
- Papamatheakis, D.; Blood, A.; Kim, J.H.; Wilson, S.M. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling. Curr. Vasc. Pharmacol. 2013, 11, 616–640. [Google Scholar] [CrossRef]
- Van Patot, M.C.T.; Ebensperger, G.; Gassmann, M.; Llanos, A.J. The Hypoxic Placenta. High Alt. Med. Biol. 2012, 13, 176–184. [Google Scholar] [CrossRef]
- Briana, D.D.; Malamitsi-Puchner, A. Small for gestational age birth weight: Impact on lung structure and function. Paediatr. Respir. Rev. 2013, 14, 256–262. [Google Scholar] [CrossRef]
- Mandell, E.; Kinsella, J.P.; Abman, S.H. Persistent pulmonary hypertension of the newborn. Pediatr. Pulmonol. 2020, 56, 661–669. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C.; et al. Placental origins of adverse pregnancy outcomes: Potential molecular targets: An Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef]
- Guerby, P.; Tasta, O.; Swiader, A.; Pont, F.; Bujold, E.; Parant, O.; Vayssiere, C.; Salvayre, R.; Negre-Salvayre, A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021, 40, 101861. [Google Scholar] [CrossRef]
- Balistreri, C.R. Fetal programming and its effects on vascular pulmonary circulation. Vessel. Plus 2018, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Cornfield, D.N.; Stenmark, K.R.; Thébaud, B.; Abman, S.H.; Raj, J.U. Unique Aspects of the Developing Lung Circulation: Structural Development and Regulation of Vasomotor Tone. Pulm. Circ. 2016, 6, 407–425. [Google Scholar] [CrossRef] [PubMed]
- Pierro, M.; Villamor-Martinez, E.; van Westering-Kroon, E.; Alvarez-Fuente, M.; Abman, S.H.; Villamor, E. Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: A systematic review, meta-analysis and meta-regression. Thorax 2021, 77, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Salinas, C.; Patey, O.; Murillo, C.; Gonzales, M.; Espinoza, V.; Mendoza, S.; Ruiz, R.; Vargas, R.; Perez, Y.; Montano, J.; et al. Preeclampsia and Risk of Maternal Pulmonary Hypertension at High Altitude in Bolivia. Lancet 2022. preprint. [Google Scholar] [CrossRef]
- Available online: https://www.ine.gob.bo/index.php/estadisticas-economicas/pib-y-cuentas-nacionales/producto-interno-bruto-departamental/producto-interno-bruto-departamental/#1589484093225-b57379da-b2f6 (accessed on 28 February 2022).
- Available online: https://globaldatalab.org/shdi/shdi/BOL/?levels=1%2B4&interpolation=1&extrapolation=0&nearest_real=0&years=2019%2B2015%2B2010%2B2005 (accessed on 28 February 2022).
- Tai, C.-C.; Lu, F.L.; Chen, P.-C.; Jeng, S.-F.; Chou, H.-C.; Chen, C.-Y.; Tsao, P.-N.; Hsieh, W.-S. Noninvasive Capnometry for End-tidal Carbon Dioxide Monitoring via Nasal Cannula in Nonintubated Neonates. Pediatr. Neonatol. 2010, 51, 330–335. [Google Scholar] [CrossRef]
- Kugelman, A.; Bilker, A.; Bader, D.; Cohen, A.; Tirosh, E. Sidestream end-tidal capnometry as related to infant’s position and maturation. Acta Paediatr. 2007, 91, 869–873. [Google Scholar] [CrossRef]
- Lopez, L.; Colan, S.D.; Frommelt, P.C.; Ensing, G.J.; Kendall, K.; Younoszai, A.K.; Lai, W.W.; Geva, T. Recommendations for Quantification Methods During the Performance of a Pediatric Echocardiogram: A Report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 2010, 23, 465–495. [Google Scholar] [CrossRef]
- De Boode, W.P.; Singh, Y.; Molnar, Z.; Schubert, U.; Savoia, M.; Sehgal, A.; Levy, P.T.; McNamara, P.J.; El-Khuffash, A. Application of Neonatologist Performed Echocardiography in the assessment and management of persistent pulmonary hypertension of the newborn. Pediatr. Res. 2018, 84, 68–77. [Google Scholar] [CrossRef]
