Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Leaf Samples
2.2. Chemicals and Reagents
2.3. Instruments
2.4. NADES Preparation
2.5. Extraction of Phenolic Compounds with NADES
2.6. Antioxidant Capacity Assays
2.7. LC-UV-MS and LC-UV-MS/MS Methods
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification of Polyphenols in Olive Tree Leaves Extracts
3.2. Optimization of Extraction Conditions
ChCl:Gly System Optimization
3.3. Determination of Phenolic Compounds in the Olive Leaf ChCl:Gly Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Gutierrez, M.; Bascon-Villegas, I.; Rodriguez, A.; Perez-Rodriguez, F.; Fernandez-Prior, A.; Rosal, A.; Carr, E. Valorisation of Olea europaea L. olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef]
- Mennen, L.I.; Walker, R.; Bennetau-Pelissero, C.; Scalbert, A. Risks and safety of polyphenol consumption. Am. J. Clin. Nutr. 2005, 81, 326S. [Google Scholar] [CrossRef]
- Martin, K.R.; Appel, C.L. Polyphenols as dietary supplements: A double-edged sword. Nutr. Diet. Suppl. 2010, 2, 1–12. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations (FAO). Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 28 February 2023).
- Olmo-García, L.; Monasterio, R.P.; Sánchez-Arévalo, C.M.; Fernández-Gutiérrez, A.; Olmo-Peinado, J.M.; Carrasco-Pancorbo, A. Characterization of New Olive Fruit Derived Products Obtained by Means of a Novel Processing Method Involving Stone Removal and Dehydration with Zero Waste Generation. J. Agric. Food Chem. 2019, 67, 9295–9306. [Google Scholar] [CrossRef] [PubMed]
- Boli, E.; Prinos, N.; Louli, V.; Pappa, G.; Stamatis, H.; Magoulas, K.; Voutsas, E. Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. Separations 2022, 9, 255. [Google Scholar] [CrossRef]
- Dobrincic, A.; Repajic, M.; Garofulic, I.E.; Tuden, L.; Dragovic-Uzelac, V.; Levaj, B. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes 2020, 8, 1008. [Google Scholar] [CrossRef]
- Souilem, S.; Fki, I.; Kobayashi, I.; Khalid, N.; Neves, M.A.; Isoda, H.; Sayadi, S.; Nakajima, M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. Food Bioprocess Technol. 2017, 10, 229–248. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Gil-Martin, E.; Forbes-Hernandez, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Nuñez, O.; Granados, M.; Sentellas, S.; Saurina, J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. TrAC Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; Gutiérrez Fernández, M.Y.; Escuadra Burrieza, J.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustain. Chem. Pharm. 2022, 29, 100773. [Google Scholar] [CrossRef]
- Ruesgas-Ramon, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Sportiello, L.; Favati, F.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Simonato, B.; Tolve, R.; Galgano, F. Hydrophobic deep eutectic solvents in the food sector: Focus on their use for the extraction of bioactive compounds. Food Chem. 2023, 405, 134703. [Google Scholar] [CrossRef] [PubMed]
