Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TO@NZ Hybrid Nanostructures
2.3. Preparation of LDPE/xNZ and LDPE/xTO@NZ Films
2.4. Thyme Oil GC-MS Analysis
2.5. Thermogravimetric Analysis (TG) Experiments of NZ and TO@NZ Nanohybrids
2.6. Physicochemical Characterization of LDPE/xNZ and LDPE/xTO@NZ Films
2.7. Tensile Properties of Films
2.8. Water Vapor Transmission Rate Measurements and Water Diffusion Coefficient Calculation
2.9. Oxygen Transmission Rate Measurements and Oxygen Permeability Calculation
2.10. Total Antioxidant Activity Assay of LDPE/xNZ and LDPE/xTO@NZ Films Surface
2.11. Calculation of TO Release Diffusion Coefficient: Pseudo-Second-Order Desorption Process
2.12. Packaging Preservation Test of “Scaloppini”-Type Fresh Pork Meat Fillets
2.13. Lipid Oxidation of Packaged “Skalopini”-Type Fresh Pork Fillets
2.13.1. Thiobarbituric Acid Reactive Substances
2.13.2. Heme Iron Content
2.14. Calculation of Melting-Crystallization Enthalpy and the % Crystallinity of LDPE
2.15. Statistical Analysis
3. Results and Discussion
3.1. GC-MS Results
3.2. Physicochemical Characterization of TO@NZ Nanohybrids
3.3. Physicochemical Characterization of the LDPE/xNZ and the LDPE/xTO@NZ Films
3.4. Tensile Properties of LDPE/xNZ and LDPE/xTO@NZ Films
3.5. Water–Oxygen Barrier Properties of LDPE/xNZ and LDPE/xTO@NZ Films
3.6. Antioxidant Activity of LDPE/xNZ and LDPE/xTO@NZ Films
3.7. Diffusion Coefficient Calculation for Controlled Release of TO
3.8. Lipid Oxidation
3.8.1. TBARS
3.8.2. Heme Iron Content
3.8.3. Correlation of TBARS and Heme Iron
3.9. Overall Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahari, H.; Soufiani, S.P. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front. Microbiol. 2021, 12, 657233. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Berk, Z. Food Process Engineering and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; Available online: https://www.elsevier.com/books/food-process-engineering-and-technology/berk/978-0-12-812018-7 (accessed on 13 October 2022).
- Almeida-Souza, F.; Magalhães, I.F.B.; Guedes, A.C.; Santana, V.M.; Teles, A.M.; Mouchrek, A.N.; Calabrese, K.S.; Abreu-Silva, A.L. Safety Assessment of Essential Oil as a Food Ingredient. In Essential Oils: Applications and Trends in Food Science and Technology; de Oliveira Santana, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 123–171. ISBN 978-3-030-99476-1. [Google Scholar]
- Saltmarsh, M. Recent Trends in the Use of Food Additives in the United Kingdom. J. Sci. Food Agric. 2015, 95, 649–652. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular Economy Models in Agro-Food Systems: A Review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers That Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of Natural Antimicrobials in Food Preservation: Recent Views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Wooster, J.; Martin, J. Flexible Packaging Applications of Polyethylene. In Handbook of Industrial Polyethylene and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1071–1090. ISBN 978-1-119-15979-7. [Google Scholar]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Giannakas, A. Na-Montmorillonite Vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Melt-Extruded Low-Density Poly-Ethylene Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity. Nanomaterials 2020, 10, 1027. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Leontiou, A.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Avgeropoulos, A.; Proestos, C. Performance of Thyme Oil@Na-Montmorillonite and Thyme Oil@Organo-Modified Montmorillonite Nanostructures on the Development of Melt-Extruded Poly-L-Lactic Acid Antioxidant Active Packaging Films. Molecules 2022, 27, 1231. [Google Scholar] [CrossRef] [PubMed]
