Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography
Abstract
:1. Introduction
2. Materials and Methods
3. Results
renalase + 0.118 age + 0.355 BMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burk, R.F.; Hill, K.E. Selenoprotein P-Expression, Functions, and Roles in Mammals. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Sato, N.; Hirashima, M.; Takebe, G.; Nagasawa, S.; Takahashi, K. Domain Structure of Bi-Functional Selenoprotein P. Biochem. J. 2004, 381, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y. Selenium Transport Mechanism via Selenoprotein P—Its Physiological Role and Related Diseases. Front. Nutr. 2021, 8, 685517. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Steinbrenner, H.; Bilgic, E.; Steinbrenner, H.; Bilgic, E.; Alili, L.; Sies, H.; Brenneisen, P. Selenoprotein P Protects Endothelial Cells from Oxidative Damage by Stimulation of Glutathione Peroxidase Expression and Activity. Free Radic. Res. 2006, 40, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, W.; Chen, L.L.; Huang, J.Q.; Lei, X.G. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants. Free Radic. Biol. Med. 2020, 160, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Satoh, K.; Kurosawa, R.; Yaoita, N.; Elias-Al-Mamun, M.; Siddique, M.A.H.; Omura, J.; Satoh, T.; Nogi, M.; Sunamura, S.; et al. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension. Circulation 2018, 138, 600–623. [Google Scholar] [CrossRef]
- Beaupre, B.A.; Hoag, M.R.; Roman, J.; Försterling, F.H.; Moran, G.R. Metabolic Function for Human Renalase: Oxidation of Isomeric Forms of β-NAD(P)H That Are Inhibitory to Primary Metabolism. Biochemistry 2015, 54, 795–806. [Google Scholar] [CrossRef]
- Czerwińska, K.; Poręba, R.; Gać, P. Renalase—A New Understanding of Its Enzymatic and Non-Enzymatic Activity and Its Implications for Future Research. Clin. Exp. Pharmacol. Physiol. 2022, 49, 3–9. [Google Scholar] [CrossRef]
- Rhee, S.G.; Woo, H.A.; Kil, I.S.; Bae, S.H. Peroxiredoxin Functions as a Peroxidase and a Regulator and Sensor of Local Peroxides. J. Biol. Chem. 2012, 287, 4403–4410. [Google Scholar] [CrossRef] [Green Version]
- Kisucka, J.; Chauhan, A.K.; Patten, I.S.; Yesilaltay, A.; Neumann, C.; Van Etten, R.A.; Krieger, M.; Wagner, D.D. Peroxiredoxin1 Prevents Excessive Endothelial Activation and Early Atherosclerosis. Circ. Res. 2008, 103, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.J.; Park, J.G.; Oh, G.T. Peroxiredoxins as Potential Targets for Cardiovascular Disease. Antioxidants 2021, 10, 1244. [Google Scholar] [CrossRef]
- O’Brien, E.; White, W.B.; Parati, G.; Dolan, E. Ambulatory Blood Pressure Monitoring in the 21st Century. J. Clin. Hypertens. 2018, 20, 1108–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, P.K.; Carey, R.M.; Mancia, G.; Kreutz, R.; Bundy, J.D.; Williams, B. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines: Comparisons, Reflections, and Recommendations. Circulation 2022, 146, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Smolensky, M.H.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; et al. Cardiovascular Disease Risk Stratification by the Framigham Score Is Markedly Improved by Ambulatory Compared with Office Blood Pressure. Rev. Española Cardiol. (Engl. Ed.) 2021, 74, 953–961. [Google Scholar] [CrossRef]
