Generation of Highly Antioxidant Submicron Particles from Myrtus communis Leaf Extract by Supercritical Antisolvent Extraction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Producing the Myrtle Leaf Extract
2.3. Particle Formation Process
2.4. Scanning Electron Microscopy (SEM)
2.5. Analysis of Phenolic Composition
2.6. Total Polyphenols Content (TPC)
2.7. Antioxidant Activity
2.8. In Vitro Application
2.8.1. Cell Culture and Treatments
2.8.2. Determination of Cell Viability
2.8.3. Analysis of mRNA Expression by Quantitative Real-Time PCR (qPCR)
2.8.4. Determining the Antioxidant Capacity and Oxidative Damage
2.8.5. Statistical Analysis
3. Results and Discussion
3.1. Supercritical Antisolvent Extraction
3.1.1. Morphology and Particle Size
3.1.2. Total Phenolic Content
3.1.3. Quantification of Polyphenols by Mass Spectrometry
3.1.4. Antioxidant Activity of Precipitated Particles
3.2. The Antioxidant Properties of Myrtle Particles Attenuate tBHP-Induced Cell Death and Oxidant Stress Injury in RAW 264.7 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant Activities of the Essential Oils and Methanol Extracts from Myrtle (Myrtus Communis Var. Italica L.) Leaf, Stem and Flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Kasote, D.M.; Hegde, M.V.; Katyare, S.S. Mitochondrial Dysfunction in Psychiatric and Neurological Diseases: Cause(s), Consequence(s), and Implications of Antioxidant Therapy. BioFactors 2013, 39, 392–406. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.J.; Wu, S.; Duan, M.; Wang, L. Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules 2021, 26, 5801. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilkah, S.; Goldschdmidt, E.E. Myrtle (Myrtus Communis L.)—A Native Mediterranean and Cultured Crop Species. Med. Arom. Plants Mid.-East 2014, 2, 253–267. [Google Scholar]
- Melito, S.; La Bella, S.; Martinelli, F.; Cammalleri, I.; Tuttolomondo, T.; Leto, C.; Fadda, A.; Molinu, M.G.; Mulas, M. Morphological, Chemical, and Genetic Diversity of Wild Myrtle (Myrtus Communis L.) Populations in Sicily. Turkish J. Agric. For. 2016, 40, 249–261. [Google Scholar] [CrossRef]
- Yangui, I.; Younsi, F.; Ghali, W.; Boussaid, M.; Messaoud, C. Phytochemicals, Antioxidant and Anti-Proliferative Activities of Myrtus Communis L. Genotypes from Tunisia. S. Afr. J. Bot. 2021, 137, 35–45. [Google Scholar] [CrossRef]
- Kuete, V.; Karaosmanoğlu, O.; Sivas, H. Anticancer Activities of African Medicinal Spices and Vegetables. Med. Spices Veg. Afr. Ther. Potent. Metab. Inflammat. Infect. Syst. Dis. 2017, 2017, 271–297. [Google Scholar]
- D’Urso, G.; Montoro, P.; Lai, C.; Piacente, S.; Sarais, G. LC-ESI/LTQOrbitrap/MS Based Metabolomics in Analysis of Myrtus Communis Leaves from Sardinia (Italy). Ind. Crops Prod. 2019, 128, 354–362. [Google Scholar] [CrossRef]
- Luna-Guevara, M.L.; Luna-Guevara, J.J.; Hernández-Carranza, P.; Ruíz-Espinosa, H.; Ochoa-Velasco, C.E. Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Stud. Nat. Prod. Chem. 2018, 59, 79–108. [Google Scholar]
