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Abstract: Metal chelators are used for various industrial and medical purposes based on their
physicochemical properties and biological activities. In biological systems, copper ions bind to certain
enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and
transport. However, unbound free copper ions can catalyze the production of reactive oxygen species
(ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with
copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to
copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their
copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes
exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation
activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide
showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4

(0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated
amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced
by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent
copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had
no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS
production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells,
whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-
chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM
enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and
cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide
have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper
ion-induced toxic effects in the skin.

Keywords: copper ion; CuSO4; chelator; amino acid; histidine; histidinamide; cysteine; cysteinamide;
HaCaT cells; viability; oxidative stress

1. Introduction

Metal chelators refer to compounds with physicochemical properties that trap and
bind specific metal ions. Different types of metal chelators are used in various industrial
fields for the management of resources and wastes [1,2]. Numerous chelators are also used
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in medicine to remove excess metals from the body or restore disturbed homeostasis of
essential metals [3]. Well-designed chelators are used in the synthesis of thermodynami-
cally and kinetically stable complexes with radioactive isotopes of metal ions for nuclear
medicine applications [4]. Copper and iron chelating agents are used in food, cosmet-
ics, and pharmaceuticals for the regulation of metal metabolism and the redox biology
of cells [5,6].

Copper is a trace metal element essential for normal human metabolism [7]. Copper
is an essential cofactor for several metalloproteins, such as cytochrome C oxidase and
superoxide dismutase [8]. Copper deficiency is often recognized clinically as anemia,
leucopenia, and myeloneuropathy [9]. Copper toxicity can result from exposure to high
levels of copper from contaminated food, water sources, and air in the areas of copper
smelters and mines [10]. Medical conditions that limit the hepatic removal of excess copper
from the body, or certain genetic disorders, such as Menke’s disease and Wilson’s disease,
can lead to copper toxicity [11]. Excess copper can cause diarrhea, headaches, hepatic
disorder, kidney failure, and neurodegenerative changes [12].

The majority of serum copper is transported bound to ceruloplasmin, albumin, tran-
scuprein, and amino acids, keeping the concentration of free copper ions very low [13].
Liberated free copper ions can catalyze Fenton-type reactions to produce reactive oxygen
species (ROS) [14]. The cytotoxic effects of copper ions are variable depending on their
salt forms and cell types. The toxic effects of copper chloride (CuCl2) and copper acetate
(Cu(OAc)2 on HaCaT cell viability and irritation markers appear to be greater than those of
copper tripeptide (GHK-Cu) [15]. Copper oxide (CuO) is more toxic than copper sulfate
(CuSO4) and astrocytoma and glioblastoma cells are more vulnerable to copper toxicity
than neuronal cells [16]. CuCl2 enhances the production of ROS and reactive nitrogen
species (RNS), protein oxidation, lipid peroxidation, and DNA damage while decreasing
glutathione (GSH), total sulphydryl content, and the activities of many antioxidant enzymes
in human erythrocytes [17]. CuSO4 also induces oxidative stress leading to mitochondrial
dysfunction, apoptosis, and autophagy in immortalized male germ cell line GC-1 [18].
Different molecules with copper chelation properties are already in clinical use or under
clinical trial to treat neurodegenerative diseases, cardiovascular disorders, pulmonary
fibrosis, diabetes, and cancers [5,19].

Free amino acids including histidine bind to copper with a high affinity and form
stable complexes [20]. The copper–histidine complex found in serum contributes to the
transportation of copper from albumin into cells [21]. The copper–histidine complex
provides a copper replacement for patients with Menke’s disease, supplying copper directly
by injection into the body, bypassing intestinal routes [22]. Histidine inhibited the copper
(II)-neocuproine complex-catalyzed autoxidation of ascorbic acid most effectively among
the tested amino acids [23]. Supplementation of histidine in fish diet prevented CuSO4-
induced oxidative damage in the intestine of grass carp (Ctenopharyngodon idella) [24]. Thus,
it is expected that amino acids can have variable effects against copper-induced toxic effects.
However, there has been no study that has directly compared and evaluated the antioxidant
action of various amino acids against the toxicity of copper ions in cells.