- Liu, D.; Qin, P.; Liu, L.; Liu, Y.; Sun, X.; Li, H.; Zhao, Y.; Zhou, Q.; Li, Q.; Guo, C.; et al. Association of Pulse Pressure with All-Cause and Cause-Specific Mortality. J. Hum. Hypertens. 2021, 35, 274–279. [Google Scholar] [CrossRef]
- Vyssoulis, G.P.; Karpanou, E.A.; Liakos, C.I.; Kyvelou, S.-M.G.; Tzamou, V.E.; Michaelides, A.P.; Triantafyllou, A.I.; Spanos, P.G.; Stefanadis, C.I. Cardiovascular Risk Factor(s) Prevalence in Greek Hypertensives. Effect of Gender and Age. J. Hum. Hypertens. 2012, 26, 443–451. [Google Scholar] [CrossRef]
- Kunišek, J.; Kunišek, L. Impact of Blood Pressure Components on Left Ventricular Hypertrophy Remodeling. Acta Clin. Croat. 2018, 57, 638–645. [Google Scholar] [CrossRef]
- Marwick, T.H.; Gillebert, T.C.; Aurigemma, G.; Chirinos, J.; Derumeaux, G.; Galderisi, M.; Gottdiener, J.; Haluska, B.; Ofili, E.; Segers, P.; et al. Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J. Am. Soc. Echocardiogr. 2015, 28, 727–754. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hu, L.; Wei, X. Prognostic Value of Left Ventricular Hypertrophy in Hypertensive Patients: A Meta-Analysis of Electrocardiographic Studies. J. Clin. Hypertens. 2020, 22, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.P.; Barreto, A.T.F.; Neto, M.G.; Câmara, E.J.N.; Durães, A.R.; Roever, L.; Aras-Júnior, R. Prognostic Power of Conventional Echocardiography in Individuals without History of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Clinics 2021, 76, e2754. [Google Scholar] [CrossRef]
- Wang, S.; Xue, H.; Zou, Y.; Sun, K.; Fu, C.; Wang, H.; Hui, R. Left Ventricular Hypertrophy, Abnormal Ventricular Geometry and Relative Wall Thickness Are Associated with Increased Risk of Stroke in Hypertensive Patients among the Han Chinese. Hypertens. Res. 2014, 37, 870–874. [Google Scholar] [CrossRef]
- Koren, M.J.; Devereux, R.B.; Casale, P.N.; Savage, D.D.; Laragh, J.H. Relation of Left Ventricular Mass and Geometry to Morbidity and Mortality in Uncomplicated Essential Hypertension. Ann. Intern. Med. 1991, 114, 345–352. [Google Scholar] [CrossRef]
- Lv, T.; Yuan, Y.; Yang, J.; Wang, G.; Kong, L.; Li, H.; Li, X.; Sun, Y.; Li, X.; Zhang, Z.; et al. The Association between ECG Criteria and Echo Criteria for Left Ventricular Hypertrophy in a General Chinese Population. Ann. Noninvasive Electrocardiol. 2021, 26, e12880. [Google Scholar] [CrossRef] [PubMed]
- Mancusi, C.; Angeli, F.; Verdecchia, P.; Poltronieri, C.; de Simone, G.; Reboldi, G. Echocardiography in Low-Risk Hypertensive Patients. J. Am. Heart Assoc. 2019, 8, e013497. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult Obstructive Sleep Apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Martynowicz, H.; Czerwińska, K.; Wojakowska, A.; Januszewska, L.; Markiewicz-Górka, I.; Więckiewicz, M.; Mazur, G.; Pawlas, K.; Poręba, R.; Gać, P. Renalase and Hypertension-Demographic and Clinical Correlates in Obstructive Sleep Apnea. Sleep Breath. 2021, 25, 669–675. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Eisele, H.J.; Markart, P.; Schulz, R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxidative Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef] [Green Version]