- Minatel, I.O.; Borges, C.V.; Borges, C.V.; Alonzo, H.; Hector, G.; Gomez, G.; Chen, C.O.; Chen, C.O.; Pace, G.; Lima, P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability, Phenolic Compounds—Biological Activity. Open Sci. 2017, 1, 1–24. [Google Scholar]
- Zabot, G.L.; Meireles, M.A.A. On-Line Process for Pressurized Ethanol Extraction of Onion Peels Extract and Particle Formation Using Supercritical Antisolvent. J. Supercrit. Fluids 2016, 110, 230–239. [Google Scholar] [CrossRef]
- MacHado, A.P.D.F.; Montes, A.; Valor, D.; Fernández-Ponce, M.T.; Barbero, G.F.; Maróstica Júnior, M.R.; Pereyra, C.; De La Ossa, E.M. Co-Precipitation of Grape Residue Extract Using Sub-and Supercritical CO2technology. J. CO2 Util. 2022, 61, 102010. [Google Scholar] [CrossRef]
- Andersson, J.M.; Lindahl, S.; Turner, C.; Rodriguez-Meizoso, I. Pressurised Hot Water Extraction with On-Line Particle Formation by Supercritical Fluid Technology. Food Chem. 2012, 134, 1724–1731. [Google Scholar] [CrossRef]
- Kothari, V.; Gupta, A.; Naraniwal, M. Extraction Methods for Preparation of Bioactive Plant Extracts: A Comparative Study. Int. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Fatimah, I.; Pradita, R.Y.; Nurfalinda, A. Plant Extract Mediated of ZnO Nanoparticles by Using Ethanol Extract of Mimosa Pudica Leaves and Coffee Powder. Procedia Eng. 2016, 148, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Akbar Jan, F.; Wajidullah; Ullah, R.; Ullah, N.; Salman; Usman, M. Exploring the Environmental and Potential Therapeutic Applications of Myrtus Communis L. Assisted Synthesized Zinc Oxide (ZnO) and Iron Doped Zinc Oxide (Fe-ZnO) Nanoparticles. J. Saudi Chem. Soc. 2021, 25, 101278. [Google Scholar] [CrossRef]
- Verônica Cardoso de Souza, B.; de Morais Sousa, M.; Augusto Gasparotto Sattler, J.; Cristina Sousa Gramoza Vilarinho Santana, A.; Bruno Fonseca de Carvalho, R.; de Sousa Lima Neto, J.; de Matos Borges, F.; Angelica Neri Numa, I.; Braga Ribeiro, A.; César Cunha Nunes, L. Nanoencapsulation and Bioaccessibility of Polyphenols of Aqueous Extracts from Bauhinia Forficata Link. Food Chem. Mol. Sci. 2022, 5, 100144. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ferdinand, V.; Siow, L.F. Effect of Drying Methods on Yield, Physicochemical Properties, and Total Polyphenol Content of Chamomile Extract Powder. Front. Pharmacol. 2022, 13, 1–8. [Google Scholar] [CrossRef]
- Fathi, F.; Ebrahimi, S.N.; Pereira, D.M.; Estevinho, B.N.; Rocha, F. Preliminary Studies of Microencapsulation and Anticancer Activity of Polyphenols Extract from Punica Granatum Peels. Can. J. Chem. Eng. 2022, 100, 3240–3252. [Google Scholar] [CrossRef]
- Kravanja, K.A.; Finšgar, M.; Knez, Ž.; Knez Marevci, M. Supercritical Fluid Technologies for the Incorporation of Synthetic and Natural Active Compounds into Materials for Drug Formulation and Delivery. Pharmaceutics 2022, 14, 1670. [Google Scholar] [CrossRef]