Chelators can act as either antioxidants or prooxidants by inhibiting or enhancing
the transition metal-catalyzed production of ROS [25]. Thus, it is hypothesized that only
certain types of copper chelators may have beneficial effects in cells exposed to high
levels of copper ions. The goal of the present study is to compare and identify amino
acids that effectively chelate copper ions and mitigate the oxidative stress induced by
copper ions in skin cells. For this purpose, the copper chelation activities of a total of
20 free amino acids and 20 amidated amino acids were comprehensively evaluated. The
amidated amino acids were included in this study because several amidated amino acids
have shown distinct biological properties compared to free amino acids in our previous
studies [26–28]. As a result of primary screening, cysteine, cysteinamide, histidine, and
histidinamide were shown to have potent copper-chelating activity. The effects of these four
compounds on copper ion-induced cytotoxicity and oxidative stress were further explored
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in human HaCaT keratinocytes. The results showed for the first time that histidine and
histidinamide, but not cysteine and cysteinamide, enhanced the viability of cells exposed
to high concentrations of copper ions, and inhibited copper ion-induced ROS production,
GSH oxidation, lipid peroxidation, and protein carbonylation, suggesting the former two
compounds have more advantageous properties as copper chelators in terms of alleviating
the toxic effects of copper ions.

2. Materials and Methods
2.1. Reagents

Naturally occurring free amino acids were purchased from Sigma-Aldrich (St. Louis,
MO, USA) and amidated amino acids were purchased from Watanabe Chemical Ind., Ltd.
(Hiroshima, Japan). CuCl2, CuSO4, glycyl-histidyl-lysine-copper (GHK-Cu), ethylenediamine-
N,N,N’,N’-tetraacetic acid (EDTA), pyrocatechol violet (PCV), 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA), 2-thiobarbituric acid (TBA), and 1,1,3,3-tetramethoxypropane (TMP)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) was purchased from Amresco (Solon, OH, USA).
Bovine serum albumin (BSA) was purchased from GenDEPOT (Houston, TX, USA).

2.2. Assay of Copper-Chelating Activity

The copper-chelating activity was determined through a spectrophotometric assay
using PCV [29]. In this assay, the Cu(II)-PCV complex shows maximum absorption at
632 nm, and the absorbance is reduced by a copper chelator competing with PCV for a fixed
amount of copper. The reaction mixture containing 200 µM test material, 200 µM CuSO4,
and 200 µM PCV in 50 mM sodium acetate buffer (pH 6.0) was incubated at 25 ◦C for
1 min or 20 min, and its absorbance at 632 nm (A632) was recorded using a Spectrostar
Nano microplate reader (BMG LABTECH GmbH, Ortenberg, Germany).

2.3. Cell Culture

HaCaT cells (CLS Cell Lines Service GmbH, Eppelheim, Germany) were maintained
under humidified air containing 5% CO2 in a closed incubator at 37 ◦C. Cells were fed
with DMEM/F-12 medium (GIBCO-BRL, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum, 100 U·mL−1 penicillin, 100 µg·mL−1 streptomycin, and 0.25 µg·mL−1

amphotericin B.

2.4. Assay of Cell Viability

Cells were seeded onto 96-well culture plates (4 × 103 cells per well), cultured in the
growth medium (200 µL) for 24 h, and then treated with each test material in the absence
or presence of CuSO4 or CuCl2 at the specified concentrations for an additional 48 h. Cell
viability was assessed using the tetrazolium MTT dye, which is reduced to insoluble purple
formazan by cellular oxidoreductases in live cells [30].

2.5. Assay of ROS Production

Flow cytometry was used to count cells emitting fluorescence due to the oxidation
of DCFH-DA by ROS inside cells [31,32]. Cells were seeded on 6-well culture plates
(2 × 105 cells per well) and cultured in the growth medium (2 mL) for 3 h. The spent
medium was replaced with the growth medium containing various test materials, followed
by incubation of the cells for 3 h. After discarding the medium, the adherent cells were
washed with PBS, detached from the culture plates using a trypsin/EDTA solution (200 µL),
and collected in a microcentrifuge tube. After centrifugation of the tubes at 316× g for
3 min with a Combi 408 centrifuge (Hanil, Daejeon, Republic of Korea), the precipitated
cells were washed with PBS, labeled with 10 µM DCFH-DA for 30 min, and suspended
in PBS for flow cytometry. Flow cytometric analysis of the cell suspension was conducted
using BD FACSCalibur (BD Biosciences, San Jose, CA, USA), followed by data analysis
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using BD CellQuest. Data are presented as the ratio (%) of cells with high fluorescence due
to intracellular ROS production to the total gated cells.

