Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant material
- (i)
- Stage-1: sprouts already present on the purchased potatoes;
- (ii)
- Stage-2: sprouts from potatoes left sprouting for two months after the collection of stage-1 sprouts in a humid and lighted environment;
- (iii)
- Stage-3: sprouts from potatoes left sprouting for three months after the collection of stage-2 sprouts in a humid and lighted environment.
2.3. Maceration Extraction (ME) of CQAs from Potato Sprouts
2.4. Ultrasound-Assisted Extraction (UAE) of CQAs from Potato Sprouts
- (i)
- Stage-1 sprouts were used for the preliminary optimization of the extraction method. The phenolic profile of fresh extracts was compared with that of oven-dried sprouts, at 40 °C (for 5 h and 30 min) and 70 °C (for 4 h). UAE was carried out for 5 min by using a mixture of acetone/water (70:30, v/v) containing 1.7 mM acetic acid (HAc) [12]. Ethanol/water (70:30, v/v) and pure water, in both cases containing HAc 1.7 mM, were also compared. Stage-1 sprouts were also used for the optimization of the UAE conditions by Experimental Design (see Section 2.5);
- (ii)
- Stage-2 sprouts were submitted to the optimal UAE conditions as defined by the Experimental Design. Different acid additives, citric acid (CitA) and ascorbic acid (AsA) were evaluated as anti-browning agents. The comparison between fresh and freeze-dried sprouts was also investigated;
- (iii)
- Stage-3 sprouts were submitted to the best identified extraction conditions.
2.5. Experimental Design
- Water content (% volume in ethanol), ranging between 30% and 100%;
- Solid/solvent ratio (g/mL), ranging between 1:10 and 1:50;
- UAE time (min), ranging between 5 min and 20 min.
2.6. Total Phenol Content (TPC) and In Vitro Antioxidant Activity
2.7. HPLC-DAD Analysis and Method Validation
2.8. LC-HRMS/MS Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Extraction of Chlorogenic Acids: ME vs. UAE
3.2. Optimization of Chlorogenic Acid Extraction by UAE: Fresh vs. Oven-Dried Potato Sprout Samples
3.3. Optimization of UAE Extraction of CQAs by Experimental Design
3.4. Evaluation of Anti-Browning Acid Additives
3.5. Fresh vs. Freeze-Dried Potato Sprout Samples
3.6. Evaluation of the Sprouting Time on 5-CQA Content
3.7. Results of LC-HRMS/MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds in potato (Solanum tuberosum L.) peel and their health-promoting activities. Int. J. Food Sci. Technol. 2020, 55, 2273–2281. [Google Scholar] [CrossRef]
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. Int. J. Food Sci. Technol. 2017, 52, 1432–1439. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Gullón, B.; Yáñez, R. Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants 2021, 10, 1630. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Fang-Fang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Wianowska, D.; Gil, M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev. 2019, 18, 273–302. [Google Scholar] [CrossRef]
- Dao, L.; Friedman, M. Chlorophyll, Chlorogenic Acid, Glycoalkaloid, and Protease Inhibitor Content of Fresh and Green Potatoes. J. Agric. Food Chem. 1994, 42, 633–639. [Google Scholar] [CrossRef]
- Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 2004, 1054, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Miedzianka, J.; Pęksa, A.; Nemś, A.; Drzymała, K.; Zambrowicz, A.; Kowalczewski, P. Trypsin inhibitor, antioxidant and antimicrobial activities as well as chemical composition of potato sprouts originating from yellow- and colored-fleshed varieties. J. Environ. Sci. Health B 2020, 55, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Koff, G.Y.; Remaud-Simeon, M.; Due, A.E.; Combes, D. Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery. Food Chem. 2017, 220, 257–265. [Google Scholar] [CrossRef]
- FAO/WHO. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 1999. [Google Scholar]
- Valkonen, J.P.T.; Keskitalo, M.; Vasara, T.; Pietilä, L. Potato glycoalkaloids: A burden or a blessing? CRC Crit. Rev. Plant Sci. 1996, 15, 1–20. [Google Scholar] [CrossRef]
- Sinha, N.; Dua, D. Evaluation of antioxidant and antimicrobial properties of potato (Solanum tuberosum) peels. Indian J. Agric. Biochem. 2016, 29, 23–27. [Google Scholar] [CrossRef]
- Friedman, M.; Huang, V.; Quiambao, Q.; Noritake, S.; Liu, J.; Kwon, O.; Chintalapati, S.; Young, J.; Levin, C.E.; Tam, C.; et al. Potato Peels and Their Bioactive Glycoalkaloids and Phenolic Compounds Inhibit the Growth of Pathogenic Trichomonads. J. Agric. Food Chem. 2018, 66, 7942–7947. [Google Scholar] [CrossRef]
- Hassan, S.H.; Gul, S.; Zahra, H.S.; Maryam, A.; Shakir, H.A.; Khan, M.; Irfan, M. Alpha Solanine: A Novel Natural Bioactive Molecule with Anticancer Effects in Multiple Human Malignancies. Nutr. Cancer 2020, 9, 1541–1552. [Google Scholar] [CrossRef]
- Gu, T.; Yuan, W.; Li, C.; Chen, Z.; Wen, Y.; Zheng, Q.; Yang, Q.; Xiong, X.; Yuan, A. Solanine inhibits proliferation, invasion, and migration, and induces apoptosis in human choriocarcinoma JEG-3 cells in vitro and in vivo. Toxins 2021, 13, 210. [Google Scholar] [CrossRef]
- Nepal, B.; Stine, K.J. Glycoalkaloids: Structure, Properties, and Interactions with Model Membrane Systems. Processes 2019, 7, 513. [Google Scholar] [CrossRef]
- Dao, L.; Friedman, M. Chlorogenic Acid Content of Fresh and Processed Potatoes Determined by Ultraviolet Spectrophotometry. J. Agric. Food Chem. 1992, 40, 2152–2156. [Google Scholar] [CrossRef]
- Naik, P.S.; Sarkar, D. Influence of light-induced greening on storage of potato microtubers. Biol. Plant. 1997, 39, 31–34. [Google Scholar] [CrossRef]
- Percival, G.C.; Karim, M.S.; Dixon, G.R. Influence of light-enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var. coeruleum. Plant. Pathol. 1998, 47, 665–670. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Ascacio-Valdés, J.A.; Cruz, K.; Reyesluna, C.; Rodríguez, R.; Aguilar, C.N. Extraction of bioactive phenolic compounds by alternative technologies. In Ingredients Extraction by Physicochemical Methods in Food; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 229–252. [Google Scholar] [CrossRef]
- Pollini, L.; Blasi, F.; Ianni, F.; Grispoldi, L.; Moretti, S.; Di Veroli, A.; Cossignani, L.; Cenci-Goga, B.T. Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules 2022, 27, 1933. [Google Scholar] [CrossRef]
- Ianni, F.; Barola, C.; Blasi, F.; Moretti, F.; Galarini, R.; Cossignani, L. Investigation on chlorogenic acid stability in aqueous solution after microwave treatment. Food Chem. 2022, 374, 131820. [Google Scholar] [CrossRef] [PubMed]
- Pollini, L.; Ianni, F.; Verducci, G.; Blasi, F.; Cossignani, L. Is the household microwave recommended to obtain antioxidant-rich extracts from Lycium barbarum leaves? Processes 2021, 9, 656. [Google Scholar] [CrossRef]