- Franco, P.; Marco, I. De Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- Chafidz, A.; Jauhary, T.; Kaavessina, M.; Sumarno; Latief, F.H. Formation of Fine Particles Using Supercritical Fluid (SCF) Process: Short Review. Commun. Sci. Technol. 2018, 3, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, E.; Scognamiglio, M.; Baldino, L. Lycopene Extract from Tomato Concentrate and Its Co-Precipitation with PVP Using Hybrid Supercritical Processes. J. CO2 Util. 2022, 64, 102157. [Google Scholar] [CrossRef]
- Machmudah, S.; Winardi, S.; Wahyudiono; Kanda, H.; Goto, M. Formation of Curcuma Xanthorrhiza Extract Microparticles Using Supercritical Anti Solvent Precipitation. Mater. Today Proc. 2022, 66, 3129–3134. [Google Scholar] [CrossRef]
- Zhang, Y.; Diono, W.; Rujiravanit, R.; Kanda, H.; Goto, M. Extraction of Diterpenes from Spent Coffee Grounds and Encapsulation into Polyvinylpyrrolidone Particles Using Supercritical Carbon Dioxide. Sep. Sci. Technol. 2022, 57, 1081–1096. [Google Scholar] [CrossRef]
- Valor, D.; Montes, A.; García-Casas, I.; Fernández-Ponce, M.T.; Pereyra, C.; de la Ossa, E.J.M. Co-Precipitation of Fluorescein with Extracts of Mango Leaves by Supercritical Antisolvent Process. J. Supercrit. Fluids 2020, 162, 104857. [Google Scholar] [CrossRef]
- Quintana, S.E.; Hernández, D.M.; Villanueva-Bermejo, D.; García-Risco, M.R.; Fornari, T. Fractionation and Precipitation of Licorice (Glycyrrhiza Glabra L.) Phytochemicals by Supercritical Antisolvent (SAS) Technique. Lwt 2020, 126, 109315. [Google Scholar] [CrossRef]
- Gil-Ramírez, A.; Rodriguez-Meizoso, I. Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS). Sep. Purif. Rev. 2021, 50, 32–52. [Google Scholar] [CrossRef]
- Wang, W.; Liu, G.; Wu, J.; Jiang, Y. Co-Precipitation of 10-Hydroxycamptothecin and Poly (l-Lactic Acid) by Supercritical CO2 Anti-Solvent Process Using Dichloromethane/Ethanol Co-Solvent. J. Supercrit. Fluids 2013, 74, 137–144. [Google Scholar] [CrossRef]
- Girotra, P.; Singh, S.K.; Nagpal, K. Supercritical Fluid Technology: A Promising Approach in Pharmaceutical Research. Pharm. Dev. Technol. 2013, 18, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Guamán-Balcázar, M.C.; Montes, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; Martínez de la Ossa, E. Generation of Potent Antioxidant Nanoparticles from Mango Leaves by Supercritical Antisolvent Extraction. J. Supercrit. Fluids 2018, 138, 92–101. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent, Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Granato, D.; Karnopp, A.R.; van Ruth, S.M. Characterization and Comparison of Phenolic Composition, Antioxidant Capacity and Instrumental Taste Profile of Juices from Different Botanical Origins. J. Sci. Food Agric. 2015, 95, 1997–2006. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant Activity Index (AAI) by the 2,2-Diphenyl-1-Picrylhydrazyl Method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual. Assay Guid. Manual 2004, 2004, 1–23. [Google Scholar]
- Ulrich, E.H.; Verlag, B. Methods of Enzymatic Analysis: Third Edition Vitamine in Fettlosliche Vitamine (Vitamins I—Fat Soluble Vitamins). 1984. Volume 13, p. 38. Available online: https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1016/0307-4412%2885%2990137-2 (accessed on 17 February 2023).