- Serna-Vázquez, J.; Ahmad, M.Z.; Boczkaj, G.; Castro-Muñoz, R. Latest insights on novel deep eutectic solvents (DES) for sustainable extraction of phenolic compounds from natural sources. Molecules 2021, 26, 5037. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Makris, D.P.; Lalas, S. Review on glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gomez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilkova, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Socas-Rodriguez, B.; Mendiola, J.A.; Rodriguez-Delgado, M.A.; Ibanez, E.; Cifuentes, A. Safety assessment of citrus and olive by-products using a sustainable methodology based on natural deep eutectic solvents. J. Chromatogr. A 2022, 1669, 462922. [Google Scholar] [CrossRef] [PubMed]
- Yücel, M.; Şahin, S. An eco-friendly and sustainable system for monitoring the oleuropein-rich extract from olive tree (Olea europaea) leaves. Biomass Convers. Biorefinery 2022, 12, 47–60. [Google Scholar] [CrossRef]
- Kaltsa, O.; Grigorakis, S.; Lakka, A.; Bozinou, E.; Lalas, S.; Makris, D.P. Green Valorization of Olive Leaves to Produce Polyphenol-Enriched Extracts Using an Environmentally Benign Deep Eutectic Solvent. AgriEngineering 2020, 2, 226–239. [Google Scholar] [CrossRef]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-Simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Appl. Sci. 2022, 12, 831. [Google Scholar] [CrossRef]
- Espino, M.; de los Ángeles Fernández, M.; Gomez, F.J.V.; Silva, M.F. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 2016, 76, 126–136. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Alcalde, B.; Granados, M.; Saurina, J. Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants 2019, 8, 523. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. Sci. Total Environ. 2023, 857, 159623. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, C.; Santoro, I.; Nardi, M.; Cassano, A.; Sindona, G. Eco-friendly extraction and characterisation of nutraceuticals from olive leaves. Molecules 2019, 24, 3481. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Findik, S.; AlJuhaimi, F.; Ghafoor, K.; Babiker, E.E.; Adiamo, O.Q. The effect of harvest time and varieties on total phenolics, antioxidant activity and phenolic compounds of olive fruit and leaves. J. Food Sci. Technol. 2019, 56, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Matthaus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Monteiro, M.; Silva, A.F.R.; Resende, D.; Braga, S.S.; Coimbra, M.A.; Silva, A.M.S.; Cardoso, S.M. Strategies to broaden the applications of olive biophenols oleuropein and hydroxytyrosol in food products. Antioxidants 2021, 10, 444. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef]
- Hassen, I.; Casabianca, H.; Hosni, K. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation—A mini-review. J. Funct. Foods 2015, 18, 926–940. [Google Scholar] [CrossRef]
- Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders. Nutrients 2017, 9, 306. [Google Scholar] [CrossRef]
- Cavaca, L.A.S.; Afonso, C.A.M. Oleuropein: A Valuable Bio-Renewable Synthetic Building Block. European J. Org. Chem. 2018, 2018, 581–589. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Retention Time (min) | Measured [M − H]− m/z | Tentative Formula | Mass Error (ppm) | Identification |
---|---|---|---|---|---|
1 | 8.50 | 153.0557 | C8H10O3 | −0.1 | 3-Hydroxytyrosol |
2 | 9.19 | 153.0194 | C7H6O4 | 0.5 | 3,4-Dihydroxibenzoic acid |
3 | 11.98 | 389.1105 | C16H22O11 | 3.9 | Secologanoside a |
4 | 12.44 | 137.0247 | C7H6O3 | 1.8 | 4-Hydroxybenzoic acid |
5 | 12.47 | 353.0887 | C16H18O9 | 2.4 | Chlorogenic acid |
