The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacteria and Fermentation of Soymilk
2.2. Soymilk Sample Preparation
2.2.1. Commercial Protease Sample
2.2.2. Fractionation of Soymilk Samples
2.3. Determination of the Radical Scavenging Activities of Soymilk Samples Using the DPPH Radical Assay
2.4. Treatment of Cell Lines with Soymilk Fractions
2.4.1. Cells and Reagents
2.4.2. Cell Viability Assay
2.4.3. UVB Exposure of Fibroblasts and HaCaT Cells
2.4.4. Melanin Content of B16F1 Cells
2.5. Chemical Parameters
2.6. Statistical Analyses
3. Results and Discussion
3.1. DPPH Radical Scavenging Activities of Soymilk Fractions
3.2. Cytotoxicities of Soymilk Fractions in Cell Lines
3.2.1. Cytotoxicities of Soymilk Fractions in Fibroblasts
3.2.2. Cytotoxicities of Soymilk Fractions in HaCaT Keratinocytes
3.3. Production of Type 1 Procollagen in Fibroblasts
3.4. Inhibition of TNF-α Production in HaCaT Keratinocytes
3.5. Characteristics of Functional Soymilk Fractions
3.5.1. General and Reducing Sugars in Soymilk Fractions
3.5.2. Free Amino Acid and Nitrogen Contents in Soymilk Fractions
3.6. Analysis of Peptides Derived from 50SFMKUF5
3.6.1. Screening of Bioactive Compounds from 50SFMKUF5
3.6.2. Production of Type 1 Procollagen in Fibroblasts after Peptide Treatment
3.6.3. Inhibition of TNF-α Production in HaCaT Keratinocytes after Peptide Treatment
3.6.4. Inhibition of Melanin Synthesis in B16F1 Melanoma Cells after Peptide Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Kumari, M.; Kokkiligadda, A.; Dasriya, V.; Naithani, H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J. Appl. Microbiol. 2022, 133, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Tokudome, Y.; Nakamura, K.; Hashimoto, F. Effects of low molecular weight soybean peptide on mRNA and protein expression levels of differentiation markers in normal human epidermal keratinocytes. Biosci. Biotechnol. Biochem. 2014, 78, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [Green Version]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by Lactobacillus species: From gene to application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef] [Green Version]
- Miri, S.; Hajihosseini, R.; Saedi, H.; Vaseghi, M.; Rasooli, A. Fermented soybean meal extract improves oxidative stress factors in the lung of inflammation/infection animal model. Ann. Microbiol. 2019, 69, 1507–1515. [Google Scholar] [CrossRef]
- Marazza, J.A.; Nazareno, M.A.; de Giori, G.S.; Garro, M.S. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J. Funct. Foods 2012, 4, 594–601. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yu, R.C.; Chou, C.C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006, 23, 128–135. [Google Scholar] [CrossRef]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandel, R.; Poljšak, B.; Godic, A.; Dahmane, R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol. 2013, 12, 930164. [Google Scholar] [CrossRef] [Green Version]
- De Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.P.; Tuan, T.L.; Wu, H.; Hughes, M.; Garner, W. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa) B mediated induction of MT1-MMP. J. Cell Sci. 2001, 114, 131–139. [Google Scholar] [CrossRef]