2.6. Assay of GSH and Its Oxidized Form, Glutathione Disulfide (GSSG)

Cells were seeded on 6-well culture plates (2 × 105 cells per well) and cultured in the
growth medium (2 mL) for 24 h. After treatment with each test material for an additional
12 h, the spent medium was discarded, and the adherent cells were washed with PBS,
extracted with 5% meta-phosphoric acid solution (150 µL per well), and centrifuged at
14,500× g for 15 min to obtain the supernatant. The contents of GSH and GSSG were
measured using a GSH/GSSG assay kit (GT40) from Oxford Biomedical Research (Oxford,
UK) [33–35]. GSH contents were normalized to the total protein contents.

2.7. Preparation of Whole-Cell Lysates and Protein Assay

Cells were seeded on 6-well culture plates (2 × 105 cells per well) and cultured in the
growth medium (2 mL) for 24 h. After treatment with each test material for an additional
12 h, the spent medium was discarded and the adherent cells were lysed with the lysis
buffer A (20 mM Tris-Cl, 2.5 mM EDTA, 1.0% sodium dodecyl sulfate, pH 7.5, 150 µL per
well). The protein content of the whole-cell lysates was determined using a DC protein
assay kit (Bio-Rad, Hercules, CA, USA). The whole-cell lysates were used for the assays of
lipid peroxidation and protein carbonylation.

2.8. Assay of Lipid Peroxidation

Lipid peroxidation was assessed using a TBA method [36]. Whole-cell lysate
(60 µg protein in 100 µL) was mixed with 1.0% meta-phosphoric acid (50 µL) and 0.9% TBA
(350 µL) in an air-tight microcentrifuge tube and heated in a boiling water bath for 45 min.
After cooling, n-butyl alcohol (500 µL) was added to the tube, then it was vortex-mixed and
centrifuged at 14,500× g for 15 min to separate the mixture into two layers. The upper layer
(200 µL) was transferred to a black 96-well plate and its fluorescence intensity (excitation
at 544 nm and emission at 590 nm) was measured using a Gemini EM fluorescence mi-
croplate reader (Molecular Devices, Sunnyvale, CA, USA). A standard curve was prepared
using a TMP solution instead of the cell lysates. The data are presented as thiobarbituric
acid-reactive substance (TBARS) content normalized to the protein content.

2.9. Assay of Protein Carbonylation

Protein carbonylation was measured using a protein carbonyl content fluorometric
assay kit (ab235631) from Abcam (Cambridge, MA, USA). Whole-cell lysate (50 µg protein in
50 µL) was mixed with 50 µL of 200 µM fluorescein-5-thiosemicarbazide (FTC) fluorophore
in an assay buffer in a microcentrifuge tube, followed by incubation overnight at 25 ◦C
in the dark. Then, 200 µL of ice-cold 20% trichloroacetic acid solution was added and
the tubes were left on ice for 10 min. After centrifugation of the tubes at 14,500× g
for 15 min, the supernatant was discarded by aspiration. The pellet was washed with
200 µL of ice-cold isopropanol 3 times and air-dried. The pellet was dissolved in 50 µL of
6 M guanidine solution at 50 ◦C for 1 h. After cooling, the sample was mixed with 70 µL
of sample dilution buffer. Aliquots of the diluted samples (100 µL) were transferred to a
96-well plate for fluorescence measurement at 485 nm excitation and 535 nm emission using
a Gemini EM fluorescence microplate reader. Protein carbonyl contents were estimated by
comparing a standard curve prepared using FTC fluorophore. Protein carbonyl contents
were normalized to the protein content.

2.10. Statistical Analysis

Statistical analysis of experimental data was conducted using SigmaStat v.3.11 software
(Systat Software Inc., San Jose, CA, USA). Data are presented as the mean ± standard
deviation (SD) of multiple independent experiments. The presence of significantly different
group means among all test groups was determined using a one-way analysis of variance
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(ANOVA) at p < 0.05 level. As a post hoc test, Duncan’s multiple range test was run to
compare all groups to each other. The graph was created using Prism software version 6.0
(GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Copper-Chelating Activities of Various Free and Amidated Amino Acids