- Salmas, C.E.; Giannakas, A.E.; Moschovas, D.; Kollia, E.; Georgopoulos, S.; Gioti, C.; Leontiou, A.; Avgeropoulos, A.; Kopsacheili, A.; Avdylaj, L.; et al. Kiwi Fruits Preservation Using Novel Edible Active Coatings Based on Rich Thymol Halloysite Nanostructures and Chitosan/Polyvinyl Alcohol Gels. Gels 2022, 8, 823. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.H.; Trigueiro, P.; Souza, J.S.N.; de Carvalho, M.S.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Montmorillonite with Essential Oils as Antimicrobial Agents, Packaging, Repellents, and Insecticides: An Overview. Colloids Surf. B Biointerfaces 2022, 209, 112186. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Zuñiga, J.N.; Sánchez-Valdes, S.; Ramírez-Vargas, E.; Guillen, L.; Ramos-deValle, L.F.; Graciano-Verdugo, A.; Uribe-Calderón, J.A.; Valera-Zaragoza, M.; Lozano-Ramírez, T.; Rodríguez-González, J.A.; et al. Controlled Release of Essential Oils Using Laminar Nanoclay and Porous Halloysite / Essential Oil Composites in a Multilayer Film Reservoir. Microporous Mesoporous Mater. 2021, 316, 110882. [Google Scholar] [CrossRef]
- Villa, C.C.; Valencia, G.A.; López Córdoba, A.; Ortega-Toro, R.; Ahmed, S.; Gutiérrez, T.J. Zeolites for Food Applications: A Review. Food Biosci. 2022, 46, 101577. [Google Scholar] [CrossRef]
- Blinka, T.A.; Edwards, F.B.; Miranda, N.R.; Speer, D.V.; Thomas, J.A. Zeolite in Packaging Film. U.S. Patent 5834079A, 10 November 1998. [Google Scholar]
- do Nascimento Sousa, S.D.; Santiago, R.G.; Soares Maia, D.A.; de Oliveira Silva, E.; Vieira, R.S.; Bastos-Neto, M. Ethylene Adsorption on Chitosan/Zeolite Composite Films for Packaging Applications. Food Packag. Shelf Life 2020, 26, 100584. [Google Scholar] [CrossRef]
- Dogan, H.; Koral, M.; İnan, T.Y. Ag/Zn Zeolite Containing Antibacterial Coating for Food-Packaging Substrates. J. Plast. Film. Sheeting 2009, 25, 207–220. [Google Scholar] [CrossRef]
- Lamo, N.; Somwangthanaroj, A.; Bunsiri, A. Development of packaging film from LDPE/zeolite composites for extending shelf life of lime. In Proceedings of the 47th Kasetsart University Annual Conference, Bangkok, Thailand, 17–20 March 2009. [Google Scholar]
- Jung, B.N.; Shim, J.K.; Hwang, S.W. Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film. 한국포장학회지 2018, 24, 149–157. [Google Scholar] [CrossRef]
- de Araújo, L.O.; Anaya, K.; Pergher, S.B.C. Synthesis of Antimicrobial Films Based on Low-Density Polyethylene (LDPE) and Zeolite A Containing Silver. Coatings 2019, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Zaharioudakis, K.; Georgopoulos, S.; Asimakopoulos, G.; Aktypis, A.; Proestos, C.; Karakassides, A.; Avgeropoulos, A.; et al. The Increase of Soft Cheese Shelf-Life Packaged with Edible Films Based on Novel Hybrid Nanostructures. Gels 2022, 8, 539. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Karabagias, V.K.; Karabagias, I.K.; Baikousi, M.; Georgopoulos, S.; Leontiou, A.; Katerinopoulou, K.; Zafeiropoulos, N.E.; et al. Development, Characterization, and Evaluation as Food Active Packaging of Low-Density-Polyethylene-Based Films Incorporated with Rich in Thymol Halloysite Nanohybrid for Fresh “Scaloppini” Type Pork Meat Fillets Preservation. Polymers 2023, 15, 282. [Google Scholar] [CrossRef] [PubMed]
- Pasias, I.N.; Ntakoulas, D.D.; Raptopoulou, K.; Gardeli, C.; Proestos, C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods 2021, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Sidira, M.; Skitsa, M.; Tsochantaridis, I.; Pappa, A.; Dimtsoudis, C.; Proestos, C.; Kourkoutas, Y. Assessment of the Antimicrobial, Antioxidant, and Antiproliferative Potential of Sideritis Raeseri Subps. Raeseri Essential Oil. Foods 2020, 9, 860. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Method for Tensile Properties of Plastics. Available online: https://www.astm.org/d0638-22.html (accessed on 13 February 2023).
