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Reactive oxygen species (ROS) were originally described as toxic by-products of aero-
bic cellular energy metabolism associated with the development of several diseases, such as
cancer, neurodegenerative diseases, and diabetes [1–3]. In these contexts, the accumulation
of ROS in cells, referred to as oxidative stress, is a toxic event that damages a number
of biomolecules. Over the last thirty years, research has focused on the development of
strategies to reduce ROS in order to prevent tissue damage in normal aging tissues and in
pathological situations. An industry related to “antioxidant” strategies expanded to the
mainstream, and nowadays everybody seems aware of the toxicity of ROS.

However, recent findings have shown that ROS can also contribute to bona fide
physiological processes, leading to a new paradigm in reversible post-translational mod-
ifications involved in signal transduction, defined as oxidative eustress [4,5]. Amongst
ROS, hydrogen peroxide (H2O2) best fits the properties of a signaling molecule and is
recognizable as the major ROS in the oxidative regulation of physiological activity [6].
H2O2 is mainly produced by NAPDH oxidases and the mitochondrial electron transport
chain [7,8]. This generation is controlled by growth factors, chemokines and physical stress,
among other factors.

This Special Issue highlights the most recent advances in all the aspects of ROS sig-
naling with examples of H2O2 signaling in E. coli, plants and animals. It has recently been
shown that H2O2 can regulate Shh signaling during development and regeneration [9].
Thauvin et al. analyzed its molecular mechanism and discovered that Shh controlled H2O2
levels through a noncanonical Boc-Rac1 pathway [10]. In a positive loop, H2O2 regulates
Shh trafficking. Thus, Shh directly impacts its own distribution and potentially the distri-
bution of other morphogens via H2O2 level modulation. These founding results provide a
molecular explanation for the robustness of morphogenesis and open a new path toward
the integration of ROS regulation in morphogens signaling. It has been shown that ROS
level oscillation is involved in cell cycle regulation in vertebrate early development [11].
Tokmakov et al. showed that ROS levels are also involved in fertilization via the control
of calcium in Xenopus laevis oocytes [12]. This calcium and H2O2 signaling crosstalk is
also at work in plants, as shown by Cheng et al. in this Issue [13]. In this article, the
authors investigate the molecular targets of H2O2 and Ca2+ in melon and Arabidopsis seed
germination. They show that H2O2 and Ca2+ form a reciprocal positive-regulatory loop to
maintain a balance between abscisic acid (ABA) and gibberellic acid (GA3) essential to pro-
moting seed germination under ABA stress. Finally, Roth et al. performed a transcriptomic
analysis of E. coli response to different concentrations of H2O2 [14]. This analysis reveals
that different stress responses are activated by H2O2 exposure and emphasize the role of
cysteine synthesis as an antioxidant response.

We would like to acknowledge the authors that have contributed to this Special
Issue, “Hydrogen peroxide signaling in physiology and pathology”. This Special Issue has
highlighted the need for further research into the mechanisms of ROS signaling.
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