The formation of Cu(II)-PCV complex in the absence or presence of a free or amidated
amino acid was measured to compare their copper-chelating properties. In this competitive
assay, the reaction mixture contained a test material, CuSO4, and PCV, all at 200 µM in an
aqueous solution. As shown in Figure 1, A632 was much reduced by EDTA, a metal chelator
used as a positive control, compared to the vehicle control. GHK-Cu complex did not
affect the A632 value, indicating that it did not affect the formation of Cu(II)-PCV complex.
Most free amino acids except for lysine and asparagine reduced A632 due to the formation
of Cu(II)-PCV complex. Cysteine reduced A635 most effectively, followed by histidine,
glutamic acid, and aspartic acid. Of the free amino acids, cysteinamide, histidinamide, and
aspartamide reduced A635 most effectively, in that order. The results suggest that cysteine,
cysteinamide, histidine, and histidinamide have potent copper-chelating capacities.
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Figure 1. Copper-chelating activities of free amino acids (A) and amidated amino acids (B). The
reaction mixture consisting of 200 µM CuSO4, 200 µM PCV, and test material at the specified concen-
trations was incubated for 20 min and the formation of Cu(II)-PCV complex was measured using the
absorbance at 632 nm (A632). Ethylenediamine-N,N,N’,N’-tetraacetic acid (EDTA) and glycyl-histidyl-
lysine-copper (GHK-Cu) were used for comparative purposes. Free amino acids are denoted using
three-letter codes and amidated amino acids are denoted using one-letter codes with an amine group
(NH2). Data represent mean ± SD (n = 3). Different lowercase letters (a–s) indicate significantly
different means at the p < 0.05 level.

3.2. CuSO4 Reduces Cell Viability While Increasing ROS Production of HaCaT Keratinocytes

To examine the cytotoxic effects of copper ions, human HaCaT keratinocytes were
exposed to CuSO4 at different concentrations (0.25–1.0 mM) for 48 h, and cell viabil-
ity was assessed. As shown in Figure 2, CuSO4 reduced the viability of HaCaT in a
dose-dependent manner.
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Figure 2. Effects of CuSO4 on the viability of HaCaT cells. Cells were treated with CuSO4 at varying
concentrations for 48 h for the viability assay. Cell viability is presented as % of the control group
(mean ± SD, n = 4). Different lowercase letters (a–e) indicate significantly different means at the
p < 0.05 level.

3.3. Effects of Free and Amidated Amino Acids on HaCaT Cell Viability in the Absence and
Presence of CuSO4

The effects of various free and amidated amino acids on cell viability were examined
at 1.0 mM in the absence and presence of 1.0 mM CuSO4, and the results were compared to
that of GHK-Cu or EDTA. As shown in Figure 3A, of the free amino acids tested, tryptophan
and asparagine decreased cell viability a little, and others had no significant effects in the
absence of CuSO4. Only histidine exhibited cytoprotective effects under CuSO4-treated
conditions. As shown in Figure 3B, of the amidated amino acids tested, tryptophanamide
and glycinamide decreased cell viability significantly, while cysteinamide increased it a
little. Only histidinamide exhibited cytoprotective effects under CuSO4-treated conditions.
GHK-Cu had no significant effects on cell viability in the absence of CuSO4, but EDTA
itself showed severe cytotoxicity. GHK-Cu and most amino acids except for histidine and
histidinamide failed to restore cell viability under CuSO4-treated conditions.
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in the absence and presence of CuSO4. Cells were treated with a test material at 1.0 mM with no or
1.0 mM CuSO4 for 48 h. GHK-Cu and EDTA were used as reference compounds. Cell viability was
presented as % of the control group (mean ± SD, n = 4). Different lowercase letters (a–h) indicate
significantly different means at the p < 0.05 level.

3.4. Dose-Dependent Effects of Histidine, Histidinamide, Cysteine, Cysteinamide, and EDTA on
the CuSO4-Induced Death of HaCaT Cells

As above, although cysteine and cysteinamide showed stronger copper chelation
activities than histidine and histidinamide, the latter two compounds alleviated the CuSO4-
induced cytotoxicity more effectively than the former two compounds. Their effects on cell
viability were additionally compared with EDTA at varying concentrations
(0.25–1.0 mM) in the absence and presence of CuSO4 (1.0 mM). As shown in Figure 4,
histidine and histidinamide rescued the cells exposed to CuSO4 (1.0 mM) at 1.0 mM and
higher concentrations. They did not show cytotoxic effects up to 4.0 mM. In contrast,
cysteine and cysteinamide did not show any cytoprotective effects up to 4.0 mM, while
exhibiting significant cytotoxic effects at high concentrations (at 2.0 mM and/or 4.0 mM).
EDTA, a reference compound, did not show any cytoprotective effects up to 4.0 mM, while
decreasing cell viability in a dose-dependent manner starting from a concentration as
low as 0.25 mM.