- Banmeyer, I.; Marchand, C.; Clippe, A.; Knoops, B. Human Mitochondrial Peroxiredoxin 5 Protects from Mitochondrial DNA Damages Induced by Hydrogen Peroxide. FEBS Lett. 2005, 579, 2327–2333. [Google Scholar] [CrossRef] [Green Version]
- Knoops, B.; Goemaere, J.; Van der Eecken, V.; Declercq, J.-P. Peroxiredoxin 5: Structure, Mechanism, and Function of the Mammalian Atypical 2-Cys Peroxiredoxin. Antioxid. Redox Signal. 2010, 15, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Dai, F.; Wang, J.; Jiang, L.; Wang, D.; Gao, J.; Huang, J.; Luo, J.; Tang, F.; Zhang, Z.; et al. Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. Oxid. Med. Cell. Longev. 2022, 2022, 5067544. [Google Scholar] [CrossRef]
- Kunze, A.; Zierath, D.; Tanzi, P.; Cain, K.; Becker, K. Peroxiredoxin 5 (PRX5) Is Correlated Inversely to Systemic Markers of Inflammation in Acute Stroke. Stroke 2014, 45, 608–610. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Lloyd-Jones, D.M. Cardiovascular Risk Assessment in Hypertensive Patients. Am. J. Hypertens. 2021, 34, 569–577. [Google Scholar] [CrossRef]
- Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Seleno Protein-P Deficiency Predicts Cardiovascular Disease and Death. Nutrients 2019, 11, 1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivory, K.; Prieto, E.; Spinks, C.; Armah, C.N.; Goldson, A.J.; Dainty, J.R.; Nicoletti, C. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin. Nutr. 2017, 36, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salimian, M.; Soleimani, A.; Bahmani, F.; Tabatabaei, S.M.H.; Asemi, Z.; Talari, H.R. The Effects of Selenium Administration on Carotid Intima-Media Thickness and Metabolic Status in Diabetic Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. ESPEN 2022, 47, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Aaseth, J.; Alexander, J.; Johansson, P. Still Reduced Cardiovascular Mortality 12 Years after Supplementation with Selenium and Coenzyme Q10 for Four Years: A Validation of Previous 10-Year Follow-up Results of a Prospective Randomized Double-Blind Placebo-Controlled Trial in Elderly. PLoS ONE 2018, 13, e0193120. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P.; Winther, K.H.; Pastor-Barriuso, R.; Cold, F.; Thvilum, M.; Stranges, S.; Guallar, E.; Cold, S. Effect of Long-Term Selenium Supplementation on Mortality: Results from a Multiple-Dose, Randomised Controlled Trial. Free Radic. Biol. Med. 2018, 127, 46–54. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Guo, J.; Song, Y. Selenium Status and Cardiovascular Diseases: Meta-Analysis of Prospective Observational Studies and Randomized Controlled Trials. Eur. J. Clin. Nutr. 2016, 70, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Alehagen, U.; Aaseth, J.; Lindahl, T.L.; Larsson, A.; Alexander, J. Dietary Supplementation with Selenium and Coenzyme Q10 Prevents Increase in Plasma D-Dimer While Lowering Cardiovascular Mortality in an Elderly Swedish Population. Nutrients 2021, 13, 1344. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Hu, G.L.; Chu, C.; Zhang, X.Y.; Du, M.F.; Zou, T.; Zhou, Q.; Liao, Y.Y.; Ma, Q.; et al. Associations of Renalase With Blood Pressure and Hypertension in Chinese Adults. Front. Cardiovasc. Med. 2022, 9, 800427. [Google Scholar] [CrossRef]
- Lemiesz, M.; Tenderenda-Banasiuk, E.; Sosnowska, D.; Taranta-Janusz, K.; Wasilewska, A. Serum Renalase Levels in Adolescents with Primary Hypertension. Pediatr. Cardiol. 2018, 39, 1258–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wybraniec, M.T.; Mizia-Stec, K.; Trojnarska, O.; Chudek, J.; Czerwieńska, B.; Wikarek, M.; Więcek, A. Low Plasma Renalase Concentration in Hypertensive Patients after Surgical Repair of Coarctation of Aorta. J. Am. Soc. Hypertens. 2014, 8, 464–474. [Google Scholar] [CrossRef]
- Malyszko, J.; Koc-Zorawska, E.; Malyszko, J.S.; Kozminski, P.; Zbroch, E.; Mysliwiec, M. Renalase, Stroke, and Hypertension in Hemodialyzed Patients. Ren. Fail. 2012, 34, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Parikh, P.B.; Malhotra, A.; Gruberg, L.; Kort, S. Relation of Body Mass Index and Gender to Left Atrial Size and Atrial Fibrillation. Am. J. Cardiol. 2017, 120, 218–222. [Google Scholar] [CrossRef] [PubMed]
Variable | Prevalence in the Study Group |
---|---|
age (years) a height (cm) a body mass (kg) a BMI (kg/m2) a BSA (m2) a | 51.06 ± 13.93 172.22 ± 10.16 |
85.96 ± 15.36 | |
29.04 ± 5.05 | |
1.99 ± 0.20 | |
HTN b sBP (mmHg) a dBP (mmHg) a diuretics b β-blockers b ACE inhibitors b angiotensin receptor blockers b calcium channel blockers b | 40.6 |
139.90 ± 20.83 | |
89.95 ± 12.44 | |
17.8 | |
19.8 | |
18.8 | |
10.9 | |
8.9 | |
OSA b mild OSA b moderate OSA b severe OSA b AHI (events/h) a | 75.2 |
30.7 | |
20.8 | |
23.8 | |
18.34 ± 18.46 | |
type 2 diabetes b coronary artery disease b | 8.9 |
7.9 | |
selenoprotein P (ng/mL) a peroxiredoxin-5 (ng/mL) a renalase (ng/mL) a | 1.50 ± 1.91 |
1.48 ± 3.67 | |
178.56 ± 208.00 |
Subgroup | Classification Criterion | Subgroup Size | |
---|---|---|---|
division by HTN diagnosis | A | diagnosed with HTN | 60 |
B | without HTN | 41 | |
division by OSA diagnosis | C | diagnosed with OSA | 76 |
D | without OSA | 25 | |
division by median of selenoprotein P | E | ≥median of selenoproteins P (≥0.64 ng/mL) | 51 |
F | <median of selenoproteins P (<0.64 ng/mL) | 50 | |
division by median of peroxiredoxin | G | ≥median of peroxiredoxin (≥0.77 ng/mL) | 52 |
H | <median of peroxiredoxin (<0.77 ng/mL) | 49 | |
division by median of renalase | I | ≥median of renalase (≥60.43 ng/mL) | 51 |
J | <median of renalase (<60.43 ng/mL) | 50 | |
division by median of MBP | K | ≥median of MBP (≥93.47 ng/mL) | 51 |
L | <median of MBP (<93.47 ng/mL) | 50 | |
division by median of PP | M | ≥median of PP (≥51.00 mmHg) | 53 |
N | <median of PP (<51.00 mmHg) | 48 | |