- Bamforth, C.W. Superoxide Dismutase in Barley. J. Inst. Brew. 1983, 89, 420–423. [Google Scholar] [CrossRef]
- Günzler, W.A.; Kremers, H.; Floha, L. An Improved Coupled Test Procedure for Glutathione Peroxidase (EC 1-11-1-9-) in Blood. Z. Klin. Chem. Klin. Biochem. 1974, 12, 444–448. [Google Scholar]
- Alcala, M.; Bolado, V.E.; Sánchez-Vera, I.; Clapés, S.; Dasí, F.; Sáez, G.; Carrera, E.; Alvarez-Gallego, F.; Loeken, M.R.; Viana, M. Prevention of Teratogenesis in Pregnancies of Obese Rats by Vitamin E Supplementation. Antioxidants 2021, 10, 1173. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Mechanisms Controlling Supercritical Antisolvent Precipitate Morphology. Chem. Eng. J. 2011, 169, 358–370. [Google Scholar] [CrossRef]
- Kalani, M.; Yunus, R. Application of Supercritical Antisolvent Method in Drug Encapsulation: A Review. Int. J. Nanomed. 2011, 6, 1429–1442. [Google Scholar] [CrossRef]
- Sacha, G.; Schmitt, W.; Nail, S. Identification of Critical Process Variables Affecting Particle Size Following Precipitation Using a Supercritical Fluid. Pharm. Dev. Technol. 2006, 11, 187–194. [Google Scholar] [CrossRef]
- Rantakylä, M.; Jäntti, M.; Aaltonen, O.; Hurme, M. The Effect of Initial Drop Size on Particle Size in the Supercritical Antisolvent Precipitation (SAS) Technique. J. Supercrit. Fluids 2002, 24, 251–263. [Google Scholar] [CrossRef]
- Miguel, F.; Martín, A.; Gamse, T.; Cocero, M.J. Supercritical Anti Solvent Precipitation of Lycopene: Effect of the Operating Parameters. J. Supercrit. Fluids 2006, 36, 225–235. [Google Scholar] [CrossRef]
- da Fonseca Machado, A.P.; Alves Rezende, C.; Alexandre Rodrigues, R.; Fernández Barbero, G.; de Tarso Vieira e Rosa, P.; Martínez, J. Encapsulation of Anthocyanin-Rich Extract from Blackberry Residues by Spray-Drying, Freeze-Drying and Supercritical Antisolvent. Powder Technol. 2018, 340, 553–562. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.M.; Zu, Y.G.; Ma, C.H.; Wang, H.; Sun, X.W.; Sun, Z. Preparation and Radical Scavenging Activities of Polymeric Procyanidins Nanoparticles by a Supercritical Antisolvent (SAS) Process. Food Chem. 2011, 128, 1152–1159. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Rueda, M.; Barbero, G.F.; Martín, Á.; Cocero, M.J.; Martínez, J. Co-Precipitation of Anthocyanins of the Extract Obtained from Blackberry Residues by Pressurized Antisolvent Process. J. Supercrit. Fluids 2018, 137, 81–92. [Google Scholar] [CrossRef]
- Marqués, J.L.; Porta, G.D.; Reverchon, E.; Renuncio, J.A.R.; Mainar, A.M. Supercritical Antisolvent Extraction of Antioxidants from Grape Seeds after Vinification. J. Supercrit. Fluids 2013, 82, 238–243. [Google Scholar] [CrossRef]
- Dairi, S.; Galeano-Díaz, T.; Acedo-Valenzuela, M.I.; Godoy-Caballero, M.P.; Dahmoune, F.; Remini, H.; Madani, K. Monitoring Oxidative Stability and Phenolic Compounds Composition of Myrtle-Enriched Extra Virgin Olive during Heating Treatment by Flame, Oven and Microwave Using Reversed Phase Dispersive Liquid-Liquid Microextraction (RP-DLLME)-HPLC-DAD-FLD Method. Ind. Crops Prod. 2015, 65, 303–314. [Google Scholar] [CrossRef]
