Jellyfish Peptide as an Alternative Source of Antioxidant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Jellyfish Peptides
2.1.1. Selection of Proteolytic Enzymes
2.1.2. Hydrolyzing with Multiple Enzymes
2.2. Determination of Molecular Weight Distribution
2.3. Antioxidant Activity
2.3.1. Superoxide Anion Scavenging Activity
2.3.2. Hydroxyl Radical Scavenging Activity
2.3.3. DPPH Radical-Scavenging Activity
2.3.4. Reducing Power
2.4. Protective Effects on Oxidative Damage of HaCaT Cells
2.4.1. Cell Culture
2.4.2. MTT Cytotoxicity Assay
2.4.3. Cell Viability
2.4.4. SOD Content in HaCaT Cells
2.5. Purification of Antioxidative Peptides
2.6. Statistical Analysis
3. Results
3.1. Preparation of Jellyfish Peptides with Multiple Enzymes
3.2. Molecular Weight Distribution of JPHT-2
3.3. Antioxidant Activity
3.3.1. Superoxide-Anion-Scavenging Activity
3.3.2. Hydroxyl Radical Scavenging Activity
3.3.3. DPPH Radical-Scavenging Activity
3.3.4. Reducing Power
3.4. Cytotoxicity Effect of JPHT-2 and H2O2 on HaCaT Cells
3.5. Protective Effects on Oxidative Damage of HaCaT Cells
3.6. Purification of Antioxidative Peptides
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prieto, L.; Enrique-Navarro, A.; Li Volsi, R.; Ortega, M.J. The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar. Drugs 2018, 16, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Domenico, S.; De Rinaldis, G.; Paulmery, M.; Piraino, S.; Leone, A. Barrel Jellyfish (Rhizostoma pulmo) as Source of Antioxidant Peptides. Mar. Drugs 2019, 17, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Liu, X.; Xing, R.; Liu, S.; Li, C.; Li, P. Radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum. Bioorg. Med. Chem. Lett. 2005, 15, 2659–2664. [Google Scholar] [CrossRef]
- Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 2011, 32, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yu, H.; Xing, R.; Liu, S.; Qing, Y.; Li, K.; Li, B.; Meng, X.; Cui, J.; Li, P. Isolation, identification and characterization of a novel antioxidant protein from the nematocyst of the jellyfish Stomolophus meleagris. Int. J. Biol. Macromol. 2012, 51, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Pezeshk, S.; Ojagh, S.M.; Rezaei, M.; Shabanpour, B. Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob Proteins 2019, 11, 1015–1022. [Google Scholar] [CrossRef]
- Ding, J.F.; Li, Y.Y.; Xu, J.J.; Su, X.R.; Gao, X.A.; Yue, F.P. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocoll. 2011, 25, 1350–1353. [Google Scholar] [CrossRef]
- Yekta, M.M.; Nouri, L.; Azizi, M.H.; Dehkordi, M.K.; Mohammadi, M.; Jabbari, M.; Rezaei, M.; Khaneghah, A.M. Peptide extracted from quinoa by pepsin and alcalase enzymes hydrolysis: Evaluation of the antioxidant activity. J. Food Process. Preserv. 2020, 44, 7. [Google Scholar]
- Jiang, H.; Tong, T.; Sun, J.; Xu, Y.; Zhao, Z.; Liao, D. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chem. 2014, 154, 158–163. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Li, B. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. J. Food Sci. 2009, 74, H183–H188. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, M.; Zhang, C.; Liu, C. Angiotensin converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum. Food Chem. 2012, 134, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Morishige, H.; Sugahara, T.; Nishimoto, S.; Muranaka, A.; Ohno, F.; Shiraishi, R.; Doi, M. Immunostimulatory effects of collagen from jellyfish in vivo. Cytotechnology 2011, 63, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, C.F.; Wang, B.; Hu, F.Y.; Wang, Y.M.; Zhang, B.; Deng, S.G.; Wu, C.W. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Res. Int. 2015, 73, 124–129. [Google Scholar] [CrossRef]
- Halldorsdottir, S.M.; Sveinsdottir, H.; Freysdottir, J.; Kristinsson, H.G. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability. Food Chem. 2014, 142, 201–209. [Google Scholar] [CrossRef]
- Sila, A.; Bougatef, A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 2016, 21, 10–26. [Google Scholar] [CrossRef]
- Chai, T.T.; Law, Y.C.; Wong, F.C.; Kim, S.K. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. Mar. Drugs 2017, 15, 42. [Google Scholar] [CrossRef]
- Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spínola, V.; Castilho, P.C. Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste Biomass Valorization 2019, 11, 3223–3246. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.T.; Zhu, B.W.; Dong, X.P.; Zhang, M.M.; Li, Y.L. Identification of antioxidative oligopeptides derived from autolysis hydrolysates of sea cucumber (Stichopus japonicus) guts. Eur. Food Res. Technol. 2012, 234, 895–904. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Yang, J.H.; He, C.B.; Wei, H.C.; Wu, G.H.; Xiong, H.J.; Ma, Y. Fractionation and purification of antioxidant peptides from abalone viscera by a combination of Sephadex G-15 and Toyopearl HW-40F chromatography. Int. J. Food Sci. Technol. 2022, 57, 1218–1225. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Yu, X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 145, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Xing, R.; Liu, S.; Chen, X.; Li, P. Preparation and Identification of Antioxidative Peptides from Pacific Herring (Clupea pallasii) Protein. Molecules 2019, 24, 1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.Y.; Wu, X.S.; Zhang, Y.H.; Li, X.X.; Ma, S.; Li, J.R. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. J. Funct. Foods 2015, 16, 234–242. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Sun, Q.; Song, G.; Huang, J. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res. Int. 2019, 116, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Ballatore, M.B.; Bettiol, M.D.R.; Vanden Braber, N.L.; Aminahuel, C.A.; Rossi, Y.E.; Petroselli, G.; Erra-Balsells, R.; Cavaglieri, L.R.; Montenegro, M.A. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chem. 2020, 319, 126472. [Google Scholar] [CrossRef]
- Leone, A.; Lecci, R.M.; Durante, M.; Meli, F.; Piraino, S. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Mar. Drugs 2015, 13, 4654–4681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.L.; Zhao, X.; Li, B.F. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen. J. Zhejiang Univ. Sci. B 2009, 10, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Liu, X.G.; Xing, R.E.; Liu, S.; Guo, Z.Y.; Wang, P.B.; Li, C.P.; Li, P.C. In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum. Food Chem. 2006, 95, 123–130. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Chen, X.; Liu, S.; Li, P. Optimization of antioxidative peptides from mackerel (Pneumatophorus japonicus) viscera. PeerJ 2018, 6, e4373. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xing, R.; Liu, S.; Yu, H.; Li, K.; Chen, Z.; Li, P. Purification and characterization of novel antioxidant peptides of different molecular weights from mackerel Pneumatophorus japonicus protein hydrolysate. Chin. J. Oceanol. Limnol. 2014, 33, 159–168. [Google Scholar] [CrossRef]
- Li, A.; Yu, H.; Li, R.; Liu, S.; Xing, R.; Li, P. Inhibitory Effect of Metalloproteinase Inhibitors on Skin Cell Inflammation Induced by Jellyfish Nemopilema nomurai Nematocyst Venom. Toxins 2019, 11, 156. [Google Scholar] [CrossRef] [Green Version]
- Moriya, H.; Yamazaki, K.; Fukushim, H. Use of Sephadex G-10 and G-15 Gel Filtration for Fractionation of a Certain Peptide. J. Biochem. 1966, 60, 225–227. [Google Scholar] [CrossRef]
- Jia, Q.; Yuan, J.-F.; Liu, H.-P.; Li, M.-Y.; Wu, Y.-R. Purification and identification of dual-enzyme hydrolysates obtained from defatted walnut and its antioxidant effects on d-galactose-induced aging mice. J. Food Meas. Charact. 2020, 15, 1034–1043. [Google Scholar] [CrossRef]
- Khong, N.M.; Yusoff, F.M.; Jamilah, B.; Basri, M.; Maznah, I.; Chan, K.W.; Nishikawa, J. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem. 2016, 196, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chu, Q.; Wu, X.; Yang, B.; Zhang, W.; Jin, W.; Gao, R. Anti-inflammatory and Antioxidant Activity of Peptides from Ethanol-Soluble Hydrolysates of Sturgeon (Acipenser schrenckii) Cartilage. Front. Nutr. 2021, 8, 689648. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chang, W.; Ma, Q.; Zhuang, Y. Purification of Antioxidant Peptides by High Resolution Mass Spectrometry from Simulated Gastrointestinal Digestion Hydrolysates of Alaska Pollock (Theragra chalcogramma) Skin Collagen. Mar. Drugs 2016, 14, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Maeda, T.; Hasegawa, Y.; Tokunaga, T.; Ogawa, S.; Fukuda, K.; Nagatsuka, N.; Nagao, K.; Ueno, S. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods. Mol. Med. Rep. 2011, 4, 919–922. [Google Scholar]