3.5. Effects of Histidine, Histidinamide, Cysteine, and Cysteinamide on the CuSO4-Induced ROS
production in HaCaT Cells

The effects of histidine, histidinamide, cysteine, and cysteinamide on cellular ROS
production were examined in the absence and presence of CuSO4 exposure. After various
treatments of cells with CuSO4 and/or amino acids for 3 h, cells were labeled with a
redox-sensitive probe (DCFH-DA), and the population of cells fluorescing due to ROS
production was analyzed using flow cytometry. As shown in Figure 5, CuSO4 increased
intracellular ROS production in a concentration-dependent manner. Although histidine
and histidinamide did not affect basal ROS production, they inhibited the CuSO4-induced
ROS production significantly. Cysteine did not affect the basal ROS production but rather
enhanced the CuSO4-induced ROS production. Cysteinamide did not affect the basal or
CuSO4-induced ROS productions.

3.6. Effects of Histidine, Histidinamide, Cysteine, and Cysteinamide on the GSH and GSSG Levels
in HaCaT Cells Exposed to CuSO4

The next experiment examined the effects of histidine, histidinamide, cysteine, and
cysteinamide on the cellular levels of GSH and its oxidized form, GSSG, in the absence and
presence of CuSO4 exposure. As shown in Figure 6, histidine, histidinamide, cysteine, and
cysteinamide did not affect the contents of GSH and GSSG, their total contents, or their
relative ratio in the absence of CuSO4 exposure. As expected, CuSO4 exposure decreased
GSH content and increased GSSG content, resulting in a decrease in their sum and an
increase in the ratio of the oxidized form to the reduced form. In the presence of CuSO4
exposure, histidine and histidinamide mitigated the decrease in the total GSH pool and the
increase in oxidized form caused by CuSO4 exposure, whereas cysteine and cysteinamide
amplified these changes.

3.7. Effects of Histidine, Histidinamide, Cysteine, and Cysteinamide on the CuSO4-Induced Lipid
Peroxidation and Protein Carbonylation in HaCaT Cells

We additionally examined the effects of histidine, histidinamide, cysteine, and cys-
teinamide on lipid peroxidation and protein carbonylation in HaCaT cells exposed to
CuSO4. As shown in Figure 7, histidine, histidinamide, cysteine, and cysteinamide did
not affect lipid peroxidation in cells under basal conditions. CuSO4 treatment significantly
increased lipid peroxidation and the change was abrogated by histidine and histidinamide,
whereas cysteine and cysteinamide had no significant effects. Histidine, histidinamide,
cysteine, and cysteinamide had no effects on the basal levels of protein carbonylation in
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cells. CuSO4 treatment markedly increased protein carbonylation, and this change was
abrogated by histidine and histidinamide. Cysteine and cysteinamide rather enhanced the
protein carbonylation induced by CuSO4.
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Figure 4. Effects of histidine (A), histidinamide (B), cysteine (C), cysteinamide (D), and EDTA (E) on
the CuSO4-induced cytotoxicity. HaCaT cells were treated with a test material at varying concentra-
tions in the absence and presence of 1.0 mM CuSO4 for 48 h. Cell viability was presented as % of the
control group (mean ± SD, n = 4 or 5). Different lowercase letters (a–f) indicate significantly different
means at the p < 0.05 level.
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Figure 5. Flow cytometry for the assay of intracellular reactive oxygen species (ROS) production
in HaCaT cells exposed to CuSO4 in the absence and presence of histidine, histidinamide, cysteine,
or cysteinamide. In (A), cells were treated with CuSO4 at different concentrations for 3 h. In (B),
cells were treated with vehicle or amino acid analog at 1.0 mM alone or in combination with 1.0 mM
CuSO4 for 3 h. The treated cells were washed with phosphate-buffered saline (PBS), labeled with
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) for 30 min, and suspended in PBS for flow
cytometric analysis. Typical flow cytometry histograms are shown. M1 in the histogram denotes the
fluorescing cells. The ratios (%) of fluorescing cells to the total gated cells are presented (mean ± SD,
n = 3). Different lowercase letters (a–c) indicate significantly different means at the p < 0.05 level.
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Figure 6. Effects of histidine, histidinamide, cysteine, and cysteinamide on the contents of glutathione
(GSH) and glutathione disulfide (GSSG) in HaCaT cells exposed to CuSO4. Cells were treated with
each compound at 1.0 mM in the absence and presence of 1.0 mM CuSO4 for 12 h. The total content of
GSH plus GSSG (A) and that of GSH (B) were measured separately using an enzyme-based recycling
assay, and the values were used to calculate the content of GSSG (C) and the ratio of the oxidized
and reduced forms (D). Data are presented as mean ± SD (n = 3). Different lowercase letters (a–e)
indicate significantly different means at the p < 0.05 level.
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Figure 7. Effects of histidine, histidinamide, cysteine, and cysteinamide on the lipid peroxidation
(A) and protein carbonylation (B) in HaCaT cells exposed to CuSO4. Cells were treated with each
compound at 1.0 mM in the absence and presence of 1.0 mM CuSO4 for 12 h. The content of
thiobarbituric acid-reactive substance (TBARS) as an indication of lipid peroxidation and protein
carbonyl content as an indication of protein oxidation were normalized to the protein content. Data
represent mean ± SD (n = 3). Different lowercase letters (a–d) indicate significantly different means
at the p < 0.05 level.