- Dairi, S.; Madani, K.; Aoun, M.; Him, J.L.K.; Bron, P.; Lauret, C.; Cristol, J.P.; Carbonneau, M.A. Antioxidative Properties and Ability of Phenolic Compounds of Myrtus Communis Leaves to Counteract In Vitro LDL and Phospholipid Aqueous Dispersion Oxidation. J. Food Sci. 2014, 79, 1260–1270. [Google Scholar] [CrossRef]
- Vafadar Shoshtari, Z.; Rahimmalek, M.; Sabzalian, M.R.; Hosseini, H. Essential Oil and Bioactive Compounds Variation in Myrtle (Myrtus Communis L.) as Affected by Seasonal Variation and Salt Stress. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- Romani, A.; Coinu, R.; Carta, S.; Pinelli, P.; Galardi, C.; Vincieri, F.F.; Franconi, F. Evaluation of Antioxidant Effect of Different Extracts of Myrtus Communis L. Free Radic. Res. 2004, 38, 97–103. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F.; Carvalho, P.I.N.; Rostagno, M.A.; Petenate, A.J.; Meireles, M.A.A. Precipitation of Curcuminoids from an Ethanolic Turmeric Extract Using a Supercritical Antisolvent Process. J. Supercrit. Fluids 2016, 108, 26–34. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Dongoran, R.A.; Lin, T.J.; Byekyet, A.; Tang, S.C.; Yang, J.H.; Liu, C.H. Determination of Major Endogenous Fahfas in Healthy Human Circulation: The Correlations with Several Circulating Cardiovascular-Related Biomarkers and Anti-Inflammatory Effects on Raw 264.7 Cells. Biomolecules 2020, 10, 1689. [Google Scholar] [CrossRef]
- Khabipov, A.; Käding, A.; Liedtke, K.R.; Freund, E.; Partecke, L.I.; Bekeschus, S. RAW 264.7 Macrophage Polarization by Pancreatic Cancer Cells—A Model for Studying Tumour-Promoting Macrophages. Anticancer Res. 2019, 39, 2871–2882. [Google Scholar] [CrossRef] [PubMed]
Runs | P (MPa) | T (K) | Injection (mL/min) |
---|---|---|---|
1 | 9 | 308 | 3 |
2 | 9 | 308 | 8 |
3 | 9 | 328 | 3 |
4 | 9 | 328 | 8 |
5 | 14.5 | 318 | 5.5 |
6 | 14.5 | 318 | 5.5 |
7 | 14.5 | 318 | 5.5 |
8 | 20 | 308 | 3 |
9 | 20 | 308 | 8 |
10 | 20 | 328 | 3 |
11 | 20 | 328 | 8 |
Compounds | Linear Equation | R2 |
---|---|---|
Mangiferin | y = 47.0275 × x | 0.9999 |
Quercetin | y = 50.9071 × x | 0.9984 |
Myricetin | y = 25.8573 × x | 0.9991 |
Kaempferol -3-glucoside | y = 114.385 × x | 0.9833 |
Kaempferol | y = 59.5196 × x | 0.9998 |
Sinapic acid | y = 63.1047 × x | 0.9955 |
Vitexin | y = 97.6308 × x | 0.9999 |
Ferulic acid | y = 30.0698 × x | 0.9820 |
Epigallocatatechin gallate | y = 39.242 × x | 0.9897 |
Coumaric acid | y = 74.3687 × x | 0.9877 |
Gallic acid | y = 11.284 × x | 0.9943 |
Forward | Reverse | |
---|---|---|
β-Actin | 5′-AGGTGACAGCATTGCTTCTG-3′ | 5′-GCTGCCTCAACACCTCAAC-3′ |
Cat | 5′-GTGCATGCATGACAACCAG-3′ | 5’-TGAAGCGTTTCACATCTACAGC-3′ |
Gclc | 5′-TTGTCGCTGGGGAGTGATTT-3′ | 5′-TGATCCTAAAGCGATTGTTCTTCAG-3′ |
Gclcm | 5′-TGACTCACAATGACCCGAAAGA-3′ | 5′-CCCCTGCTCTTCACGATGAC-3′ |
GPx1 | AGGCGGGACCCTGAGACTTA-3′ | 5′-ATCACGTGGCATCGCTTTCT-3′ |
Sod1 | 5′-CAGGACCTCATTTTAATCCTCAC-3′ | 5′-CCCAGGTCTCCAACATGC-3′ |
Runs | P (MPa) | T (K) | Injection (mL/min) | Particle Size (μm) | TPC (mg GAE/g Precipitate) |