- Quan, T.; Little, E.; Quan, H.; Qin, Z.; Voorhees, J.J.; Fisher, G.J. Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: Impact of altered extracellular matrix microenvironment on dermal fibroblast function. J. Investig. Dermatol. 2013, 133, 1362–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Jang, D.H.; Choi, H.J.; Park, Y.S. Optimization of soymilk fermentation by the protease-producing Lactobacillus paracasei. Korean J. Food Sci. Technol. 2013, 45, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Shi, J.; Ibarra, A.C.; Kakuda, Y.; Xue, S.J. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. LWT-Food Sci. Technol. 2008, 41, 1344–1349. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 6, 469–471. [Google Scholar] [CrossRef]
- Tsuboi, T.; Kondoh, H.; Hiratsuka, J.; MIshima, Y. Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Res. 1988, 11, 275–282. [Google Scholar] [CrossRef]
- Murthy, L.; Herreid, E.O. Determination of total nitrogen in stored milk by nesslerization and by the macro-Kjeldahl methods. J. Dairy Sci. 1958, 41, 314–315. [Google Scholar] [CrossRef]
- Rowland, S.J. The determination of the nitrogen distribution in milk. J. Dairy Res. 1937, 9, 42–46. [Google Scholar] [CrossRef]
- Holth, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Hensyl, W.R., Ed.; Lippincott Williams and Wikins: Baltimore, MD, USA, 1994; pp. 243–244. [Google Scholar]
- Lee, S.; Kwon, H.K.; Park, H.J.; Park, Y.S. Solid-state fermentation of germinated black bean (Rhynchosia nulubilis) using Lactobacillus pentosus SC65 and its immunostimulatory effect. Food Biosci. 2018, 26, 57–64. [Google Scholar] [CrossRef]
- Dai, S.; Pan, M.; El-Nezami, H.S.; Wan, J.M.F.; Wang, M.F.; Habimana, O.; Lee, J.C.Y.; Louie, J.C.Y.; Shah, N.P. Effects of lactic acid bacteria-fermented soymilk on isoflavone metabolites and short-chain fatty acids excretion and their modulating effects on gut microbiota. J. Food Sci. 2019, 84, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Leksono, B.Y.; Cahyanto, M.N.; Rahayu, E.S.; Yanti, R.; Utami, T. Enhancement of antioxidant activities in black soy milk through isoflavone aglycone production during indigenous lactic acid bacteria fermentation. Fermentation 2022, 8, 326. [Google Scholar] [CrossRef]
- Undhad Trupti, J.; Das, S.; Solanki, D.; Kinariwala, D.; Hati, S. Bioactivities and ACE-inhibitory peptides releasing potential of lactic acid bacteria in fermented soy milk. Food Prod. Process. Nutr. 2021, 3, 10. [Google Scholar] [CrossRef]
- Hati, S.; Patel, N.; Pipaliya, R. Bioactivities and production of antihypertensive peptides during fermentation of soy milk by lactic cultures. Rev. Res. Med. Microbiol. 2023, 34, 79–88. [Google Scholar] [CrossRef]
- Usha Rani, V.; Pradeep, B.V. Antioxidant properties of soy milk fermented with Lactobacillus paracasei KUMBB005. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 39–42. [Google Scholar]
- Bhatnagar, M.; Attri, S.; Sharma, K.; Goel, G. Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soymilk hydrolysate. J. Food Meas. Charact. 2018, 12, 1005–1010. [Google Scholar] [CrossRef]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Huh, J.S.; Lim, Y.; Cho, M. Soy isoflavone glycitin (4′-Hydroxy-6-Methoxyisoflavone-7-D-Glucoside) promotes human dermal fibroblast cell proliferation and migration via TGF-β signaling. Phytother. Res. 2015, 29, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Hood, M.; Zhang, I.X.; Chen, C.L.; Zhang, L.L.; Du, J. Collagen and soy peptides attenuate contractile loss from UVA damage and enhance the antioxidant capacity of dermal fibroblasts. J. Cosmet. Dermatol. 2021, 20, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Han, M.R.; Lee, S.Y.; Kim, A.J. Effect of fermented soybean on the proliferation and growth in HaCaT and fibroblast cell. J. Korea Acad. -Ind. Coop. Soc. 2021, 22, 326–335. [Google Scholar] [CrossRef]
