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Abstract: Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular
research on stress resistance seriously affects its genetic improvement and commercial value develop-
ment. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen
species (ROS) during the rapid growth of plant organs under biotic and abiotic stresses, maintaining
a steady state of physiological metabolism. In this study, 13 SODs consisting of two FeSODs (FSDs),
four MnSODs (MSDs) and seven Cu/ZnSODs (CSDs) were identified in the A. trifoliata genome.
Structurally, the phylogeny, intron–exon pattern and motif sequences within these three subfamilies
show high conservation. Evolutionarily, segmental/wide genome duplication (WGD) and dispersed
duplication form the current SOD profile of A. trifoliata. Weighted gene coexpression network analysis
(WGCNA) revealed the metabolic pathways of nine (69.2%) SODs involved in fruit development,
among which AktMSD4 regulates fruit development and AktCSD4 participates in the stress response.
In addition, under the stress of multiple pathogens, six (46.6%) SODs were continuously upregulated
in the rinds of resistant lines; of these, three SODs (AktMSD1, AktMSD2 and AktMSD3) were weakly
or not expressed in susceptible lines. The results pave the way for theoretical research on SODs and
afford the opportunity for genetic improvement of A. trifoliata.

Keywords: Akebia trifoliata; superoxide dismutase; fruit development; biotic stress; expression profile

1. Introduction

Reactive oxygen species (ROS), including superoxide radicals (O2
·−), hydroxyl radi-

cals (·OH) and hydrogen peroxide (H2O2), are inevitable byproducts of biological oxidation
reactions in plant cells [1], and the production of ROS is further intensified when plants
are subjected to biotic and abiotic stresses [2–4]. On the one hand, accumulated ROS can
act as signaling molecules to regulate the expression of downstream genes to cope with
adversity [5]. On the other hand, excessively accumulated ROS can damage plant cell mem-
branes, destroy biological macromolecules, and even cause cell death [1]. In response to the
toxic mechanism of ROS, plants have evolved a set of sophisticated antioxidant enzyme
systems to maintain ROS homeostasis in cells [6], among which superoxide dismutase
(SOD) is the first line of defense [7]. Therefore, to explore the molecular mechanism of plant
stress tolerance, many scholars have carried out much research on the structure, function
and phylogeny of plant SOD genes [8,9].

The SOD gene family is a class of metal-binding enzymes. Plant SOD genes are
divided into three groups according to metal cofactors: iron SOD (FeSOD), manganese
SOD (MnSODs) and copper/zinc SOD (Cu/ZnSOD) [10]. Another type of SOD, nickel SOD
(NiSOD), exists mainly in bacteria, and has not been detected in plants [11]. In terms
of the three subfamilies in plants, the subcellular localization of SOD proteins is usually

Antioxidants 2023, 12, 726. https://doi.org/10.3390/antiox12030726 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12030726
https://doi.org/10.3390/antiox12030726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-4962-9032
https://orcid.org/0000-0001-7624-1677
https://orcid.org/0000-0002-4603-6960
https://doi.org/10.3390/antiox12030726
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12030726?type=check_update&version=2


Antioxidants 2023, 12, 726 2 of 15

related to the production site of O2
·−. The compartmentalization of SOD proteins in the

cell organelles is extremely important for plant response to oxidation stress induced by
abiotic factors and cell signal transformation [12]. Evolutionarily, FeSODs and MnSODs
have ancient origins and are present in bacteria, protozoa, and primitive algae [13]. It is
generally believed that FeSODs and MnSODs have a common ancestor due to their striking
similarities [14]. The separate evolution of FeSODs and MnSODs may be related to changes
in oxygen levels on early Earth [13]. For example, the specific Mn/FeSODs in a few archaea,
such as Aeropyrum pernix and Pyrobaculum calidifontis, are active with Fe but prefer to bind
Mn, especially under aerobic conditions [15,16]. In addition, Cu/ZnSODs in plants are
considered to have evolved separately from other SODs because to date, Cu/ZnSOD has
not been detected in primitive plants such as Chlamydomonas or mosses [13,17].