- Abbas, A.E.; Fortuin, F.; Schiller, N.B.; Appleton, C.P.; Moreno, A.C.; Lester, S.J. A simple method for noninvasive estimation of pulmonary vascular resistance. J. Am. Coll. Cardiol. 2003, 41, 1021–1027. [Google Scholar] [CrossRef]
- Sluysmans, T.; Colan, S.D. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J. Appl. Physiol. 2005, 99, 445–457. [Google Scholar] [CrossRef]
- Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J. Pediatr. 1978, 93, 62–66. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Smíra, M.; Epskamp, S.; et al. JASP: Graphical Statistical Software for Common Statistical Designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef]
- Niermeyer, S.; Mollinedo, P.A.; Huicho, L. Child health and living at high altitude. Arch. Dis. Child. 2008, 94, 806–811. [Google Scholar] [CrossRef]
- Niermeyer, S. Cardiopulmonary Transition in the High Altitude Infant. High Alt. Med. Biol. 2003, 4, 225–239. [Google Scholar] [CrossRef]
- Niermeyer, S.; Shaffer, E.; Thilo, E.; Corbin, C.; Moore, L. Arterial oxygenation and pulmonary arterial pressure in healthy neonates and infants at high altitude. J. Pediatr. 1993, 123, 767–772. [Google Scholar] [CrossRef]
- Mortola, J.P.; Frappell, P.B.; Frappell, D.E.; Villena-Cabrera, N.; Villena-Cabrera, M.; Peña, F. Ventilation and Gaseous Metabolism in Infants Born at High Altitude, and Their Responses to Hyperoxia. Am. Rev. Respir. Dis. 1992, 146, 1206–1209. [Google Scholar] [CrossRef]
- Bell, M.L.; Kenward, M.G.; Fairclough, D.L.; Horton, N.J. Differential dropout and bias in randomised controlled trials: When it matters and when it may not. BMJ 2013, 346, e8668. [Google Scholar] [CrossRef]
- Colson, A.; Sonveaux, P.; Debiève, F.; Sferruzzi-Perri, A.N. Adaptations of the human placenta to hypoxia: Opportunities for interventions in fetal growth restriction. Hum. Reprod. Update 2020, 27, 531–569. [Google Scholar] [CrossRef]
- Tong, W.; Giussani, D.A. Preeclampsia link to gestational hypoxia. J. Dev. Orig. Health Dis. 2019, 10, 322–333. [Google Scholar] [CrossRef]
- Mateev, S.; Sillau, A.H.; Mouser, R.; McCullough, R.E.; White, M.M.; Young, D.A.; Moore, L.G. Chronic hypoxia opposes pregnancy-induced increase in uterine artery vasodilator response to flow. Am. J. Physiol. Circ. Physiol. 2003, 284, H820–H829. [Google Scholar] [CrossRef] [Green Version]
- Yung, H.W.; Cox, M.; Patot, M.T.; Burton, G.J. Evidence of endoplasmic reticulum stress and protein synthesis inhibition in the placenta of non-native women at high altitude. FASEB J. 2012, 26, 1970–1981. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.; Peisl, A.; Seedorf, G.; Nowlin, T.; Kim, C.; Bosco, J.; Kenniston, J.; Keefe, D.; Abman, S.H. Anti–sFlt-1 Therapy Preserves Lung Alveolar and Vascular Growth in Antenatal Models of Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med. 2018, 197, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Broere-Brown, Z.A.; Schalekamp-Timmermans, S.; Jaddoe, V.W.; Steegers, E.A. Fetal Growth and Placental Growth Factor Umbilical Cord Blood Levels. Fetal Diagn. Ther. 2017, 43, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Tousty, P.; Fraszczyk-Tousty, M.; Ksel-Hryciów, J.; Łoniewska, B.; Tousty, J.; Dzidek, S.; Michalczyk, K.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Torbé, A.; et al. Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia. Biomedicines 2022, 10, 2048. [Google Scholar] [CrossRef]