- Cavinato, M.; Jansen-Dürr, P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp. Gerontol. 2017, 94, 78–82. [Google Scholar] [CrossRef]
- Hong, G.P.; Min, S.G.; Jo, Y.J. Anti-oxidative and anti-aging activities of porcine by-product collagen hydrolysates produced by commercial proteases: Effect of hydrolysis and ultrafiltration. Molecules 2019, 24, 1104. [Google Scholar] [CrossRef] [Green Version]
- Moure, A.; Domínguez, H.; Parajó, J.C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 2006, 41, 447–456. [Google Scholar] [CrossRef]
- Fineschi, S.; Cozzi, F.; Burger, D.; Dayer, J.M.; Meroni, P.L.; Chizzolini, C. Anti-fibroblast antibodies detected by cell-based ELISA in systemic sclerosis enhance the collagenolytic activity and matrix metalloproteinase-1 production in dermal fibroblasts. Rheumatology 2007, 46, 1779–1785. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Shang, F.; Zhang, Y.; Wang, R.; Jia, Y.; Li, K. Persimmon oligomeric proanthocyanidins alleviate ultraviolet B-induced skin damage by regulating oxidative stress and inflammatory responses. Free Radic. Res. 2020, 54, 765–776. [Google Scholar] [CrossRef]
- Yang, E.J.; Yun, S.H.; Ko, J.H.; Kang, H.K.; Lee, J.N.; Park, S.M.; Hyun, C.G. Protective effect of Rhododendron weyrichii flower extract against UVB-induced proinflammatory cytokine production in human keratinocytes. J. Appl. Pharm. Sci. 2019, 9, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Kwak, J.S.; Jang, S.; Jia, Y.; Park, I. Fermentation characteristics of soybean yogurt by mixed culture of Bacillus sp. and lactic acid bacteria. Korean J. Food Nutr. 2013, 26, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Lee, W.J.; Kim, D.S.; Park, J.H.; Kang, J.H. Production of the bacteriocin from the tofu-residue. J. Korean Soc. Food Sci. Nutr. 1999, 28, 74–80. [Google Scholar]
- Shihata, A.; Shah, N.P. Proteolytic profiles of yogurt and probiotic bacteria. Int. Dairy J. 2000, 10, 401–408. [Google Scholar] [CrossRef]
- Tsai, J.S.; Lin, Y.S.; Pan, B.S.; Chen, T.J. Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem. 2006, 41, 1282–1288. [Google Scholar] [CrossRef]
- Kobayashi, M.; Shima, T.; Fukuda, M. Metabolite profile of lactic acid-fermented soymilk. Food Nutr. Sci. 2018, 9, 1327–1340. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Tan, K.; Siow, P.; Henry, C. Soya milk exerts different effects on plasma amino acid responses and incretin hormone secretion compared with cows’ milk in healthy, young men. Br. J. Nutr. 2016, 116, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-protein conversion factors for edible insects on the Swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Draelos, Z.D. The science behind skin care: Moisturizers. J. Cosmet. Dermatol. 2018, 17, 138–144. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S. Growth and bioactive peptides production potential of Lactobacillus planatarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. LWT-Food Sci. Technol. 2017, 86, 293–301. [Google Scholar] [CrossRef]