A large number of reports have confirmed that the inducible expression of SOD
helps plants respond to abiotic and biotic stresses. For example, the SOD activity of salt-
tolerant varieties of Brassica napus is higher than that of salt-sensitive varieties under salt
stress [18]. Under cold stress, the ROS content of cold-tolerant tea tree varieties is higher
than that of cold-sensitive varieties, resulting in less damage to the leaves of the former [19].
Furthermore, the plant immune system relies on SODs to precisely regulate ROS content,
to mediate the immune response to invading pathogenic bacteria. For example, after
transferring the tomato SOD gene into sugarbeet, the transgenic lines showed strong
resistance to oxidative agents as well as the fungus Cercospora beticola [20]. In addition to
responding to biotic and abiotic stresses, changes in expression and enzyme activity of
SOD genes during apple fruit ripening suggest that SOD plays an important role in fruit
development [21,22].

Akebia trifoliata (Thunb.) Koidz., is a newly domesticated perennial woody vine with a
high commercial development value. The root, stem and unripe fruit of A. trifoliata have
been used as Chinese medicinal materials for thousands of years [23]. In recent years, A.
trifoliata has been planted in a large area in Southwest China because of its delicious fruit
pulp and high-quality seed oil [24,25]. However, genetic improvement of A. trifoliata is still
in its infancy due to the short time of development and utilization, especially in terms of
resistance to biotic and abiotic stresses. Therefore, improving tolerance of A. trifoliata to
biotic and abiotic stresses is an urgent task for breeders.

SOD and nucleotide binding sites (NBS) genes are two major means by which plants
resist abiotic and biotic stresses [1,26]. To date, the NBS gene family in A. trifoliata has been
systematically identified and analyzed [27], but SOD genes have not yet been reported.
To speed up theoretical research on adversity stress of A. trifoliata to promote progress in
commercial exploitation, we systematically identified and analyzed the SOD genes of A.
trifoliata (AktSOD), including gene structure, conserved motifs, homology and phylogenetic
developmental relationships, based on its published high-quality reference genome. Based
on the reported transcriptome data, the expression characteristics of SOD genes were
also revealed during the fruit development of A. trifoliata and critical stage of resisting
pathogen invasion, which will help us to initially explore the role of AktSOD genes in fruit
development and resistance to biotic stress.

2. Materials and Methods
2.1. Identification and Analysis of AktSOD Genes in A. trifoliata

Genome sequence, protein sequence and annotation files of A. trifoliata downloaded
from the National Genomics Data Center database under BioProject PRJCA003847 were
employed to identify and analyze SOD genes. To identify SOD-encoding proteins, hidden
Markov model (HMM) Cu/ZnSOD (PF00080) and Fe-MnSOD (PF02777 and PF00081) files
downloaded from the Pfam database (http://smart.embl.de/smart/batch.pl, accessed on
28 December 2022) were used to filter protein sequences of A. trifoliata with the 1 × 10−5

e-value parameter [28]. The domains of candidate AktSOD proteins were further verified
using Conserved Domain Database (CDD) at the National Center for Biotechnology Infor-
mation (NCBI) (https://www.ncbi.nlm.nih.gov/cdd/, accessed on 3 January 2023). The

http://smart.embl.de/smart/batch.pl
https://www.ncbi.nlm.nih.gov/cdd/
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molecular weight (MW) and theoretical isoelectric point (pI) of proteins were computed via
Expasy (https://www.expasy.org/, accessed on 3 January 2023). Subcellular localization
was predicted by the online website Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/
plant-multi/, accessed on 3 January 2023). Conserved AktSOD protein sequence motifs
were analyzed by MEME Suite (https://meme-suite.org/meme/tools/meme, accessed
on 5 January 2023). To constberruct the phylogenetic relationship of AktSOD protein se-
quences, after multiple alignments of the SOD protein sequences using ClustalW (Kyoto
University Bioinformatics Center, Japan) [29], a phylogenetic tree was constructed and
drawn by the maximum likelihood method using MEGA 11 software with 1000 bootstrap
replicates [29]. Finally, integrated mapping of the AktSOD protein structure, conserved
motifs and intron–exon pattern was performed using TBtools software (version 1.0876, CJ
chen, Guangzhou, China) [30].