3.8. Comparison of Copper-Chelating Activities of Cysteine, Cysteinamide, Histidine,
Histidinamide, and BSA

Serum albumin is a macromolecule with a very large molecular weight (MW) that is
involved in binding and transporting copper ions in the blood. In the following experiment,
the copper chelation activity of BSA (MW 68,000) was compared with that of cysteine
(MW 121), cysteinamide (MW 120), histidine (MW 155), and histidinamide (MW 154) at
the same molar concentration ranges (50–400 µM). In the colorimetric assay monitoring
A632 due to the formation of Cu(II)-PCV complex, the reaction mixtures were incubated
for either 1 min or 20 min, and the results are shown in Figure 8. The results from the
1 min reaction showed that BSA reduced A632 to a similar extent as exhibited by cysteine,
cysteinamide, histidine, and histidinamide at the same molar concentrations, even though
its MW is 500 times greater than the amino acids. The result of the 20 min reaction indicated
that BSA rather increased A632 due to the slow formation of a purple chromogen [37].
Thus, the results of the 1 min reaction are more likely to represent the copper chelation
activity of BSA.
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Figure 8. Comparison of copper-chelating activities of cysteine, cysteinamide, histidine,
histidinamide, and bovine serum albumin (BSA). The reaction mixture consisting of
200 µM CuSO4, 200 µM PCV, and test material at the specified concentrations was incubated for
1 min (A) or 20 min (B), and the formation of Cu(II)-PCV complex was measured using A632. Data
are presented as mean ± SD (n = 3). Different lowercase letters (a–o) indicate significantly different
means at the p < 0.05 level.
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3.9. Effects of Cysteine, Cysteinamide, Histidine, Histidinamide, and BSA on the Viabilities of
HaCaT Cells Exposed to CuSO4 or CuCl2