- Tang, J.-R.; Karumanchi, S.A.; Seedorf, G.; Markham, N.; Abman, S.H. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: Linking preeclampsia with bronchopulmonary dysplasia. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2012, 302, L36–L46. [Google Scholar] [CrossRef]
- Lowe, D.T. Nitric Oxide Dysfunction in the Pathophysiology of Preeclampsia. Nitric Oxide 2000, 4, 441–458. [Google Scholar] [CrossRef]
- Vural, P. Nitric oxide/endothelin-1 in preeclampsia. Clin. Chim. Acta 2001, 317, 65–70. [Google Scholar] [CrossRef]
- George, E.M.; Granger, J.P. Endothelin: Key Mediator of Hypertension in Preeclampsia. Am. J. Hypertens. 2011, 24, 964–969. [Google Scholar] [CrossRef]
- Li, F.; Hagaman, J.R.; Kim, H.-S.; Maeda, N.; Jennette, J.C.; Faber, J.E.; Karumanchi, S.A.; Smithies, O.; Takahashi, N. eNOS Deficiency Acts through Endothelin to Aggravate sFlt-1–Induced Pre-Eclampsia–Like Phenotype. J. Am. Soc. Nephrol. 2012, 23, 652–660. [Google Scholar] [CrossRef]
- Bashir, S.; Suekit, H.; Elkarib, A.; Dafaalla, M.; Elrouf, M.A.; Morsy, M.D.; Eskandar, M. The effect of high altitude on endothelial and vascular dysfunction markers in preeclamptic patients. Acta Physiol. Hung. 2015, 102, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Abman, S.H. Pulmonary Hypertension: The Hidden Danger for Newborns. Neonatology 2021, 118, 211–217. [Google Scholar] [CrossRef]
- Kähler, J.; Ewert, A.; Weckmüller, J.; Stobbe, S.; Mittmann, C.; Köster, R.; Paul, M.; Meinertz, T.; Münzel, T. Oxidative Stress Increases Endothelin-1 Synthesis in Human Coronary Artery Smooth Muscle Cells. J. Cardiovasc. Pharmacol. 2001, 38, 49–57. [Google Scholar] [CrossRef]
- Black, S.M.; Johengen, M.J.; Soifer, S.J. Coordinated Regulation of Genes of the Nitric Oxide and Endothelin Pathways during the Development of Pulmonary Hypertension in Fetal Lambs. Pediatr. Res. 1998, 44, 821–830. [Google Scholar] [CrossRef]
- Rawat, M.; Lakshminrusimha, S.; Vento, M. Pulmonary hypertension and oxidative stress: Where is the link? Semin. Fetal Neonatal Med. 2022, 27, 101347. [Google Scholar] [CrossRef]
Group A: Control n = 70 | Group B: PE-Term n = 37 | p-Value A vs. B | Group C: PE-Preterm n = 32 | p-Value A vs. C | p-Value B vs. C | |
---|---|---|---|---|---|---|
Gestational age (weeks) | 39.6 [38.7–40.3] | 38.4 [37–40] | 0.007 | 34.9 [32.4–35.4] | <0.001 | <0.001 |
Birth weight (kg) | 3.24 (0.41) | 2.90 (0.45) | 0.003 | 2.19 (0.68) | <0.001 | <0.001 |
SGA | 7 (10.0%) | 11 (29.7%) | 0.009 | 9 (28.1%) | 0.020 | 0.884 |
Length (cm) | 48.2 (5.8) | 47.7 (3.6) | 0.920 | 44.4 (4.7) | 0.002 | 0.018 |
Male sex | 40 (57.1%) | 20 (54.1%) | 0.759 | 17 (53.1%) | 0.705 | 0.938 |
Cesarean section | 27 (38.6%) | 31 (83.8%) | <0.001 | 28 (87.5%) | <0.001 | 0.662 |
Apgar 1 | 8 [7–8] | 8 [7–8] | 0.283 | 7 [7–8] | 0.013 | 0.180 |
Apgar 5 | 9 [9–9] | 9 [9–9] | 0.238 | 9 [9–9] | 0.019 | 0.433 |
Resuscitation | 0 | 0 | - | 5 (15.6%) | <0.001 | <0.001 |
NICU admission | 0 | 0 | - | 5 (15.6%) | <0.001 | <0.001 |
Heart rate | 128.8 (17.2) | 126.9 (18.3) | 0.868 | 138.1 (19.3) | 0.045 | 0.031 |
Respiratory rate | 51.4 (12.4) | 47.4 (13.1) | 0.266 | 52.4 (13.1) | 0.927 | 0.236 |
Spo2 (%) | 90.1 (4.4) | 88.8 (3.8) | 0.253 | 91.7 (3.8) | 0.176 | 0.052 |