2.2. Phylogenetic Tree Construction of Plants at Different Evolutionary Nodes

SOD protein sequences of Amborella trichopoda (basal angiosperm), Aquilegia coerulea
(basal dicot), Arabidopsis thaliana (core dicot), and Oryza sativa (monocotyledon) were
identified in the same way as those of A. trifoliata. The protein sequences of A. trichopoda
and A. coerulea were downloaded from NCBI; those of A. thaliana and O. sativa were
downloaded from Ensembl Plants (http://plants.ensembl.org/index.html, accessed on
6 January 2023). The evolutionary relationship was constructed using IQtree with 1000
bootstrap replicates [31], and the online tool iTOL (https://itol.embl.de/, accessed on 15
January 2023) was used for subsequent visualization [32].

2.3. Synteny, Replication and Chromosomal Distribution Analysis of AktSOD Genes

Synteny and replication analysis of AktSOD genes was performed using the MCScanX
module of TBtools software [30]. Information regarding the physical location of AktSOD
genes was obtained from the annotation file of the A. trifoliata genome. Then, chromosomal
distribution and collinearity mapping of AktSOD genes were called using the Circos Gene
View module of TBtools [30].

2.4. Cis-Acting Elements of the AktSOD Gene Family

To predict putative cis-acting elements in AktSOD gene promoters, the 2000 bp
upstream sequence of AktSOD gene coding regions was analyzed using PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 10 January
2023) [33]. A heatmap of the quantity statistics results was prepared using the HeatMap
module of TBtools [30].

2.5. Expression Analysis of AktSOD Genes in Fruit Development and Rinds at Different Disease
Resistance Levels

Transcriptome data for A. trifoliata fruit tissues (flesh, rind and seeds) at four devel-
opmental stages (young, enlargement, coloring and maturity) were downloaded from
the NCBI database (accession IDs: SAMN16551931-33, young stage; SAMN16551934-36,
enlargement stage; SAMN16551937-39, coloring stage; SAMN16551940-42, mature stage).
Transcriptome data for both the mixed pool of 24 lines exhibiting resistance and another
mixed pool of 50 lines exhibiting susceptibility to fungal disease at three different develop-
mental stages were also downloaded from the National Genomics Data Center database
under BioProject PRJCA014987. First, transcriptome reads were aligned to the A. trifoliata
reference genome using HISAT2 software with default parameters [34]. Second, fragments
per kilobase of transcript per million fragments mapped (FPKM) values calculated by
ESeq2 were used to estimate gene expression levels [35]. Finally, the expression level of
AktSOD genes was converted to a heatmap by TBtools [30].

https://www.expasy.org/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
https://meme-suite.org/meme/tools/meme
http://plants.ensembl.org/index.html
https://itol.embl.de/
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2.6. WGCNA of the Fruit Development Transcriptome

To investigate the metabolic network in which AktSOD genes may participate, 12 tran-
scriptome sets consisting of three fruit tissues at four developmental stages were subjected
to weighted gene coexpression network analysis (WGCNA) using the WGCNA shiny plu-
gin of TBtools [30]. A total of 12,016 genes were included in the analysis after filtering out
genes with FPKM < 1. Other analysis-related parameters were as follows: R2 cutoff = 0.85,
module size = 30, and module cutree height = 0.25.

2.7. GO Annotation Analysis

Genes in the transcriptome during fruit development were divided into 18 modules by
WGCNA. We determined the set of genes expressed in association with the AktSOD genes
from the module where the genes are located. These gene sets were further subjected to
Gene Ontology (GO) annotation analysis via the eggNOG website (http://eggnog-mapper.
embl.de/, accessed on 20 January 2023) [36]. The GO Enrichment module of TBtools was
used to perform GO enrichment analysis [30].