division by median of LA | O | ≥median of LA (≥43.00 mm) | 53 |
P | <median of LA (<43.00 mm) | 48 | |
division by median of LVEF | R | ≥median of LVEF (≥66%) | 54 |
S | <median of LVEF (<66%) | 57 | |
division by diagnosis of LVH | T | diagnosed LVH | 64 |
U | without LVH | 37 |
Measured Parameter | Results |
---|---|
MSBP (mmHg) a | 131.57 ± 19.02 |
MDBP (mmHg) a | 76.70 ± 10.63 |
MBP (mmHg) a | 94.81 ± 12.68 |
VSBP (mmHg) a | 13.78 ± 4.19 |
VDBP (mmHg) a | 11.31 ± 3.78 |
PP (mmHg) a | 54.87 ± 12.45 |
LVEDD (mm) a | 51.24 ± 4.83 |
LVESD (mm) a | 31.80 ± 4.28 |
IVSEDD (mm) a | 12.81 ± 2.26 |
PWEDD (mm) a | 11.21 ± 2.32 |
LA (mm) a | 42.03 ± 4.66 |
Ao (mm) a | 35.13 ± 3.95 |
LVEF (%) a | 65.67 ± 4.63 |
LVMI (g/m2) a | 115.61 ± 41.78 |
RWT a | 0.47 ± 0.09 |
LVH b | 63.4 |
Subgroup | SELENOP (ng/mL) a | Prdx-5 (ng/mL) a | Renalase (ng/mL) a | MBP (mmHg) a | PP (mmHg) a | LA (mm) a | LVEF (%) a | LVH b |
---|---|---|---|---|---|---|---|---|
A | 0.95 ± 0.92 | 1.27 ± 1.43 | 159.16 ± 207.19 | 97.39 ± 11.81 | 56.98 ± 12.73 | 44.51 ± 4.39 | 65.44 ± 4.86 | 78.0 |
B | 1.87 ± 2.29 | 1.62 ± 4.63 | 191.81 ± 209.24 | 91.78 ± 13.25 | 52.80 ± 12.37 | 39.70 ± 4.84 | 65.83 ± 4.50 | 53.0 |
p A-B | <0.05 | ns | ns | <0.05 | <0.05 | <0.05 | ns | <0.05 |
C | 1.44 ± 1.95 | 1.61 ± 4.15 | 167.37 ± 197.29 | 95.09 ± 12.98 | 56.00 ± 12.42 | 42.46 ± 4.51 | 65.36 ± 4.88 | 71.0 |
D | 1.69 ± 1.82 | 1.96 ± 1.50 | 212.56 ± 238.79 | 93.98 ± 11.93 | 51.44 ± 12.18 | 40.72 ± 4.93 | 66.64 ± 3.67 | 40.0 |
p C-D | ns | ns | ns | ns | <0.05 | ns | ns | <0.05 |
Subgroup | MBP (mmHg) a | PP (mmHg) a | LA (mm) a | LVEF (%) a | LVH b |
---|---|---|---|---|---|
E | 91.54 ± 11.07 | 50.72 ± 9.50 | 40.12 ± 4.49 | 66.52 ± 4.22 | 50.0 |
F | 98.02 ± 13.42 | 58.94 ± 13.70 | 43.90 ± 4.05 | 64.84 ± 4.89 | 76.5 |
p E-F | <0.05 | <0.05 | <0.05 | ns | <0.05 |
G | 94.58 ± 12.35 | 53.82 ± 10.79 | 42.76 ± 4.85 | 65.24 ± 4.28 | 59.2 |
H | 95.03 ± 13.10 | 55.87 ± 13.87 | 41.35 ± 4.41 | 66.08 ± 4.94 | 67.3 |
p G-H | ns | ns | ns | ns | ns |
I | 94.90 ± 12.78 | 52.51 ± 10.51 | 40.86 ± 4.85 | 65.57 ± 4.18 | 56.9 |
J | 94.72 ± 12.70 | 57.28 ± 13.86 | 43.22 ± 4.17 | 65.78 ± 5.08 | 70.0 |
p I-J | ns | <0.05 | <0.05 | ns | ns |
Subgroup | SELENOP (ng/mL) a | Prdx-5 (ng/mL) a | Renalase (ng/mL) a | LA (mm) a | LVEF (%) a | LVH b |
---|---|---|---|---|---|---|
K | 1.28 ± 1.66 | 1.77 ± 5.01 | 184.68 ± 206.70 | 40.04 ± 4.34 | 65.47 ± 5.17 | 66.7 |
L | 1.73 ± 2.13 | 1.17 ± 1.32 | 172.32 ± 211.23 | 44.02 ± 5.01 | 65.30 ± 3.66 | 60.0 |
p K-L | ns | ns | ns | <0.05 | ns | ns |
M | 0.80 ± 1.04 | 1.68 ± 4.72 | 143.45 ± 176.30 | 43.64 ± 3.98 | 64.95 ± 5.09 | 77.6 |
N | 2.45 ± 2.37 | 1.20 ± 1.31 | 225.92 ± 238.38 | 39.86 ± 4.66 | 66.65 ± 3.75 | 44.2 |
p M-N | <0.05 | ns | <0.05 | <0.05 | ns | <0.05 |
Subgroup | SELENOP (ng/mL) a | Prdx-5 (ng/mL) a | Renalase (ng/mL) a | MBP (mmHg) a | PP (mmHg) a |
---|---|---|---|---|---|
O | 0.85 ± 1.07 | 1.83 ± 4.89 | 123.55 ± 172.81 | 96.06 ± 13.06 | 57.81 ± 12.24 |
P | 2.23 ± 2.34 | 1.08 ± 1.40 | 239.30 ± 227.66 | 93.43 ± 12.23 | 51.63 ± 11.99 |
p O-P | <0.05 | ns | <0.05 | ns | <0.05 |