- Lu, W.; Liu, J.; Gao, B.; Lv, X.; Yu, L. Technical note: Nontargeted detection of adulterated plant proteins in raw milk by UPLC-quadrupole time-of-flight mass spectrometric proteomics combined with chemometrics. J. Dairy Sci. 2017, 100, 6980–6986. [Google Scholar] [CrossRef]
- Vasconcellos, F.C.S.; Woiciechowski, A.L.; Soccol, V.T.; Mantovani, D.; Soccol, C.R. Antimicrobial and antioxidant properties of β-conglycinin and glycinin from soy protein isolate. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 144–157. [Google Scholar]
- Mortazavi, S.; Moghimi, H.; Maibach, H. Chemical modification: An important and feasible method for improving peptide and protein dermal and transdermal delivery. In Percutaneous Absorption: Drugs, Cosmetics, Mechanisms, Methods, 5th ed.; Dragićević, N., Maibach, H., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 459–468. [Google Scholar]
- Abu Samah, N.H.; Heard, C.M. Topically applied KTTKS: A review. Int. J. Cosmet. Sci. 2011, 33, 483–490. [Google Scholar] [CrossRef]
- Benson, H.A.; Namjoshi, S. Proteins and peptides: Strategies for delivery to and across the skin. J. Pharm. Sci. 2008, 97, 3591–3610. [Google Scholar] [CrossRef]
- Dominik, I.; Eileen, J.; Marc, H.; Remo, C.; Eliane, W.; Hugo, Z. Activation of TGF-β: A gateway to skin rejuvenation. HPC Today 2015, 10, 1–6. [Google Scholar]
- Choi, Y.L.; Park, E.J.; Kim, E.; Na, D.H.; Shin, Y.H. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol. Ther. 2014, 22, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Guttman, C. Studies demonstrate value of procollagen fragment Pal-KTTKS. Dermatol. Times 2002, 23, 68. [Google Scholar]
- Kwak, S.J.; Kim, C.S.; Choi, M.S.; Park, T.; Sung, M.K.; Yun, J.W.; Yoo, H.; Mine, Y.; Yu, R. The soy peptide Phe–Leu–Val reduces TNFα-induced inflammatory response and insulin resistance in adipocytes. J. Med. Food 2016, 19, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta 2012, 1820, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Shidal, C.; Al-Rayyan, N.; Yaddanapudi, K.; Davis, K.R. Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget 2016, 20, 84128–84141. [Google Scholar] [CrossRef] [Green Version]
- Hirobe, T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2005, 18, 2–12. [Google Scholar] [CrossRef]
- Riley, P.A. Melanogenesis and melanoma. Pigment Cell Res. 2003, 16, 548–552. [Google Scholar] [CrossRef]
- Benn, E.K.T.; Alexis, A.; Mohamed, N.; Wang, Y.H.; Khan, I.A.; Liu, B. Skin bleaching and dermatologic health of African and Afro-Caribbean populations in the US: New directions for methodologically rigorous, multidisciplinary, and culturally sensitive research. Dermatol. Ther. 2016, 6, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, P.; Yves, P. The widespread use of skin lightening creams in Senegal: A persistent public health problem in West Africa. Int. J. Dermatol. 2002, 41, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Dadzie, O.E.; Petit, A. Skin bleaching: Highlighting the misuse of cutaneous depigmenting agents. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 741–750. [Google Scholar] [CrossRef]