3. Results
3.1. Genome-Wide Identification of the SOD Gene Family in A. trifoliata

In this study, a total of 13 SOD genes were identified in the A. trifoliata genome through
HMM analysis and domain validation (Table 1). These 13 SOD genes were renamed
AktFSD1, AktFSD2, AktMSD1–AktMSD4, and AktCSD1–AktCSD7 according to metal factor
type and chromosomal position. The length of the open reading frame of AktSOD genes
varies greatly, from 2569 bp to 25,161 bp. The results showed that the sequence lengths
of the 13 AktSOD proteins range from 120 (AktCSD7) to 329 (AktCSD5) aa, the molecular
weights from 12.730 (AktCSD7) to 35.181 (AktCSD5) kDa, and the isoelectric points from 4.95
(AktFSD2) to 9.02 (AktMSD2) kDa. According to the prediction of subcellular localization,
the products of the two FeSOD genes localize to mitochondria (AktFSD1) and chloroplasts
(AktFSD2), those of the 4 MnSOD genes to mitochondria, those of the 7 Cu/ZnSOD to
chloroplasts, and those of AktCSD2 and AktCSD7 to the cytoplasm.

Table 1. Characteristics of the SOD gene families identified in the A. trifoliata genome.

Name Gene ID SOD Type AA pI MW
(kDa)

Number
of Exon

Number
of Intron Duplication Type Subcellular

Localization

AktCSD1 EVM0009170 Cu/ZnSOD 152 5.66 15.362 8 7 WGD/Segmental Chloroplas.

AktCSD2 EVM0011294 Cu/ZnSOD 160 6.79 23.238 7 6 Dispersed Chloroplast,
Cytoplasm

AktCSD3 EVM0015107 Cu/ZnSOD 169 5.27 17.118 8 7 WGD/Segmental Chloroplast
AktCSD4 EVM0004711 Cu/ZnSOD 214 6.39 21.895 8 7 WGD/Segmental Chloroplast
AktCSD5 EVM0014685 Cu/ZnSOD 329 5.36 35.181 7 6 Dispersed Chloroplast
AktCSD6 EVM0003060 Cu/ZnSOD 223 6.79 23.238 8 7 WGD/Segmental Chloroplast

AktCSD7 EVM0005862 Cu/ZnSOD 120 6.2 12.730 6 5 WGD/Segmental Chloroplast,
Cytoplasm

AktFSD1 EVM0017725 FeSOD 205 7.11 24.065 8 7 Dispersed Mitochondrion
AktFSD2 EVM0016720 FeSOD 301 4.95 34.734 9 8 Dispersed Chloroplast
AktMSD1 EVM0002565 MnSOD 171 7.89 18.538 7 6 Dispersed Mitochondrio
AktMSD2 EVM0008804 MnSOD 147 9.02 16.154 5 4 Dispersed Mitochondrion
AktMSD3 EVM0020914 MnSOD 158 7.78 17.433 5 4 Dispersed Mitochondrion
AktMSD4 EVM0011812 MnSOD 243 8.38 27.293 6 5 Dispersed Mitochondrion

Abbreviations: AA, the number of amino acids; pI, isoelectric point; MW, theoretical subunit size of the proteins.

3.2. Phylogenetic Classification of AktSODs in Plants at Different Evolutionary Nodes

To clarify the evolutionary relationship and the classification of AktSOD gene sub-
families, 38 reference SOD protein sequences from plants at different evolutionary nodes
(Table S1), including 7 SODs of A. trichopoda (basal angiosperm), 11 SODs of A. coerulea
(basal dicot), 9 SODs of A. thaliana (core dicot), 11 SODs of O. sativa (monocotyledon) and
13 SODs of A. trifoliata, were used to construct a phylogenetic tree. In the phylogenetic tree
(Figure 1), all 30 Cu/ZnSOD genes in the 5 species grouped into one group, all 6 MnSOD

http://eggnog-mapper.embl.de/
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genes and 12 FeSOD genes grouped into another group. Interestingly, the SODs of A.
trifoliata frequently clustered with the SODs of A. coerulea.

Antioxidants 2023, 12, x FOR PEER REVIEW 5 of 15 
 

3.2. Phylogenetic Classification of AktSODs in Plants at Different Evolutionary Nodes 

To clarify the evolutionary relationship and the classification of AktSOD gene sub-

families, 38 reference SOD protein sequences from plants at different evolutionary nodes 

(Table S1), including 7 SODs of A. trichopoda (basal angiosperm), 11 SODs of A. coerulea 

(basal dicot), 9 SODs of A. thaliana (core dicot), 11 SODs of O. sativa (monocotyledon) and 

13 SODs of A. trifoliata, were used to construct a phylogenetic tree. In the phylogenetic 

tree (Figure 1), all 30 Cu/ZnSOD genes in the 5 species grouped into one group, all 6 

MnSOD genes and 12 FeSOD genes grouped into another group. Interestingly, the SODs 

of A. trifoliata frequently clustered with the SODs of A. coerulea. 