- Osorio-Tobόn, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Diouf, P.N.; Stevanovic, T.; Boutin, Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind. Crops Prod. 2009, 30, 297–303. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
- Dawidowicz, A.; Typek, R. Thermal stability of 5-O-caffeoylquinic acid in aqueous solutions at different heating conditions. J. Agric. Food Chem. 2010, 58, 12578–12584. [Google Scholar] [CrossRef] [PubMed]
- Ianni, F.; Blasi, F.; Angelini, P.; Di Simone, S.C.; Angeles Flores, G.; Cossignani, L.; Venanzoni, R. Extraction optimization by experimental design of bioactives from Pleurotus ostreatus and evaluation of antioxidant and antimicrobial activities. Processes 2021, 9, 743. [Google Scholar] [CrossRef]
- Yang, L.; Xi, Y.; Luo, X.Y.; Ni, H.; Li, H.H. Preparation of peroxidase and phenolics using discarded sweet potato old stems. Sci. Rep. 2019, 9, 3769. [Google Scholar] [CrossRef] [PubMed]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef] [PubMed]
- Delaplace, P.; Fauconnier, M.L.; Sergeant, K.; Dierick, J.F.; Oufir, M.; van der Wal, F.; America, A.H.P.; Renaut, J.; Hausman, J.F.; Du Jardin, P. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J. Exp. Bot. 2009, 60, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, K.S.; Masud, T.; Ali, S.; Khan, S.U.; Mahmood, T.; Qayyum, A. Sugar-starch metabolism and antioxidant potential in potato tubers in response to different antisprouting agents during storage. Potato Res. 2015, 58, 361–375. [Google Scholar] [CrossRef]
- Santos, M.N.S.; Lima, P.C.C.; De Araujo, F.F.; De Araújo, N.O.; Finger, F.L. Activity of polyphenoloxidase and peroxidase in non-dormant potato tubers treated with sprout suppressors. Food Sci. Technol. 2020, 40, 222–227. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, S.; Tan, F.; Zhao, H.; Wang, D.D.; Si, H.; Chen, Q. Changes in ROS production and antioxidant capacity during tuber sprouting in potato. Food Chem. 2017, 237, 205–213. [Google Scholar] [CrossRef]
- Nie, X.H.; Guo, H.C. An ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry method for the detection of steroidal glycoalkaloids in potato samples. Anal. Methods 2017, 9, 6613. [Google Scholar] [CrossRef]
- Luo, Y.; Song, C.; Mao, J.; Peng, Z.; Sun, S.; Zhang, Y.; Yu, A.; Zhang, W.; Zhao, W.; Ouyang, G. Developing a noncontact heating matrix spraying apparatus with controllable matrix film formation for MALDI mass spectrometry imaging. Anal. Chem. 2022, 94, 12136–12143. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Schmidt, J.M.; Kristiansen, G.H.; Dalsgaard, T.K.; Larsen, L.B. Liquid chromatography mass spectrometry quantification of α-solanine, α-chaconine, and Solanidine in Potato Protein Isolates. Foods 2020, 9, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Extraction Technique | Yield (%) | TPC (mg GAE †/g) | FRAP (mg TE ‡/g) | DPPH (mg TE ‡/g) | ABTS (mg TE ‡/g) |
---|---|---|---|---|---|
ME | 22.77 ± 0.08 a | 0.70 ± 0.07 a | 8.57 ± 0.07 a | 6.60 ± 0.66 A | 9.38 ± 0.11 a |
UAE | 21.32 ± 0.07 b | 1.55 ± 0.09 b | 10.17 ± 0.21 b | 8.04 ± 0.53 B | 8.55 ± 0.22 b |
Samples | 3-CQA (μg/g) | CA (μg/g) | 5-CQA (μg/g) | 4-CQA (μg/g) |
---|---|---|---|---|
Fresh sprouts | 9.86 ± 0.32 | 68.09 ± 0.29 a | 227.08 ± 6.90 a | 15.33 ± 1.50 |
40 °C-dried sprouts | - | 43.31 ± 2.13 b | 23.39 ± 0.58 b | - |
70 °C-dried sprouts | - | 11.91 ± 0.11 c | 37.05 ± 1.11 c | - |