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Puglia, D. Effect of Cellulose and Lignin on Disintegration, Antimicrobial and Antioxidant Properties of PLA Active Films. Int. J. Biol. Macromol. 2016, 89, 360–368. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Darvish, M.; Ajji, A. Synergistic Antimicrobial Activities of Limonene with Mineral Carriers in LDPE Films for Active Packaging Application. Sci. J. Chem. 2022, 10, 32. [Google Scholar] [CrossRef]
- Asimakopoulos, G.; Baikousi, M.; Kostas, V.; Papantoniou, M.; Bourlinos, A.B.; Zbořil, R.; Karakassides, M.A.; Salmas, C.E. Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal. Appl. Sci. 2020, 10, 8812. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A Distillation Method for the Quantitative Determination of Malonaldehyde in Rancid Foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf Life Extension of Lamb Meat Using Thyme or Oregano Essential Oils and Modified Atmosphere Packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Clark, E.M.; Mahoney, A.W.; Carpenter, C.E. Heme and Total Iron in Ready-to-Eat Chicken. J. Agric. Food Chem. 1997, 45, 124–126. [Google Scholar] [CrossRef]
- Kalpalathika, P.V.M.; Clark, E.M.; Mahoney, A.W. Heme Iron Content in Selected Ready-to-Serve Beef Products. J. Agric. Food Chem. 1991, 39, 1091–1093. [Google Scholar] [CrossRef]
- Hornsey, H.C. The Colour of Cooked Cured Pork. I.—Estimation of the Nitric Oxide-Haem Pigments. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Marinkovic, F.S.; Popovic, D.M.; Jovanovic, J.D.; Stankovic, B.S.; Adnadjevic, B.K. Methods for Quantitative Determination of Filler Weight Fraction and Filler Dispersion Degree in Polymer Composites: Example of Low-Density Polyethylene and NaA Zeolite Composite. Appl. Phys. A 2019, 125, 611. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Leontiou, A.; Baikousi, M.; Moschovas, D.; Asimakopoulos, G.; Zafeiropoulos, N.E.; Avgeropoulos, A. Synthesis of a Novel Chitosan/Basil Oil Blend and Development of Novel Low Density Poly Ethylene/Chitosan/Basil Oil Active Packaging Films Following a Melt-Extrusion Process for Enhancing Chicken Breast Fillets Shelf-Life. Molecules 2021, 26, 1585. [Google Scholar] [CrossRef]
- Yang, H.-S. Thermal and Dynamic Mechanical Thermal Analysis of Lignocellulosic Material-Filled Polyethylene Bio-Composites. J. Therm. Anal. Calorim. 2017, 130, 1345–1355. [Google Scholar] [CrossRef]
- Brahiman, T.; Esso, A.K.; Olivier, B.M.; Remy, L.; Edjikémé, E. Elaboration and Characterization of Composite Materials Made of Plastic Waste and Sand: Influence of Clay Load. Int. J. Sci. Eng. Technol. 2017, 6, 220. [Google Scholar] [CrossRef]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Mamat, O. The Development and Characterization of HDPE-Silica Sand Nanoparticles Composites. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 6–11. [Google Scholar] [CrossRef]