 

Figure 1. Phylogenetic tree of SOD genes from 4 plants: A. trichopoda, A. coerulea, A. thaliana and O. 

sativa (the numbers at nodes indicates bootstrap numbers per 1000 replicates determined by maxi-

mum likelihood methods). 

3.3. Phylogeny and Conserved Motifs of AktSOD Genes 

The 13 AktSODs were divided into two groups in the phylogenetic tree (Figure 2a): 7 

Cu/ZnSODs were classified into one group; the other 6, consisting of 2 FeSODs and 4 

MnSODs, were classified into another group. Identification of conserved domains indi-

cated that the 2 Akt-FSODs and 4 Akt-MnSODs have similar domain compositions, with 

both containing an Sod_Fe_C and Sod_Fe_N domain. In contrast, Akt-Cu/ZnSODs have 

only 1 Sod_Cu domain (Figure 2b). Motif analysis further revealed similarities and differ-

ences in the protein sequences of the three subfamilies of AktSODs. A total of 10 conserved 

motifs were identified in the 13 AktSODs (Figure 2c, Table S2): motifs 1, 2, 6, and 9 are 

only present in Akt-Cu/ZnSODs; motifs 4, 5, 7, and 10 are common to Akt-FeSODs and Akt-

Figure 1. Phylogenetic tree of SOD genes from 4 plants: A. trichopoda, A. coerulea, A. thaliana and
O. sativa (the numbers at nodes indicates bootstrap numbers per 1000 replicates determined by
maximum likelihood methods).

3.3. Phylogeny and Conserved Motifs of AktSOD Genes

The 13 AktSODs were divided into two groups in the phylogenetic tree (Figure 2a):
7 Cu/ZnSODs were classified into one group; the other 6, consisting of 2 FeSODs and 4
MnSODs, were classified into another group. Identification of conserved domains indicated
that the 2 Akt-FSODs and 4 Akt-MnSODs have similar domain compositions, with both
containing an Sod_Fe_C and Sod_Fe_N domain. In contrast, Akt-Cu/ZnSODs have only 1
Sod_Cu domain (Figure 2b). Motif analysis further revealed similarities and differences in
the protein sequences of the three subfamilies of AktSODs. A total of 10 conserved motifs
were identified in the 13 AktSODs (Figure 2c, Table S2): motifs 1, 2, 6, and 9 are only present
in Akt-Cu/ZnSODs; motifs 4, 5, 7, and 10 are common to Akt-FeSODs and Akt-MnSODs;
motif 8 exists only in Akt-FeSODs; and motif 3 is unique to Akt-MnSODs. Structurally, the
coding sequences of the 13 AktSODs are separated by multiple introns, with the number of
introns ranging from 4 to 8 (Figure 2d; Table 1).
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3.4. Chromosomal Distributions and Duplication Types of AktSODs

The chromosomal physical locations of the 13 AktSODs are depicted in Figure 3.
Among the 16 chromosomes of A. trifoliata, 9 chromosomes harbor 13 AktSOD genes.
Chromosomes 5, 6, 9, 10, 13 and 16 each carry an SOD gene, chromosomes 3 and 8
both carry 2 SOD genes, and chromosome 15 carries the remaining 3 SOD genes. Gene
duplication analysis of the AktSOD family revealed dispersed duplication in 8 SOD genes;
the other 5 SOD genes experienced segmental/wide genome duplication (WGD) (Table 1;
Figure 3).
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3.5. Detection of Cis-Acting Elements in the Promoter Sequence of AktSODs