In the following experiments, the effects of cysteine, cysteinamide, histidine, histid-
inamide, and BSA on the viability of cells exposed to different types of Cu(II) salts were
investigated. As shown in Figure 9, both CuCl2 and CuSO4 induced a high rate of cell
death at 0.5 mM and 1.0 mM. Cysteine and cysteinamide did not affect the cytotoxic effects
of CuCl2 and CuSO4. The viability of the cells exposed to 0.5 mM CuCl2 was recovered
by half by 0.5 mM of histidine or histidinamide, and almost fully recovered by 1.0 mM of
histidine or histidinamide. However, the viability of the cells exposed to 1.0 mM CuCl2
was restored slightly by 1.0 mM of histidine or histidinamide. The viability of the cells
exposed to 0.5 mM CuSO4 was almost recovered by 0.5 mM and 1.0 mM of histidine or
histidinamide. The viability of the cells exposed to 1.0 mM CuSO4 was almost recovered by
1.0 mM of histidine or histidinamide, but only partially recovered by 0.5 mM of histidine
or histidinamide. BSA recovered about half the viability of cells exposed to 0.5–1.0 mM
CuCl2 at 0.5 mM, and most recovered at 1 mM. BSA almost recovered the viability of the
cells exposed to 0.5 mM CuSO4 at 0.5–1.0 mM, and recovered the viability of the cells
exposed to 1.0 mM CuSO4 partly in a dose-dependent manner. Overall, the toxicity of
Cu(II) ion was observed, regardless of the salt form. The protective effects of histidine and
histidinamide against the toxicity of Cu(II) ion in cells were different depending on the
concentrations and types of copper(II) salts. The cytoprotective effects of histidine and his-
tidinamide were as powerful as BSA protein of the same molar concentration despite large
differences in MW.
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Figure 9. Effects of cysteine, cysteinamide, histidine, histidinamide, and BSA on the viability of HaCaT
cells exposed to different Cu(II) salts. Cells were treated with a test material at varying concentrations
with no addition (A) or the addition of 0.5 mM CuCl2 (B), 1.0 mM CuCl2 (C), 0.5 mM CuSO4 (D), or
1.0 mM CuSO4 (E) for 48 h. Cell viability is presented as % of the control group (mean ± SD, n = 4).
Different lowercase letters (a–f) indicate significantly different means at the p < 0.05 level.
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4. Discussion

Although previous studies have shown that copper chelators can efficiently remove
Cu(II) ions from Cu(II) ion-overloaded cells and mitigate oxidative stress [38], the present
study comprehensively compared the copper-chelating action of various amino acids and
their action of alleviating copper ion-induced cytotoxicity for the first time, and several
important novel findings were made. Despite the strongest copper chelation activities of
cysteine and cysteinamide, they did not show any cytoprotective effects against CuSO4. In
contrast, histidine and histidinamide prevented CuSO4-induced cell death although their
copper-chelating activities were not stronger than that of cysteine or cysteinamide. The
results support our hypothesis that only certain types of amino acids with copper chelation
activity may have beneficial effects in cells exposed to high levels of copper ions.

Cu(II) ion is reduced to Cu(I) ion by reacting with biological molecules, such as ascorbic
acid and GSH, or ROS, such as superoxide (O2

•−) and hydrogen peroxide (H2O2) [39].
The resulting Cu(I) ion reacts with H2O2 through a Fenton-type reaction to generate a
hydroxide ion (OH−) and hydroxyl radical (HO•) [40]. The generated Cu(II) ion is reduced
back to Cu(I) ion to continue the cycle. When the Cu(II) ion is reduced by O2

•−, this
cycle constitutes a Haber–Weiss reaction [41]. Various metal chelators have differential
effects on the generation of HO• by promoting or inhibiting the Fenton-type reaction
depending on the reaction conditions [25]. In the present study, various amino acids
showed different copper-chelating activities, and their effects on the viability of Cu(II)
ion-overloaded cells were partly associated with copper-chelating activities. The copper-
chelating property of histidine and histidinamide is considered one of the contributing
factors to their cytoprotective and antioxidant effects.

Cellular oxidative stress manifests as an increase in the ratio of prooxidants to antioxi-
dants and an increase in the oxidative damage of cellular components [42,43]. For example,
atmospheric particulate matter increases cellular ROS production, oxidizes GSH antioxi-
dants, and increases lipid peroxidation, protein carbonylation, and DNA damage [33–35].
In previous studies, copper ions increased ROS production, lipid peroxidation, protein oxi-
dation, and DNA damage in cells while decreasing the levels of small molecule antioxidants
and antioxidant enzymes and inducing apoptosis and autophagy [17,18,44]. In the present
study, CuSO4 dose-dependently increased cell death in the range of 0.2–1.0 mM. CuSO4
also increased cellular ROS production, GSH oxidation, lipid peroxidation, and protein
carbonylation in cells. Therefore, the cytotoxicity of CuSO4 is closely related to oxidative
stress. In addition to inducing oxidative stress, a high concentration of copper ions can
displace other essential metal factors bound to macromolecules, negatively affecting the
metabolism, gene expression, and viability of cells [12].