- Alapati, S.; Meledath, J.T.; Karmarkar, A. Effect of Morphology on Electrical Treeing in Low Density Polyethylene Nanocomposites. IET Sci. Meas. Technol. 2014, 8, 60–68. [Google Scholar] [CrossRef]
- Arunvisut, S.; Phummanee, S.; Somwangthanaroj, A. Effect of Clay on Mechanical and Gas Barrier Properties of Blown Film LDPE/Clay Nanocomposites. J. Appl. Polym. Sci. 2007, 106, 2210–2217. [Google Scholar] [CrossRef]
- Giannakas, A.; Salmas, C.; Leontiou, A.; Tsimogiannis, D.; Oreopoulou, A.; Braouhli, J. Novel LDPE/Chitosan Rosemary and Melissa Extract Nanostructured Active Packaging Films. Nanomaterials 2019, 9, 1105. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Xing, X.; Li, Z.; Zhang, S. A Comprehensive Review on Water Diffusion in Polymers Focusing on the Polymer–Metal Interface Combination. Polymers 2020, 12, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preda, F.-M.; Alegría, A.; Bocahut, A.; Fillot, L.-A.; Long, D.R.; Sotta, P. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides. Macromolecules 2015, 48, 5730–5741. [Google Scholar] [CrossRef] [Green Version]
- Anatoly, C.; Pavel, Z.; Tatiana, C.; Alexei, R.; Svetlana, Z. Water Vapor Permeability through Porous Polymeric Membranes with Various Hydrophilicity as Synthetic and Natural Barriers. Polymers 2020, 12, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatham, H. Oxygen Diffusion Barrier Properties of Transparent Oxide Coatings on Polymeric Substrates. Surf. Coat. Technol. 1996, 78, 1–9. [Google Scholar] [CrossRef]
- Hiltner, A.; Liu, R.Y.F.; Hu, Y.S.; Baer, E. Oxygen Transport as a Solid-State Structure Probe for Polymeric Materials: A Review. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1047–1063. [Google Scholar] [CrossRef]
- Karabagias, I.K. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality. Foods 2018, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Handbook of Meat, Poultry and Seafood Quality, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; Available online: https://www.wiley.com/en-gb/Handbook+of+Meat%2C+Poultry+and+Seafood+Quality%2C+2nd+Edition-p-9780470958322 (accessed on 9 January 2023).
- Yang, C.; Qi, Y.; Zheng, J.; Fan, X.U.; Liang, P.; Song, C. Efficacy of Various Preservatives on Extending Shelf Life of Vacuum-Packaged Raw Pork during 4 °C Storage. J. Food Prot. 2018, 81, 636–645. [Google Scholar] [CrossRef]
- Moudache, M.; Nerín, C.; Colon, M.; Zaidi, F. Antioxidant Effect of an Innovative Active Plastic Film Containing Olive Leaves Extract on Fresh Pork Meat and Its Evaluation by Raman Spectroscopy. Food Chem. 2017, 229, 98–103. [Google Scholar] [CrossRef]