Statistical results for putative cis-acting elements showed a large number of envi-
ronmental and hormone-responsive elements to be distributed throughout the promoter
region of AktSODs (Figure 4; Table S3). All AktSODs contain at least one light-responsive,
stress-responsive and drought-inducible element. The number of light-responsive elements
is greatest; AktFSD1 has the lowest number, at 5; AktMSD4 has the highest number, at
20. In addition, 5 plant hormone-responsive elements, including for abscisic acid (ABA),
methyl jasmonate (MeJA), gibberellin (GA), salicylic acid (SA) and auxin, were detected in
the promoter region of AktSODs, with the distribution varying. For example, AkCSD5 has
only one hormone-responsive element, namely, the TCA element, which is annotated as
responsive to salicylic acid (Table S3). AkCSD4, AkCSD7, AkFSD1, and AkMSD2 contain
four types of hormone-responsive elements.
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3.6. Expression Analysis of AktSODs in Different Tissues of A. trifoliata Fruit

Based on the expression analysis of AktSODs using flesh, seed and rind tissues, the
expression of 12 AktSODs was detected, with the levels of most being similar in the flesh,
seed and rind tissues at four developmental stages (young, enlargement, coloring, and
mature stage) (Figure 5a; Table S4). Only the expression of AktCSD7 could not be detected
in any of the samples. In contrast, the expression level of Cu/ZnSODs was higher than
that of the other two subfamilies of SODs; AktCSD3 showed the highest expression level.
Two FeSODs (AktFSD1 and AktFSD2) showed persistent low expression levels during
the development of flesh, seed and rind tissues. Among the 4 MnSODs, AktMSD4 was
continuously expressed at a high level, but AktMSD2 and AktMSD3 were only detected
in trace amounts in some fruit tissues (Table S4). By comparing the total expression of
AktSODs in flesh, seed and rind tissues, higher expression levels of AktCSD2, AktCSD3,
AktMSD1 and AktMSD4 in flesh were observed; AktCSD1, AktCSD4 and AktCSD5 showed
slightly higher expression levels in seeds, and only AktCSD6 displayed higher expression
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in rinds (Figure 5b). Overall, expression levels of AktFSD1 and AktFSD2 were extremely
similar in the three fruit tissues (Figure 5b).
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The different colors of the column represent three subfamilies of AktSODs.

3.7. Metabolic Regulatory Network Involved in AktSODs in Fruit Development

We performed WGCNA on 12 transcriptome datasets during fruit development of A.
trifoliata, and found that AktSODs participate in the metabolic regulatory network. The
genes expressed in the transcriptomes after filtering low-expression genes were divided
into 18 modules (Figure S1); 9 AktSODs were assigned to 6 modules, and the remaining
4 AktSODs were excluded due to low expression or no expression in fruit tissues. Ak-
tFSD1, AktFSD2 and AktCSD6 were assigned to the same module. AktCSD1 and AktCSD2
were assigned to another module, and the remaining 4 AktSODs were assigned to four
different modules.

We further focused on the set of genes expressed in association with the 9 AktSODs
from the module in which the AktSODs are located (Table S5). GO enrichment analysis
was performed on the 9 AktSOD-associated gene sets, and the results are illustrated in
Figure 6. The AktSOD genes assigned to the same module collectively participate in a large
number of identical metabolic networks, but there are also differences. For example, the
gene sets associated with the expression levels of AktCSD1 and AktCSD2 were enriched
in the negative regulation of gene expression and chromatin organization. Conversely,
AktCSD1-related genes were more assigned to the negative regulation of macromolecule
metabolic processes, unlike AktCSD2. The gene sets associated with the expression levels
of AktFSD1, AktFSD2 and AktCSD6 were all enriched in the obsolete cytoplasmic part and
ribosomal subunit, and the metabolic network involving AktFSD1 and AktFSD2 was more
similar than that of AktCSD6. In addition, it is worth noting that the gene set associated
with the expression level of AktCSD4 is associated with the response to stress, and that the
gene set associated with the expression level of AktMSD4 is related to fruit development.
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3.8. Differential Expression of AktSODs in Resistant and Susceptible Rinds