- Gui, M.; Du, J.; Guo, J.; Xiao, B.; Yang, W.; Li, M. Aqueous extract of Chrysanthemum morifolium enhances the antimelanogenic and antioxidative activities of the mixture of soy peptide and collagen peptide. J. Tradit. Complement. Med. 2014, 4, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodurlar, Y.; Caliskan, M. Inhibitory activity of soybean (Glycine max L. Merr.) Cell Culture Extract on tyrosinase activity and melanin formation in alpha-melanocyte stimulating Hormone-Induced B16-F10 melanoma cells. Mol. Biol. Rep. 2022, 49, 7827–7836. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Flow Chart of Fermentation or/and Fractionation |
---|---|
50S | 50% Soymilk |
50SMK | 50% Soymilk→Fermented with L. paracasei MK1 |
50SMKUF30 | 50% Soymilk→Fermented with L. paracasei MK1→UF 30 kDa |
50SMKUF5 | 50% Soymilk→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
SF | 100% Soymilk→Flavourzyme |
SP | 100% Soymilk→Protamex |
50SMKF | 50% Soymilk→Fermented with L. paracasei MK1→Flavourzyme |
50SMKFUF30 | 50% Soymilk→Fermented with L. paracasei MK1→Flavourzyme→UF 30 kDa |
50SMKFUF5 | 50% Soymilk→Fermented with L. paracasei MK1→Flavourzyme→UF 30 kDa→UF 5 kDa |
50SMKP | 50% Soymilk→Fermented with L. paracasei MK1→Protamex |
50SMKPUF30 | 50% Soymilk→Fermented with L. paracasei MK1→Protamex→UF 30 kDa |
50SMKPUF5 | 50% Soymilk→Fermented with L. paracasei MK1→Protamex→UF 30 kDa→UF 5 kDa |
50SFMK | 50% Soymilk→Flavourzyme→Fermented with L. paracasei MK1 |
50SFMKUF30 | 50% Soymilk→Flavourzyme→Fermented with L. paracasei MK1→UF 30 kDa |
50SFMKUF5 | 50% Soymilk→Flavourzyme→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
50SPMK | 50% Soymilk→Protamex→Fermented with L. paracasei MK1 |
50SPMKUF30 | 50% Soymilk→Protamex→Fermented with L. paracasei MK1→UF 30 kDa |
50SPMKUF5 | 50% Soymilk→Protamex→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
100S | 100% Soymilk |
100SMK | 100% Soymilk→Fermented with L. paracasei MK1 |
100SMKUF30 | 100% Soymilk→Fermented with L. paracasei MK1→UF 30 kDa |
100SMKUF5 | 100% Soymilk→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
100SMKF | 100% Soymilk→Fermented with L. paracasei MK1→Flavourzyme |
100SMKFUF30 | 100% Soymilk→Fermented with L. paracasei MK1→Flavourzyme→UF 30 kDa |
100SMKFUF5 | 100% Soymilk→Fermented with L. paracasei MK1→Flavourzyme→UF 30 kDa→UF5 kDa |
100SMKP | 100% Soymilk→Fermented with L. paracasei MK1→Protamex |
100SMKPUF30 | 100% Soymilk→Fermented with L. paracasei MK1→Protamex→UF 30 kDa |
100SMKPUF5 | 100% Soymilk→Fermented with L. paracasei MK1→Protamex→UF 30 kDa→UF 5 kDa |
100SFMK | 100% Soymilk→Flavourzyme→Fermented with L. paracasei MK1 |
100SFMKUF30 | 100% Soymilk→Flavourzyme→Fermented with L. paracasei MK1→UF 30 kDa |
100SFMKUF5 | 100% Soymilk→Flavourzyme→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
100SPMK | 100% Soymilk→Protamex→Fermented with L. paracasei MK1 |
100SPMKUF30 | 100% Soymilk→Protamex→Fermented with L. paracasei MK1→UF 30 kDa |
100SPMKUF5 | 100% Soymilk→Protamex→Fermented with L. paracasei MK1→UF 30 kDa→UF 5 kDa |
Sample | IC50 (Solid, wt%) | Sample | IC50 (Solid, wt%) |
---|---|---|---|
50S | 1.24 | 100S | ND 1 |
50SMK | 0.67 | 100SMK | 0.86 |
50SMKUF30 | 0.81 | 100SMKUF30 | 0.81 |
50SMKUF5 | 0.75 | 100SMKUF5 | 0.91 |
SF | ND1 | 100SMKF | 0.91 |
SP | ND | 100SMKFUF30 | 0.86 |
50SMKF | 0.86 | 100SMKFUF5 | 0.95 |
50SMKFUF30 | 0.78 | 100SMKP | 0.86 |
50SMKFUF5 | 0.86 | 100SMKPUF30 | 0.87 |
50SMKP | 0.78 | 100SMKPUF5 | 0.91 |
50SMKPUF30 | 0.86 | 100SFMK | 0.75 |
50SMKPUF5 | 0.91 | 100SFMKUF30 | 0.99 |
50SFMK | 0.81 | 100SFMKUF5 | 0.86 |
50SFMKUF30 | 0.78 | 100SPMK | 0.78 |