- Boeira, C.P.; Alves, J.d.S.; Flores, D.C.B.; de Moura, M.R.; Melo, P.T.S.; da Rosa, C.S. Antioxidant and Antimicrobial Effect of an Innovative Active Film Containing Corn Stigma Residue Extract for Refrigerated Meat Conservation. J. Food Process. Preserv. 2021, 45, e15721. [Google Scholar] [CrossRef]
- Lee, B.J.; Hendricks, D.G.; Cornforth, D.P. Antioxidant Effects of Carnosine and Phytic Acid in a Model Beef System. J. Food Sci. 1998, 63, 394–398. [Google Scholar] [CrossRef]
- Pretorius, B.; Schönfeldt, H.C.; Hall, N. Total and Haem Iron Content Lean Meat Cuts and the Contribution to the Diet. Food Chem. 2016, 193, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
LDPE | LDPE/ 5NZ | LDPE/ 10NZ | LDPE/ 15NZ | LDPE/ 5TO@NZ | LDPE/ 10TO@NZ | LDPE/ 15TO@NZ | ||
---|---|---|---|---|---|---|---|---|
Melting 1 | ΔH (J/g) | 174.4 | 143.6 | 134.2 | 125.6 | 129.0 | 160.9 | 118.8 |
ΔHLDPE (J/g) | 174.4 | 151.2 | 149.1 | 147.8 | 135.8 | 178.8 | 139.8 | |
Tstart (°C) | 103.4 | 105.0 | 104.2 | 95.7 | 104.7 | 105.6 | 105.7 | |
Tpeak (°C) | 115.0 | 115.0 | 114.0 | 114.0 | 114.0 | 114.0 | 115.0 | |
Tend (°C) | 119.0 | 120.8 | 121.1 | 122.0 | 121.1 | 119.8 | 120.7 | |
%Xc | 59.5 | 51.6 | 50.9 | 50.4 | 46.3 | 61.0 | 47.7 | |
Crystallization | ΔH (J/g) | −168.2 | −139.2 | −128.3 | −125.3 | −130.9 | −151.6 | −117.7 |
ΔHLDPE (J/g) | −168.2 | −146.5 | −142.6 | −147.4 | −137.8 | −168.4 | −138.5 | |
Tstart (°C) | 100.0 | 101.3 | 99.0 | 99.4 | 99.4 | 99.0 | 98.8 | |
Tpeak (°C) | 93.0 | 93.0 | 92.0 | 91.5 | 92.0 | 93.0 | 92.0 | |
Tend (°C) | 79.4 | 77.0 | 74.8 | 75.0 | 74.4 | 78.7 | 77.0 | |
%Xc | 57.4 | 50.0 | 48.7 | 50.3 | 47.0 | 57.5 | 47.3 | |
Melting 2 | ΔH (J/g) | 162.4 | 118.5 | 125.5 | 122.5 | 134.4 | 147.6 | 113.6 |
ΔHLDPE (J/g) | 162.4 | 124.7 | 139.4 | 144.1 | 141.5 | 164.0 | 133.6 | |
Tstart (°C) | 98.4 | 97.7 | 97.9 | 95.7 | 97.8 | 100.0 | 96.7 | |
Tpeak (°C) | 110.0 | 111.0 | 112.0 | 111.0 | 112.0 | 111.0 | 112.0 | |
Tend (°C) | 117.7 | 118.5 | 119.2 | 119.6 | 118.8 | 118.5 | 118.8 | |
%Xc | 55.4 | 42.6 | 47.6 | 49.2 | 48.3 | 56.0 | 45.6 |
Sample Code | E | σuts | ε% |
---|---|---|---|
LDPE | 183.3 ± 18.8 | 12.6 ± 0.5 | 29.3 ± 11.0 |
LDPE/5NZ | 257.0 ± 12.7 | 13.3 ± 0.4 | 32.0 ± 12.7 |
LDPE/10NZ | 264.0 ± 11.3 | 11.3 ± 1.2 | 12.9 ± 3.5 |
LDPE/15NZ | 242.0 ± 12.9 | 9.8 ± 0.9 | 9.3 ± 1.9 |
LDPE/5TO@NZ | 281.8 ± 12.3 | 13.7 ± 1.4 | 90.0 ± 11.7 |
LDPE/10TO@NZ | 297.3 ± 14.2 | 12.2 ± 0.8 | 89.1 ± 13.2 |
LDPE/15TO@NZ | 281.3 ± 13.8 | 12.0 ± 1.0 | 37.4 ± 12.1 |
Sample Code | Film Thickness (mm) | Water Vapor Transmission Rate WVTR (10−7 gr/(cm2·s) | Diffusion Coefficient Dwv (10−4 cm2/s) | Oxygen Transmission Rate OTR (mL/(m2·day)) | Permeability Coefficient PeO2 (10−8 cm2/s) |
---|---|---|---|---|---|
LDPE | 0.270 ± 0.010 | 5.09 ± 0.26 | 3.06 ± 0.23 | 6407 ± 320 | 20.02 ± 8.41 |
LDPE/5NZ | 0.266 ± 0.004 | 7.27 ± 0.23 | 4.39 ± 0.81 | 848 ± 42 | 2.61 ± 0.13 |