---|---|---|---|---|---|
1 | 9 | 308 | 3 | - | - |
2 | 9 | 308 | 8 | - | - |
3 | 9 | 328 | 3 | - | - |
4 | 9 | 328 | 8 | 1.32 ± 0.41 | 347.62 ± 5.67 |
5 | 14.5 | 318 | 5.5 | 0.46 ± 0.25 | 534.57 ± 18.53 |
6 | 14.5 | 318 | 5.5 | 0.52 ± 0.43 | 530.42 ± 2.45 |
7 | 14.5 | 318 | 5.5 | 0.42 ± 0.17 | 525.37 ± 10.23 |
8 | 20 | 308 | 3 | 0.95 ± 0.36 | 556.34 ± 23.47 |
9 | 20 | 308 | 8 | 0.74 ± 0.25 | 552.47 ± 14.67 |
10 | 20 | 328 | 3 | 0.67 ± 0.23 | 452.12 ± 1.45 |
11 | 20 | 328 | 8 | 0.62 ± 0.63 | 370.58 ± 3.56 |
Compound | TR (min) | Formula | [M–H]− |
---|---|---|---|
Mangiferin | 3.7 | C19H18O11 | 421.077 |
Quercetin | 4.35 | C21H20O11 | 463.088 |
Kaempferol-3glucoside | 4.76 | C21H18O12 | 447.096 |
Kaempferol | 5.61 | C15H10O6 | 285.040 |
Vitexin | 4.31 | C21H20O10 | 431.098 |
Epigallocatatechin gallate | 3.28 | C22H18O3 | 457.076 |
Gallic acid | 1.92 | C7H6O5 | 169.014 |
Compound | Extract | Run 4 | Run 5 | Run 8 | Run 9 | Run 10 | Run 11 |
---|---|---|---|---|---|---|---|
Mangiferin | 34.6 ± 2.4 | 4.5 ± 3.7 | 83.9 ± 23.6 | 172.49 ± 22.1 | 3.9 ± 0.3 | 16.7 ± 1.4 | 2.5 ± 0.3 |
Quercetin | 98.9 ± 2.6 | NQ | 36.2 ± 6.1 | 94.97 ± 27.9 | 43.5 ± 4.6 | 1.4 ± 0.1 | 28.4 ± 3.7 |
Kaempferol 3-glucoside | 168.4 ± 14.6 | 16.0 ± 4.8 | NQ | 157.31 ± 11.8 | 107.4 ± 23.6 | NQ | NQ |
Kaempferol | 4.9 ± 2.3 | NQ | NQ | 7.34 ± 6.9 | 31.6 ± 6.7 | NQ | NQ |
Vitexin | 0.3 ± 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.2 | NQ | 0.3 ± 0.1 | NQ |
Epigallocatatechin gallate | 38.2 ± 4.5 | 0.8 ± 1.7 | 1.5 ± 0.4 | 43.9 ± 9.5 | 24.6 ± 2.1 | 1.0 ± 0.4 | 0.5 ± 0.1 |
Gallic acid | 22.8 ± 6.8 | 2.5 ± 0.4 | 6.1 ± 2.1 | 28.1 ± 2.4 | 31.7 ± 6.9 | 15.6 ± 2.0 | 0.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valor, D.; Montes, A.; Calderón-Domínguez, M.; Aghziel, I.; Sánchez-Gomar, I.; Alcalá, M.; Durán-Ruiz, M.C.; Pereyra, C. Generation of Highly Antioxidant Submicron Particles from Myrtus communis Leaf Extract by Supercritical Antisolvent Extraction Process. Antioxidants 2023, 12, 530. https://doi.org/10.3390/antiox12020530
Valor D, Montes A, Calderón-Domínguez M, Aghziel I, Sánchez-Gomar I, Alcalá M, Durán-Ruiz MC, Pereyra C. Generation of Highly Antioxidant Submicron Particles from Myrtus communis Leaf Extract by Supercritical Antisolvent Extraction Process. Antioxidants. 2023; 12(2):530. https://doi.org/10.3390/antiox12020530
Chicago/Turabian StyleValor, Diego, Antonio Montes, María Calderón-Domínguez, Inass Aghziel, Ismael Sánchez-Gomar, Martín Alcalá, Ma Carmen Durán-Ruiz, and Clara Pereyra. 2023. "Generation of Highly Antioxidant Submicron Particles from Myrtus communis Leaf Extract by Supercritical Antisolvent Extraction Process" Antioxidants 12, no. 2: 530. https://doi.org/10.3390/antiox12020530
APA StyleValor, D., Montes, A., Calderón-Domínguez, M., Aghziel, I., Sánchez-Gomar, I., Alcalá, M., Durán-Ruiz, M. C., & Pereyra, C. (2023). Generation of Highly Antioxidant Submicron Particles from Myrtus communis Leaf Extract by Supercritical Antisolvent Extraction Process. Antioxidants, 12(2), 530. https://doi.org/10.3390/antiox12020530