EtCO2 (mmHg) | 25.7 (5.4) | 28.8 (6.1) | 0.023 | 27.0 (6.2) | 0.821 | 0.381 |
Group A: Control n = 70 | Group B: PE-Term n = 37 | p-Value A vs. B | Group C: PE-Preterm n = 32 | p-Value A vs. C | p-Value B vs. C | |
---|---|---|---|---|---|---|
Patent ductus arteriosus | 11 (15.7%) | 14 (37.8%) | 0.010 | 12 (37.5%) | 0.015 | 0.977 |
Patent foramen ovale | 3 (4.3%) | 1 (2.7%) | 0.681 | 3 (9.4%) | 0.311 | 0.237 |
LV end-diastolic dimension a (cm)/ | 4.43 (0.55) | 4.17 (0.44) | 0.040 | 4.04 (0.59) | 0.002 | 0.570 |
LV end-systolic dimension a (cm)/ | 2.82 (0.44) | 2.66 (0.41) | 0.169 | 2.61 (0.42) | 0.063 | 0.880 |
LV ejection fraction (%) | 67.9 (5.0) | 67.2 (5.1) | 0.808 | 67.5 (5.1) | 0.932 | 0.976 |
2.91 (2.25) | 2.77 (0.27) | 0.029 | 2.76 (0.28) | 0.028 | 0.993 | |
RA end-systolic area (cm2)/BSA | 8.51 (1.55) | 8.23 (1.10) | 0.675 | 8.23 (2.03) | 0.607 | 0.267 |
RV end-diastolic dimension a (cm)/ | 1.84 (0.32) | 1.79 (0.26) | 0.625 | 1.77 (0.30) | 0.508 | 0.977 |
RV end-systolic dimension a (cm)/ | 1.37 (1.15) | 1.14 (0.20) | 0.379 | 1.23 (0.22) | 0.710 | 0.906 |
RV ejection fraction (%) | 67.7 (4.7) | 67.3 (4.2) | 0.882 | 67.5 (4.7) | 0.974 | 0.976 |
RV midcavity diameter b (cm)/ | 2.21 (0.25) | 2.25 (0.30) | 0.776 | 2.31 (0.26) | 0.197 | 0.602 |
3.75 (0.40) | 3.73 (0.32) | 0.960 | 3.80 (0.66) | 0.895 | 0.805 | |
0.46 (0.09) | 0.56 (0.12) | <0.001 | 0.54 (0.11) | 0.002 | 0.817 | |
RV Tei index | 0.35 (0.03) | 0.34 (0.04) | 0.062 | 0.35 (0.03) | 0.777 | 0.394 |
TAPSE (cm) | 0.84 (0.11) | 0.83 (0.14) | 0.981 | 0.75 (0.12) | 0.005 | 0.023 |
TASV (m.s−1) | 0.07 [0.06–0.08] | 0.07 [0.06–0.08] | 0.122 | 0.07 [0.05–0.08] | 0.053 | 0.482 |
TR Vmax (m.s−1) | 2.5 [2.3–2.6] | 3.0 [2.8–3.2] | <0.001 | 2.9 [2.8–3.2] | <0.001 | 0.499 |
TR peak gradient (mmHg) | 25.0 [22.3–27.8] | 36.0 [32.0–42.0] | <0.001 | 33.0 [31.0–40.3] | <0.001 | 0.440 |
PAP (mmHg) | 35.07 (3.83) | 46.68 (5.44) | <0.001 | 45.69 (6.22) | <0.001 | 0.683 |
PVR (Wood units) | 2.23 [2.00–2.71] | 2.99 [2.58–3.53] | <0.001 | 2.84 [2.59–3.29] | <0.001 | 0.576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Salmon, C.E.; Murillo-Jauregui, C.; Gonzales-Isidro, M.; Espinoza-Pinto, V.; Mendoza, S.V.; Ruiz, R.; Vargas, R.; Perez, Y.; Montaño, J.; Toledo, L.; et al. Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia. Antioxidants 2023, 12, 347. https://doi.org/10.3390/antiox12020347
Salinas-Salmon CE, Murillo-Jauregui C, Gonzales-Isidro M, Espinoza-Pinto V, Mendoza SV, Ruiz R, Vargas R, Perez Y, Montaño J, Toledo L, et al. Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia. Antioxidants. 2023; 12(2):347. https://doi.org/10.3390/antiox12020347
Chicago/Turabian StyleSalinas-Salmon, Carlos E., Carla Murillo-Jauregui, Marcelino Gonzales-Isidro, Vannia Espinoza-Pinto, Silvia V. Mendoza, Rosario Ruiz, Ronald Vargas, Yuri Perez, Jaime Montaño, Lilian Toledo, and et al. 2023. "Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia" Antioxidants 12, no. 2: 347. https://doi.org/10.3390/antiox12020347
APA StyleSalinas-Salmon, C. E., Murillo-Jauregui, C., Gonzales-Isidro, M., Espinoza-Pinto, V., Mendoza, S. V., Ruiz, R., Vargas, R., Perez, Y., Montaño, J., Toledo, L., Badner, A., Jimenez, J., Peñaranda, J., Romero, C., Aguilar, M., Riveros-Gonzales, L., Arana, I., & Villamor, E. (2023). Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia. Antioxidants, 12(2), 347. https://doi.org/10.3390/antiox12020347