6 | 15.54 | 151.0403 | C8H8O3 | 1.6 | Vanillin |
7 | 16.23 | 609.1480 | C27H30O16 | 3.0 | Rutin |
8 | 16.48 | 163.0406 | C9H8O3 | 3.2 | p-Coumaric acid |
9 | 16.69 | 447.0953 | C21H20O11 | 4.6 | Luteolin-7-O-glucoside |
10 | 16.69 | 701.2317 | C31H42O18 | 2.6 | Oleuropein glucoside a |
11 | 16.72 | 463.0897 | C21H20O12 | 3.2 | Quercetin-3-O-glucoside |
12 | 17.07 | 577.1585 | C27H30O14 | 3.8 | Apigenin-7-O-rutinoside a |
13 | 17.10 | 193.0600 | C10H10O4 | 1.6 | Ferulic acid |
14 | 17.14 | 607.1685 | C28H32O15 | 2.7 | Diosmin |
15 | 17.24 | 609.1823 | C28H34O15 | −0.3 | Hesperidin |
16 | 17.49 | 623.2001 | C29H36O15 | 3.2 | Verbascoside |
17 | 17.56 | 539.1790 | C25H32O13 | 3.7 | Oleuropein |
18 | 17.68 | 447.0944 | C21H20O11 | 2.5 | Luteolin-7-O-glucoside isomer a |
19 | 17.70 | 431.0999 | C21H20O10 | 3.5 | Apigenin-7-O-glucoside a |
20 | 18.50 | 377.1245 | C19H22O8 | 0.8 | Oleuropein aglycone |
21 | 19.27 | 523.1840 | C25H32O12 | 3.6 | Ligstroside a |
22 | 20.64 | 285.0415 | C15H10O6 | 3.7 | Luteolin |
23 | 22.24 | 271.0617 | C15H12O5 | 2.0 | Naringenin |
24 | 22.32 | 269.0470 | C15H10O5 | 3.8 | Apigenin |
ChCl:Gly (1:2, m:m; 10% water) | ChCl:Urea (1:2, m:m, 10% water) | ChCl:Lactic (1:2, m:m; 10% water) | EtOH/water (20:80, v/v) | |
---|---|---|---|---|
3,4-Dihydroxybenzoic acid | 1.0 | 1.7 | 0.1 | <0.1 |
3-Hydroxytyrosol | 1.0 | 0.3 | 1.1 | 0.3 |
Apigenin | 1.0 | 0.4 | 0.6 | 0.2 |
Astilbin | 1.0 | 1.7 | 0.7 | <0.1 |
Caffeic acid | 1.0 | <0.1 | 0.4 | 0.2 |
Chlorogenic acid | 1.0 | 1.4 | 0.5 | 0.3 |
Diosmin | 1.0 | 1.8 | 0.9 | 0.5 |
Ferulic acid | 1.0 | 0.5 | 0.4 | 0.7 |
Hesperidin | 1.0 | <0.1 | 0.8 | <0.1 |
Luteolin | 1.0 | 0.1 | 0.4 | <0.1 |
Luteolin-7-O-glucoside | 1.0 | 1.7 | 0.7 | 0.6 |
Naringenin | 1.0 | 1.0 | 0.5 | <0.1 |
Naringin | 1.0 | 2.1 | 0.6 | 0.4 |
Oleuropein | 1.0 | 0.4 | <0.1 | 0.9 |
Oleuropein aglycone | 1.0 | <0.1 | 0.2 | 0.3 |
p-Coumaric acid | 1.0 | 1.0 | 0.5 | 0.4 |
Quercetin | 1.0 | <0.1 | 1.4 | <0.1 |
Quercetin-3-O-glucoside | 1.0 | 1.4 | 0.4 | 0.3 |
Rutin | 1.0 | 1.7 | 0.5 | 0.7 |
Vanillin | 1.0 | 0.8 | 0.4 | <0.1 |
Verbascoside | 1.0 | <0.1 | 1.3 | <0.1 |
Phenolic Compound | Concentration (mg kg fw−1) |
---|---|
Luteolin-7-O-glucoside | 262.0 |
Oleuropein | 173.3 |
3-Hydroxytyrosol | 128.6 |
Rutin | 32.7 |
Luteolin | 28.7 |
3,4-dihydroxybenzoic acid | 14.8 |
Verbascoside | 14.2 |
Diosmin | 7.9 |
Naringin | 6.9 |
Quercetin-3-O-glucoside | 5.9 |
p-Coumaric acid | 5.3 |
Apigenin | 2.7 |
Ferulic acid | 2.2 |
Chlorogenic acid | 2.0 |
Caffeic acid | 1.2 |
Hesperidin | 1.0 |
Naringenin | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir-Cerdà, A.; Granados, M.; Saurina, J.; Sentellas, S. Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants 2023, 12, 995. https://doi.org/10.3390/antiox12050995
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants. 2023; 12(5):995. https://doi.org/10.3390/antiox12050995
Chicago/Turabian StyleMir-Cerdà, Aina, Mercè Granados, Javier Saurina, and Sonia Sentellas. 2023. "Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents" Antioxidants 12, no. 5: 995. https://doi.org/10.3390/antiox12050995
APA StyleMir-Cerdà, A., Granados, M., Saurina, J., & Sentellas, S. (2023). Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants, 12(5), 995. https://doi.org/10.3390/antiox12050995