Copper ions are a type of Lewis acid and can bind with Lewis bases, which provide
electron pairs for the formation of Lewis adducts. Copper ions are bonded via the sulfur
atom of the thiol group of cysteine, the nitrogen atom of the imidazole ring of histidine,
and the oxygen atom of the carboxyl group of the side chains of glutamic acid and aspartic
acid [45]. In this study, cysteine and cysteinamide showed stronger copper-binding strength
than histidine and histidinamide, respectively. We initially assumed that the negatively
charged carboxyl group of free amino acids and the uncharged amide group of amidated
amino acids might have different contributions to the copper ion-binding capacity. How-
ever, the differences in copper-chelating activity between histidine and histidinamide, or
between cysteine and cysteinamide, were not consistently observed. In addition, the differ-
ences in cytoprotective effect between histidine and histidinamide, or between cysteine and
cysteinamide, were not clear either. Thus, we tentatively concluded that the amide nitrogen
atoms of the amidated amino acids have minor effects on the copper-binding activity or
the cytoprotective effect.

EDTA, one of the typical metal chelators, has been shown to mitigate copper-induced
toxicity in animal and plant models [46,47]. However, EDTA did not reduce protein
carbonylation in THP-1 cells exposed to tobacco smoke extract, whereas another copper(II)
ion chelator, d-penicillamine, did [48]. Thus, the biological effects of EDTA can vary under
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different conditions. In the present study, EDTA showed the highest copper-chelating
activity among the tested compounds but did not prevent cell death induced by copper ions.
Additionally, EDTA itself decreased cell viability in a concentration-dependent manner at
concentrations above 0.25 mM in the absence of external copper ions. Although the precise
mechanism for its toxic effects is currently unknown, it is probable that high concentrations
of EDTA disrupt cellular metal homeostasis due to its potent and broad-spectrum metal
chelation activity. EDTA also can exert oxidative stress in cells under certain conditions.
In support of this notion, EDTA enhanced the oxidations of methyl linoleate induced by
Fe(III) ion, whereas it suppressed the Cu(II) ion-induced oxidation [49].

GHK tripeptide is a copper carrier naturally found in plasma, saliva, and urine,
and used in topical applications for skin regeneration purposes [50]. In the present
study, the GHK-Cu complex did not affect the formation of the Cu(II)-PCV complex and
the CuSO4-induced cytotoxicity, likely because the tripeptide is already saturated with
copper ions.

The cytoprotective action of histidine and histidinamide against copper ions is con-
sidered very unique. Histidine and histidinamide were stronger than cysteine and cys-
teinamide in mitigating CuSO4-induced oxidative stress and enhancing cell survival. Cell
death induced by 1.0 mM CuSO4 was almost completely blocked by the equivalent concen-
tration of histidine or histidinamide. In addition, histidine and histidinamide at 1.0 mM
suppressed cellular ROS production, GSH oxidation, lipid peroxidation, and protein car-
bonylation induced by 1.0 mM CuSO4. Thus, it is suggested that histidine or histidinamide
may form a stable complex with copper ions and keep the concentration of catalytic copper
ions very low, preventing ROS production.

In the present study, we further compared the copper-chelating activities of cysteine,
cysteinamide, histidine, and histidinamide with that of BSA protein. BSA was tested as
a representative copper-binding macromolecule because it is present in blood at a high
concentration and is commercially available. We also compared the effects of cysteine,
cysteinamide, histidine, histidinamide, and BSA on the viability of HaCaT cells exposed to
different salts of Cu(II).

Normally, adult blood contains 35-50 mg mL−1 (0.51–0.74 mM) albumin [51],
71 µM histidine [52], and 16.7 µM copper ions [53]. Histidine and histidinamide have
a MW of about 1/500 of BSA. In the present study, histidine and histidinamide exhibited
copper chelation and copper cytotoxicity reduction as potent as BSA of the same molar
concentration, indicating that the former compounds can have equivalent effects even
with 1/500 the amount of BSA. In addition, histidine and histidinamide showed cyto-
protective effects against copper toxicity at concentrations 1–2 times the concentration of
copper ions. Therefore, the target concentration of histidine and histidinamide can be
chosen in the range of 1–2 times the copper concentration in the skin or other body tissues
determined in advance.

5. Conclusions

The results of this study suggest that histidine and histidinamide have very advanta-
geous properties over cysteine and cysteinamide in terms of alleviating the oxidative stress
and death of cells induced by copper ions. Further studies in vivo and clinical trials are
necessary to examine the applicability of histidine and histidinamide to the treatment of
diseases of the skin and other organs induced by high concentrations of copper ions.
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