Transcriptome data for rind tissues with different disease resistance levels were used
to explore the expression of AktSODs in response to various pathogenic bacteria. By
comparing the expression levels of AktSODs in resistant rinds (a mixed pool of 24 lines)
and susceptible rinds (a mixed pool of 50 lines), it was found that almost all AktSODs
were significantly expressed in resistant or susceptible rinds, except for AktCSD7 (Figure 7;
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Table S6). Among the 12 AktSODs, AktCSD2, AktFSD1, and AktFSD2 showed more drastic
upregulation in resistant rinds during the period of rapid fruit expansion than in susceptible
lines. In addition, the three MnSODs (AktMSD1, AktMSD2 and AktMSD3) were rapidly
upregulated in resistant rinds, with extremely weak or even no expression in susceptible
rinds.
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4. Discussion

A. trifoliata is a newly domesticated fruit tree, horticultural crop and potential oil
crop [37]. Abiotic and biotic stresses are the main factors that cause serious declines in the
fruit yield and quality of artificially cultivated A. trifoliata. SOD genes have been reported
to play a crucial role in biotic stress, abiotic stress and fruit growth and development.
In our current research, the reference genome and transcriptome data available for A.
trifoliata provided an opportunity to explore the function of AktSODs and their expression
in response to fruit development and biotic stress.

4.1. The AktSOD Family Is Highly Conserved during Evolutionary Adaptation

In the current study, we identified 13 SOD genes in the A. trifoliata genome, including
2 FeSODs, 4 MnSODs and 7 Cu/ZnSODs. Similar to most angiosperms, the number of
AktSOD family members is highly conserved in evolution, with almost no large-scale
expansion, such as the 7 SOD genes in barley [38] and A. thaliana [39], the 9 SOD genes
in tomato [40], the 10 SOD genes in grapevine [41], the 13 SOD genes in maize [42], and
the 26 SOD genes in wheat [43]. The three AktSOD subfamilies are also highly conserved
with regard to gene structure. Akt-FeSODs, Akt-MnSODs and Akt-Cu/ZnSODs include
different motifs in their protein sequences, with a bias observed (Figure 2c). Gain and
loss of introns/exons is a driving force of gene evolution [44]. Unlike the SOD genes of
the tea plant [45] and rapeseed [46], the number of introns/exons of AktSOD genes has
changed only slightly, especially in the same subfamily (Table 1). The intron–exon pattern
of AktSODs also indicates their conservation in the evolutionary process.

Evolutionarily, different types of gene duplication may occur along different evolu-
tionary trajectories, and may be preserved in a biased manner in different types of gene
families [47]. In A. trifoliata, 5 (38.5%) AktSODs derived from genome-wide duplication
events, among which 4 pairs of homologous Cu/ZnSODs show collinearity (Figure 3); the
remaining 8 (61.5%) AktSODs derived from dispersed duplications (Table 1). It is worth
noting that two WGD events occurred in the A. trifoliata genome for adaptation to drastic
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changes in the environment [48]. In A. trifoliata, the strong WGD only expanded Cu/ZnSOD
genes by a few copies, whereas FeSODs and MnSODs appear to have been unaffected by
WGD. This evolutionary evidence further demonstrates that AktSODs are highly conserved.

4.2. AktSODs Are Largely Functionally Diverse and Widely Involved in A. trifoliata Fruit
Development

Overall, the physical properties of proteins play an important role in determining
the biochemical function of the molecule [49]. Physical characterization of SOD proteins
showed extensive differences in protein sequence length, isoelectric point and molecular
weight in the 13 AktSOD proteins (Table 1). Further focusing on cis-elements in their
promoter regions revealed a large number of light-responsive and hormone-responsive
elements distributed in the 13 AktSODs (Figure 4). The abundant environmental and
plant hormone-responsive elements in AktSOD promoters may be related to different roles
or regulatory mechanisms in response to biotic and abiotic stresses. In addition, great
variation in number and type exists, and some elements responding to metabolism and
gene expression are specific to some SOD genes. For example, 6 (46.15%) AktSODs have
meristem expression responsive cis-elements, but 5 (38.16%) AktSODs lack transcriptional
activator responsive cis-elements (Figure 4). In general, differences in the structure of
AktSODs may cause changes in protein function.