Extraction Solvent System | 3-CQA (μg/g) | CA (μg/g) | 5-CQA (μg/g) | 4-CQA (μg/g) |
---|---|---|---|---|
Acetone/water (70:30, v/v) + HAc 1.7 mM | 0.73 ± 0.00 a | 24.81 ± 3.04 a | 22.67 ± 1.87 a | 3.58 ± 0.64 a,A |
Ethanol/water (70:30, v/v) + HAc 1.7 mM | 3.35 ± 0.17 b | 31.83 ± 0.17 b | 51.56 ± 0.39 b | 3.08 ± 0.54 a,b,A,B |
Water (100%) + HAc 1.7 mM | 1.19 ± 0.00 c | 6.11 ± 0.14 c | 11.39 ± 0.84 c | 2.24 ± 0.28 b,B |
Experiment | 3-CQA (μg/g) | CA (μg/g) | 5-CQA (μg/g) | 4-CQA (μg/g) |
---|---|---|---|---|
N1 | 13.3 | 51.41 | 566.43 | 25.38 |
N2 | 0.13 | 7.91 | 34.53 | 4.66 |
N3 | 8.66 | 49.47 | 333.79 | 20.37 |
N4 | 3.41 | 22.45 | 110.68 | 16.77 |
N5 | 3.19 | 13.53 | 141.86 | 5.19 |
N6 | 0.80 | 7.85 | 24.09 | 4.21 |
N7 | 1.41 | 30.33 | 172.51 | 5.06 |
N8 | 1.40 | 16.06 | 99.57 | 15.05 |
N9 | 24.84 | 16.44 | 273.65 | 28.83 |
N10 | 26.04 | 35.32 | 230.92 | 16.75 |
N11 | 25.44 | 25.88 | 252.28 | 22.79 |
Acid Additive | Conc. | 3-CQA (μg/g) | CA (μg/g) | 5-CQA (μg/g) | 4-CQA (μg/g) |
---|---|---|---|---|---|
HAc | 1.7 µM | 16.32 ± 0.42 a | 23.67 ± 0.08 a | 511.62 ± 9.29 a,A | 88.66 ± 0.76 a |
CitA | 10.92 ± 0.07 b | 22.78 ± 0.09 b | 349.73 ± 2.62 b,B | 63.96 ± 1.76 b | |
AsA | 17.79 ± 0.61 c | 25.98 ± 0.06 c | 491.25 ± 9.84 a,C | 99.79 ± 0.83 c | |
HAc | 1.7 mM | 41.27 ± 3.57 a | 40.06 ± 0.01 a,A | 1468.20 ± 46.82 a | 261.60 ± 8.60 a,A |
CitA | 53.83 ± 4.52 b | 74.87 ± 12.86 a,b,B | 1766.71 ± 23.81 b | 240.74 ± 5.42 a,A | |
AsA | 140.58 ± 2.36 c | 91.13 ± 3.98 b,C | 3158.71 ± 50.29 c | 514.26 ± 18.18 b,B |
Sprouting Time | Acid Additive | Conc. | 3-CQA (μg/g) | CA (μg/g) | 5-CQA (μg/g) | 4-CQA (μg/g) |
---|---|---|---|---|---|---|
2 months | HAc | 1.7 µM | 186.33 ± 1.33 A | 399.76 ± 15.21 A | 3840.41 ± 146.10 A | 642.62 ± 2.79 a |
CitA | 144.23 ± 6.33 B | 399.01 ± 56.60 A | 3041.53 ± 36.40 B | 615.45 ± 5.70 b | ||
AsA | 186.43 ± 6.95 A | 300.96 ± 5.52 B | 3778.05 ± 72.51 A | 468.38 ± 2.88 c | ||
HAc | 1.7 mM | 193.46 ± 15.00 A | 256.36 ± 19.06 A | 4795.62 ± 22.95 a,b,A | 62.01 ± 7.43 a | |
CitA | 150.45 ± 6.12 B | 247.63 ± 6.37 A | 4211.25 ± 276.04 a,B | 685.94 ± 13.98 b | ||
AsA | 186.73 ± 6.10 A | 80.68 ± 0.66 B | 4980.05 ± 287.15 b,A | 788.00 ± 5.00 c | ||
5 months | HAc | 1.7 mM | 194.02 ± 3.69 a | 44.27 ± 0.41 A | 1621.54 ± 31.78 a | 341.70 ± 2.72 a |
AsA | 269.13 ± 6.32 b | 39.98 ± 4.94 A | 1207.07 ± 124.83 b | 433.47 ± 8.75 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangiapelo, L.; Blasi, F.; Ianni, F.; Barola, C.; Galarini, R.; Abualzulof, G.W.; Sardella, R.; Volpi, C.; Cossignani, L. Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants 2023, 12, 348. https://doi.org/10.3390/antiox12020348
Mangiapelo L, Blasi F, Ianni F, Barola C, Galarini R, Abualzulof GW, Sardella R, Volpi C, Cossignani L. Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants. 2023; 12(2):348. https://doi.org/10.3390/antiox12020348
Chicago/Turabian StyleMangiapelo, Luciano, Francesca Blasi, Federica Ianni, Carolina Barola, Roberta Galarini, Ghaid WA Abualzulof, Roccaldo Sardella, Claudia Volpi, and Lina Cossignani. 2023. "Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity" Antioxidants 12, no. 2: 348. https://doi.org/10.3390/antiox12020348
APA StyleMangiapelo, L., Blasi, F., Ianni, F., Barola, C., Galarini, R., Abualzulof, G. W., Sardella, R., Volpi, C., & Cossignani, L. (2023). Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants, 12(2), 348. https://doi.org/10.3390/antiox12020348