LDPE/10NZ | 0.378 ± 0.010 | 4.21 ± 0.50 | 3.66 ± 0.49 | 303 ± 15 | 1.32 ± 0.62 |
LDPE/15NZ | 0.410 ± 0.015 | 4.31 ± 0.33 | 4.05 ± 0.21 | 1293 ± 65 | 6.13 ± 0.31 |
LDPE/5TO@NZ | 0.130 ± 0.015 | 4.02 ± 0.18 | 1.14 ± 0.14 | 1345 ± 67 | 2.02 ± 0.11 |
LDPE/10TO@NZ | 0.311 ± 0.005 | 3.86 ± 0.14 | 2.69 ± 0.91 | 335 ± 17 | 1.21 ± 0.06 |
LDPE/15TO@NZ | 0.329 ± 0.010 | 4.02 ± 0.64 | 2.94 ± 0.52 | 122 ± 6 | 0.46 ± 0.03 |
TBARS | Day 0 | Day 2 | Day 4 | Day 6 | Day 8 | Day 10 | Day 12 |
---|---|---|---|---|---|---|---|
AVG ± SD | |||||||
(mg/kg) | |||||||
Control (LDPE) | 0.17 a ± 0.01 | 0.26 b ± 0.04 | 0.46 c ± 0.01 | 0.66 d ± 0.03 | 0.91 f ± 0.03 | 1.21 i ± 0.04 | 1.31 k ± 0.02 |
LDPE/15NZ | - | 0.24 b ± 0.02 | 0.44 c ± 0.02 | 0.63 d ± 0.02 | 0.85 g ± 0.02 | 1.15 i ± 0.02 | 1.30 k ± 0.03 |
LDPE/15TO@NZ | - | 0.20 b ± 0.02 | 0.42 c ± 0.02 | 0.54 e ± 0.02 | 0.79 h ± 0.02 | 1.07 j ± 0.02 | 1.20 l ± 0.03 |
ANOVA | |||||||
F | - | 3.680 | 4.356 | 21.137 | 21.446 | 19.918 | 11.676 |
p | - | 0.091 | 0.068 | 0.002 | 0.002 | 0.002 | 0.009 |
Fe | Day 0 | Day 2 | Day 4 | Day 6 | Day 8 | Day 10 | Day 12 |
AVG ± SD | |||||||
(μg/g) | |||||||
Control (LDPE) | 10.41 a ± 0.51 | 8.76 b ± 0.30 | 7.44 d ± 0.24 | 6.28 e ± 0.23 | 4.98 h ± 0.26 | 3.32 j ± 0.21 | 1.66 l ± 0.21 |
LDPE/15NZ | - | 9.22 b ± 0.23 | 7.522 d ± 0.21 | 6.74 f ± 0.09 | 5.38 h ± 0.07 | 3.48 j ± 0.18 | 1.86 l ± 0.12 |
LDPE/15TO@NZ | - | 9.62 c ± 0.09 | 7.92 d ± 0.16 | 7.10 g ± 0.09 | 5.64 i ± 0.16 | 3.90 k ± 0.12 | 2.10 l ± 0.24 |
ANOVA | |||||||
F | - | 11.112 | 4.69 | 22.228 | 10.110 | 8.855 | 3.753 |
p | - | 0.010 | 0.060 | 0.002 | 0.012 | 0.016 | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmas, C.E.; Giannakas, A.E.; Karabagias, V.K.; Moschovas, D.; Karabagias, I.K.; Gioti, C.; Georgopoulos, S.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation. Antioxidants 2023, 12, 523. https://doi.org/10.3390/antiox12020523
Salmas CE, Giannakas AE, Karabagias VK, Moschovas D, Karabagias IK, Gioti C, Georgopoulos S, Leontiou A, Kehayias G, Avgeropoulos A, et al. Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation. Antioxidants. 2023; 12(2):523. https://doi.org/10.3390/antiox12020523
Chicago/Turabian StyleSalmas, Constantinos E., Aris E. Giannakas, Vassilios K. Karabagias, Dimitrios Moschovas, Ioannis K. Karabagias, Christina Gioti, Stavros Georgopoulos, Areti Leontiou, George Kehayias, Apostolos Avgeropoulos, and et al. 2023. "Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation" Antioxidants 12, no. 2: 523. https://doi.org/10.3390/antiox12020523
APA StyleSalmas, C. E., Giannakas, A. E., Karabagias, V. K., Moschovas, D., Karabagias, I. K., Gioti, C., Georgopoulos, S., Leontiou, A., Kehayias, G., Avgeropoulos, A., & Proestos, C. (2023). Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation. Antioxidants, 12(2), 523. https://doi.org/10.3390/antiox12020523