Differences in expression levels and tissue specificity of a gene family are often associ-
ated with functional differentiation [50]. Gene expression analysis showed 12 (92.31%) of
the AktSODs to be involved in fruit growth and development. AktCSD3 and AktMSD4 were
persistently expressed at high levels in flesh, seed and rind tissues, whereas AktMSD2 and
AktMSD3 showed spatiotemporally specific expression during fruit development. Such
specific expression of AktSODs indicates that they are involved in different physiological
activities.

In previous studies, it has been reported that the main function of SOD genes is to
respond extensively to various abiotic stresses [45], and increasing SOD activity is an
effective way to improve stress resistance in plants [51,52]. However, in the process of
fruit development, ROS is continuously released during vigorous metabolic activities [53],
and the surface of the fruit is also attacked by various pathogenic bacteria, so the SOD
genes also play an important role in the process of fruit development. In the current
study, WGCNA of transcriptome data further revealed that these AktSODs participate
in distinct metabolic networks during fruit development. First, the 9 (69.23%) AktSODs
included in the analysis were assigned to 6 modules, and expression levels of 5 (39.46%)
AktSODs were associated with other SOD genes, suggesting a cooperative division of labor
between AktSOD genes. Second, the gene sets associated with AktSODs were enriched
in different molecular function, biological process and cellular component networks, also
confirming that the metabolic network pathways regulated by AktSODs are different.
Through enrichment analysis, we also inferred that AktCSD4 is extremely likely to be
involved in the stress response, and that AktMSD4 may be involved in the regulation
of fruit development because the associated expression gene set was enriched in the
corresponding pathway.

4.3. Three MnSODs May Play an Important Role in Resisting Invasion of Pathogenic Bacteria

The relationship between SODs and plant disease resistance has been extensively
studied due to its focus on the regulation of endogenous ROS [54]. A large number of
reports indicate that some SOD genes can enhance the resistance of plants to specific
pathogens. For example, tobacco has been transformed with a Cu/ZnSOD gene from
Spinacia oleracea, not only improving its tolerance to water stress but also its resistance to
Pseudomonas syringae pv. tabaci [55]. Another study reported that after a MnSOD gene
derived from oil radish was transferred to broccoli, the transgenic lines showed a higher
resistance to downy mildew [56]. Comparing expression levels of SOD genes in the rinds of
various resistant and susceptible lines, we found that some SOD genes may be induced by
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pathogenic bacteria under natural conditions. For instance, 3 Akt-MnSOD genes, AktMSD1,
AktMSD2 and AktMSD3, were expressed at very low levels or even not expressed during
the development of fruit tissues and in susceptible rinds, but they were stably upregulated
in resistant rinds (Figure 7). Such inducible expression of these 3 MnSOD genes in resistant
rinds suggests that they might play an important role in the defense against pathogenic
bacteria.

5. Conclusions

In this bioinformatics study, a total of 13 SODs classified into three categories were
identified in the reference genome of A. trifoliata. The phylogeny, motif composition,
intron–exon pattern and replication type of the AktSODs all indicate that these SODs of A.
trifoliata are extremely conserved in the evolutionary process, and that only a few copies
have undergone expansion by segmental duplication/WGD and dispersed duplication.
WGCNA of the transcriptome of A. trifoliata fruit revealed the metabolic network in which
AktSOD genes may be involved during fruit development, with AktMSD4 being involved
in responding to stress and AktCSD4 possibly regulating fruit development. Comparing the
expression of AktSOD genes in resistant and susceptible rinds, it was found that AktMSD1,
AktMSD2 and AktMSD3 are induced by pathogens and may be involved in defense against
these organisms. Overall, this study lays the foundation for improving biotic and abiotic
stress responses of A. trifoliata and provides information on the regulation of AktSOD gene
expression, especially during fruit development.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/antiox12030726/s1, Figure S1: WGCNA of the fruit developmental
transcriptome; Table S1: SOD sequences in four different evolutionary node species; Table S2: The
information of identified 10 motifs in AktSOD proteins; Table S3: Detailed information of cis-acting
elements in the 2000 bp region of SOD gene coding regions; Table S4: The expression level of 13 SOD
genes in the fruit transcriptome of A. trifoliata; Table S5: List of genes expressed in association with
AktSOD genes in the same module; Table S6: The expression level of SOD genes in resistant and
susceptible rinds of A. trifoliata.
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