- Pintathong, P.; Chomnunti, P.; Sangthong, S.; Jirarat, A.; Chaiwut, P. The Feasibility of Utilizing Cultured Cordyceps militaris Residues in Cosmetics: Biological Activity Assessment of Their Crude Extracts. J. Fungi 2021, 7, 973. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martinez-Larranaga, M.R.; Wang, X.; Martinez, M.; Anadon, A.; Martinez, M.A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem 2021, 353, 129488. [Google Scholar] [CrossRef]
- Zhang, R.; Li, J.; Cui, X. Tissue distribution, excretion, and metabolism of 2,6-di-tert-butyl-hydroxytoluene in mice. Sci. Total Environ. 2020, 739, 139862. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Feng, Y.; Duan, Y.; Ma, H.; Zhang, H. Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chem. 2020, 327, 127059. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Liang, C.H.; Wu, H.T.; Pang, H.Y.; Chen, C.; Wang, G.H.; Chan, L.P. Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. J. Food Sci. Technol. 2018, 55, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
- Grimmelikhuijzen, C.J.; Leviev, I.; Carstensen, K. Peptides in the nervous systems of cnidarians: Structure, function, and biosynthesis. Int. Rev. Cytol. 1996, 167, 37–89. [Google Scholar]
Types of Enzymes | pH | Temperature (°C) | Time (h) | Activity (U/g) |
---|---|---|---|---|
Trypsin | 7.5 | 37 | 4 | 2.5 × 105 |
Papain | 6.5 | 55 | 4 | 8 × 105 |
Pepsin | 2.0 | 37 | 4 | 3 × 106 |
Alcalase | 9.0 | 50 | 4 | 2 × 105 |
Flavourzyme | 6.5 | 50 | 4 | 3 × 104 |
Protamex | 7.5 | 55 | 4 | 1 × 105 |
Bromelain | 6.5 | 55 | 4 | 6 × 105 |
Characters | Moisture (%) | Ash (%) |
---|---|---|
Rehydrated homogenate | 95.54 ± 0.11 | 0.21 ± 0.02 |
Lyophilized powder | 17.92 ± 0.38 | 4.47 ± 0.12 |
Abbreviations of Hydrolysate | Orders of Hydrolysis | ||
---|---|---|---|
1 | 2 | 3 | |
JPHD-1 | Alcalase | Flavourzyme | |
JPHD-2 | Alcalase | Protamex | |
JPHD-3 | Flavourzyme | Alcalase | |
JPHD-4 | Flavourzyme | Protamex | |
JPHD-5 | Protamex | Alcalase | |
JPHD-6 | Protamex | Flavourzyme | |
JPHT-1 | Alcalase | Flavourzyme | Protamex |
JPHT-2 | Alcalase | Protamex | Flavourzyme |
JPHT-3 | Flavourzyme | Alcalase | Protamex |
JPHT-4 | Flavourzyme | Protamex | Alcalase |
JPHT-5 | Protamex | Alcalase | Flavourzyme |
JPHT-6 | Protamex | Flavourzyme | Alcalase |
Molecular Weight (Da) | Retention Time (min) | Relative Proportion (%) |
---|---|---|
>5000 | <14.23 | 0.20 |
4000~5000 | 14.23~14.69 | 0 |
3000~4000 | 14.69~15.28 | 6.05 |
2000~3000 | 15.28~16.12 | 9.33 |
1000~2000 | 16.12~17.54 | 27.39 |
<1000 | >17.54 | 57.01 |
Antioxidant Activity | JPHT-2 | GSH | ||
---|---|---|---|---|
Equation | R2 | EC50 Value (mg/mL) | EC50 Value (mg/mL) | |
Hydroxyl | y = 25.66ln(x) + 58.454 | 0.9958 | 0.74 | 2.98 |
DPPH | y = 25.559ln(x) + 32.412 | 0.9584 | 1.99 | 0.06 |
Superoxide anion | y = 19.234ln(x) + 41.571 | 0.9929 | 1.55 | 1.15 |
Reducing power | y = 0.2225x + 0.0302 | 0.9933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, L.; Wang, X.; Yu, H.; Li, R.; Geng, H.; Xing, R.; Liu, S.; Li, P. Jellyfish Peptide as an Alternative Source of Antioxidant. Antioxidants 2023, 12, 742. https://doi.org/10.3390/antiox12030742
Teng L, Wang X, Yu H, Li R, Geng H, Xing R, Liu S, Li P. Jellyfish Peptide as an Alternative Source of Antioxidant. Antioxidants. 2023; 12(3):742. https://doi.org/10.3390/antiox12030742
Chicago/Turabian StyleTeng, Lichao, Xueqin Wang, Huahua Yu, Rongfeng Li, Hao Geng, Ronge Xing, Song Liu, and Pengcheng Li. 2023. "Jellyfish Peptide as an Alternative Source of Antioxidant" Antioxidants 12, no. 3: 742. https://doi.org/10.3390/antiox12030742
APA StyleTeng, L., Wang, X., Yu, H., Li, R., Geng, H., Xing, R., Liu, S., & Li, P. (2023). Jellyfish Peptide as an Alternative Source of Antioxidant. Antioxidants, 12(3), 742. https://doi.org/10.3390/antiox12030742