50SFMKUF5 | 0.86 | 100SPMKUF30 | 0.91 |
50SPMK | 0.78 | 100SPMKUF5 | 0.91 |
50SPMKUF30 | 0.99 | ||
50SPMKUF5 | 0.87 |
Component | Content | |
---|---|---|
100% Soymilk | 50SMKUF5 | |
Saccharide (g/100 g) | 0.71 | ND 1 |
Carbohydrate (g/100g) | 3.40 | ND |
Crude protein (g/100 g) | 4.30 | 0.30 |
Crude lipid (g/100 g) | 2.40 | 0.00 |
Solid (%) | 10.80 | 1.37 |
Amino Acid | Concentration of Free Amino Acid (mg/100 g, %) | ||||
---|---|---|---|---|---|
50SMKUF5 | 50SMKFUF5 | 50SMKPUF5 | 50SFMKUF5 | 50SPMKUF5 | |
Aspartic acid | 1.8 (4.5) | 1.9 (4.1) | 1.9 (4.5) | 2.6 (3.9) | 1.2 (2.8) |
Glutamic acid | 12.5 (31.0) | 13.3 (28.4) | 11.2 (27.0) | 7.2 (10.7) | 4.6 (10.5) |
Asparagine | 0.4 (1.0) | 0.6 (1.2) | 0.4 (0.9) | 1.0 (1.5) | 0.2 (0.4) |
Serine | 0.2 (0.6) | 0.5 (1.1) | 0.3 (0.6) | 0.2 (0.3) | 0.1 (0.2) |
Glutamine | 0.0 (0.0) | 0.5 (1.1) | 0.0 (0.0) | 0.0 (0.0) | 0.0 (0.0) |
Glycine | 0.8 (2.0) | 0.7 (1.5) | 0.7 (1.7) | 0.6 (0.8) | 1.2 (2.7) |
Histidine | 1.6 (3.9) | 1.6 (3.4) | 1.7 (4.2) | 1.3 (2.0) | 1.2 (2.8) |
Arginine | 10.9 (27.0) | 10.2 (21.8) | 10.7 (25.8) | 11.9 (17.7) | 9.6 (22.1) |
Threonine | 0.3 (0.6) | 0.7 (1.6) | 0.4 (1.0) | 0.5 (0.8) | 0.5 (1.1) |
Alanine | 2.4 (6.0) | 2.5 (5.3) | 2.5 (6.1) | 2.9 (4.3) | 3.1 (7.1) |
Proline | 2.9 (7.2) | 2.7 (5.9) | 3.8 (9.1) | 1.5 (2.2) | 1.0 (2.3) |
Tyrosine | 1.5 (3.7) | 0.7 (1.6) | 1.5 (3.6) | 3.1 (4.5) | 1.4 (3.2) |
Valine | 0.3 (0.7) | 0.7 (1.4) | 0.3 (0.7) | 2.2 (3.3) | 1.7 (4.0) |
Methionine | 0.0 (0.0) | 0.7 (1.6) | 0.0 (0.0) | 0.3 (0.5) | 0.5 (1.2) |
Cysteine | 0.0 (0.0) | 0.1 (0.3) | 0.1 (0.2) | 0.1 (0.2) | 0.0 (0.0) |
Isoleucine | 0.0 (0.0) | 0.6 (1.2) | 0.2 (0.4) | 2.4 (3.6) | 2.1 (4.8) |
Leucine | 0.4 (0.9) | 2.1 (4.5) | 0.6 (1.4) | 11.2 (16.6) | 4.7 (10.8) |
Phenylalanine | 0.6 (1.5) | 2.4 (5.1) | 1.0 (2.4) | 15.0 (22.3) | 6.4 (14.6) |
Tryptophan | 2.7 (6.7) | 2.6 (5.6) | 3.0 (7.3) | 2.7 (4.0) | 3.9 (8.9) |
Lysine | 1.0 (2.5) | 1.7 (3.6) | 1.2 (3.0) | 0.6 (0.8) | 0.2 (0.4) |
TA 1 | 40.2 (100) | 46.8 (100) | 41.4 (100) | 67.3 (100) | 43.6 (100) |
EA 2 | 6.9 (16.8) | 13.1 (28.0) | 8.4 (20.4) | 36.2 (53.9) | 21.2 (43.6) |
Soymilk Fraction | Total Nitrogen (mg N/100 mL) | TCA-Soluble Nitrogen (mg N/100 mL) | TN/SN (%) |
---|---|---|---|
50S | 2.82 ± 0.17 | 0.12 ± 0.03 | 4.39 |
50SMKUF5 | 0.34 ± 0.07 | 0.12 ± 0.05 | 36.17 |
50SMKFUF5 | 0.60 ± 0.14 | 0.36 ± 0.03 | 59.59 |
50SMKPUF5 | 0.40 ± 0.09 | 0.23 ± 0.01 | 58.02 |
50SFMKUF5 | 1.22 ± 0.23 | 0.45 ± 0.02 | 36.93 |
50SPMKUF5 | 1.60 ± 0.22 | 0.82 ± 0.06 | 51.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Choi, S.-P.; Jeong, H.; Yu, W.K.; Kim, S.W.; Park, Y.-S. The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants 2023, 12, 1392. https://doi.org/10.3390/antiox12071392
Lee S, Choi S-P, Jeong H, Yu WK, Kim SW, Park Y-S. The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants. 2023; 12(7):1392. https://doi.org/10.3390/antiox12071392
Chicago/Turabian StyleLee, Sulhee, Sang-Pil Choi, Huijin Jeong, Won Kyu Yu, Sang Won Kim, and Young-Seo Park. 2023. "The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides" Antioxidants 12, no. 7: 1392. https://doi.org/10.3390/antiox12071392
APA StyleLee, S., Choi, S. -P., Jeong, H., Yu, W. K., Kim, S. W., & Park, Y. -S. (2023). The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants, 12(7), 1392. https://doi.org/10.3390/antiox12071392