R | 1.35 ± 1.59 | 1.74 ± 5.12 | 177.66 ± 204.45 | 95.13 ± 13.71 | 57.45 ± 13.07 |
S | 1.60 ± 2.08 | 1.25 ± 1.61 | 179.34 ± 212.94 | 94.92 ± 11.04 | 52.63 ± 11.55 |
p R-S | ns | ns | ns | ns | <0.05 |
T | 1.02 ± 1.54 | 1.58 ± 4.47 | 131.18 ± 157.18 | 97.21 ± 13.53 | 57.06 ± 13.29 |
U | 2.33 ± 2.21 | 1.29 ± 1.57 | 260.51 ± 257.00 | 90.67 ± 9.91 | 51.08 ± 10.37 |
p T-U | <0.05 | ns | <0.05 | <0.05 | <0.05 |
Tested Parameter | Selenoprotein P (ng/mL) | Peroxiredoxin-5 (ng/mL) | Renalase (ng/mL) |
---|---|---|---|
MSBP (mmHg) | −0.33 | ns | ns |
MDBP (mmHg) | −0.21 | ns | ns |
MBP (mmHg) | −0.28 | ns | ns |
VSBP (mmHg) | ns | ns | ns |
VDBP (mmHg) | ns | ns | ns |
PP (mmHg) | −0.32 | ns | −0.22 |
LVEDD (mm) | ns | ns | ns |
LVESD (mm) | ns | ns | ns |
IVSEDD (mm) | −0.28 | ns | −0.20 |
PWEDD (mm) | −0.27 | ns | ns |
LA (mm) | −0.30 | ns | −0.22 |
Ao (mm) | ns | ns | ns |
LVEF (%) | ns | ns | ns |
LVMI (g/m2) | −0.33 | ns | ns |
RWT | −0.20 | ns | ns |
Multivariable Stepwise Backward Regression Analysis | |||
---|---|---|---|
Model for: PP (mmHg) | |||
Rc | SEM of Rc | p | |
intercept | 44.801 | 8.308 | < 0.001 |
age (years) | 0.118 | 0.043 | <0.05 |
BMI (kg/m2) | 0.355 | 0.133 | <0.05 |
antihypertensives drugs | −3.757 | 1.250 | <0.01 |
SELENOP (ng/mL) | −1.876 | 0.636 | <0.01 |
renalase (ng/mL) | −0.011 | 0.004 | <0.05 |
p < 0.01 | |||
Multivariable Stepwise Backward Regression Analysis | |||
Model for: LA (mm) | |||
Rc | SEM of Rc | p | |
intercept | 38.929 | 3.254 | <0.001 |
age (years) | 0.045 | 0.022 | <0.05 |
BMI (kg/m2) | 0.004 | 0.001 | <0.01 |
male gender | 1.762 | 0.792 | <0.05 |
PP (mmHg) | 0.111 | 0.037 | <0.01 |
p < 0.01 | |||
Logistic Regression Analysis | |||
Model for: Probability of LVH | |||
Rc | SEM of Rc | p | |
BMI (kg/m2) | 0.079 | 0.021 | <0.01 |
antihypertensives drugs | −1.448 | 0.321 | <0.01 |
OSA | 1.210 | 0.514 | <0.05 |
PP (mmHg) | 0.043 | 0.020 | <0.05 |
p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwińska, K.; Januszewska, L.; Markiewicz-Górka, I.; Jaremków, A.; Martynowicz, H.; Pawlas, K.; Mazur, G.; Poręba, R.; Gać, P. Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography. Antioxidants 2023, 12, 1187. https://doi.org/10.3390/antiox12061187
Czerwińska K, Januszewska L, Markiewicz-Górka I, Jaremków A, Martynowicz H, Pawlas K, Mazur G, Poręba R, Gać P. Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography. Antioxidants. 2023; 12(6):1187. https://doi.org/10.3390/antiox12061187
Chicago/Turabian StyleCzerwińska, Karolina, Lidia Januszewska, Iwona Markiewicz-Górka, Aleksandra Jaremków, Helena Martynowicz, Krystyna Pawlas, Grzegorz Mazur, Rafał Poręba, and Paweł Gać. 2023. "Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography" Antioxidants 12, no. 6: 1187. https://doi.org/10.3390/antiox12061187
APA StyleCzerwińska, K., Januszewska, L., Markiewicz-Górka, I., Jaremków, A., Martynowicz, H., Pawlas, K., Mazur, G., Poręba, R., & Gać, P. (2023). Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography. Antioxidants, 12(6), 1187. https://doi.org/10.3390/antiox12061187