Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence
Abstract
:1. Introduction
2. Hydroxytyrosol Safety and Common Doses of Dietary Origin and in Functional Foods
3. Considerations for Translating Pre-Clinical Studies to Human Subjects
4. Pre-Clinical Evidence of the Role of Hydroxytyrosol and Derivatives in Neuroprotection
4.1. In Vitro Studies
4.1.1. General Neuroprotection Models
Study | In Vitro Model | Compounds Tested | Concentrations | Significant Outcomes | Ref. |
---|---|---|---|---|---|
Yu et al., 2016 | SH-SY5Y cells treated with 6-OHDA | HT | 20–90 µM | Induction of the expression of phase II detoxifying enzymes NQO1, GST, GCL, and HO-1. | [30] |
Crespo et al., 2017 | Astrocytic cell line C6 exposed to Aβ (25–35) | HT | 5 µM | Prevention of viability decrease through increased Akt activation. | [31] |
Omar et al., 2017 | SH-SY5Y cells treated with copper and H2O2 | HT | 10–50 μM | Antiradical and protective activity against peroxidation. | [29] |
Funakohi-Tago et al., 2018 | SH-SY5Y cells treated with 6-OHDA | HT, HT acetate and HT butyrate | 5–10 µM | Reduction in the 6-OHDA-induced generation of ROS, activation of caspase-3, and subsequent cell death by HT butyrate, but not HT or HT acetate. HT butyrate induced Nrf2 and HO-1 expression | [32] |
Hornedo-Ortega et al., 2018 | Rat pheochromocytoma PC12 cells | HT | 25–200 µM | Inhibition of α-synuclein fibrils formation and of their pro-inflammatory activity. | [33] |
Lopez de Las Hazas et al., 2018 | Neuroblastoma SH-SY5Y and neuronal-like LUHMES cells | HT, HT acetate, HT sulphate, HT acetate-sulphate | 2.5–10 μM | Neuroprotection after oxidative injury observed after the pre-incubation with HT acetate. | [20] |
Gallardo-Fernández et al., 2019 | Murine microglial BV2 cells | HT | 1–50 µM | Inhibition of α-synuclein aggregation and of NF-ĸB activation. | [34] |
Leri et al., 2019 | SH-SY5Y cells treated with Aβ1-42 oligomers | HT and oleuropein | 0–20 µM | HT in synergy with oleuropein activated the autophagic flux to prevent cell damage. HT alone accelerated the formation of harmless fibrils while reducing harmful ones. | [35] |
Hsu et al., 2021 | Human cortical neuronal HCN-2 cells treated with rotenone | HT | 30 μM | Inhibition of rotenone-induced cytotoxic responses by limiting Ca2+ entry. HT reversed ROS levels, cytotoxic responses, and antioxidant enzyme activities (SOD, GPX, and CAT) in rotenone-treated cells. | [36] |
Mursaleen et al., 2021 | hCMEC/D3-SH-SY5Y cell co-culture treated with rotenone | HT delivered through nanoformulations | 20–200 µM | Encapsulation increased HT-induced protection against rotenone cytotoxicity and oxidative stress. | [37] |
Visioli et al., 2022 | 7PA2 cell line transfected with cDNA encoding human amyloid precursor protein APP751 | HT | 5 µM | Increase of new mitochondria at 8 h post-HT treatment and increased mitochondrial fusion and ATP concentrations after 24 h of treatment with HT vs. untreated cells. | [38] |
Nardi et al., 2023 | SH-SY5Y cells treated with 6-OHDA | HT and derivatives esterified and encapsulated in nanoformulations | 0.005–0.1 μM | Antioxidant capacity of the compounds tested. Better efficacy was observed after encapsulation. | [39] |
Rivero-Pino et al., 2023 | Human peripheral blood mononuclear cells treated with Aβ1-42 oligomers | HT | 41 µM | Down-regulation of pro-inflammatory cytokine gene expression and of neutrophil activation. | [40] |
4.1.2. Parkinson Models
4.1.3. Neurodegeneration Models
4.2. Animal In Vivo Studies
4.2.1. Capacity to Cross the BBB
4.2.2. Modulation of Oxidation/Inflammatory Pathways
4.2.3. HT in the Prevention of Neuronal Loss
4.2.4. Modulation of Cognition
Study | Animal Model | Compounds Tested | Dose | Route of Administration | Significant Outcomes | Ref. |
---|---|---|---|---|---|---|
Arunsundar et al., 2015 | C57BL/6 mice treated with Aβ1–42 plus oA42i | HT | 10 mg/kg/day for two weeks | Oral gavage | Reduction in brain pro-inflammatory factors (IL-18, IL-6, and COX-2) and modulation of MAPK signaling. Restoration of Bcl-2/Bad levels and activation of caspase-dependent mitochondria-mediated apoptotic pathway involving cytochrome c, APAF-1, and caspase-9/3. | [48] |
Zheng et al., 2015 | Specific pathogen-free female Sprague–Dawley rats exposed to restraint stress | HT | 10–50 mg/kg/day for two weeks before mating | Oral | Prevention of stress-induced downregulation of neural proteins BDNF, GAP43, synaptophysin, NMDAR1, NMDANR2A, and NMDANR2B. Increase of transcription factors FOXO1 and FOXO3, and phase II enzyme-related proteins Nrf2 and HO-1. | [53] |
Peng et al., 2016 | Transgenic APP/PS1 mice | HT | 5 mg/kg/day for six months | Oral gavage | Modulation of mitochondrial oxidative dysfunction, measured as reduction in mitochondrial carbonyl proteins and GSSG, increased SOD expression, and restoration of phase II enzymes. Restoration of p38 and JNK/MAPK signaling and attenuation of inflammation in the cerebral cortex. Inhibition of brain apoptotic responses. | [47] |
Nardiello et al., 2018 | TgCRND8 and wild type mice | HT | 50 mg/kg for four weeks | Oral gavage | Reduction in Aβ42 and pE3-Aβ deposits in the cortex and hippocampus. Reduction in TNF-α expression, astrocyte reaction, and modulation of MAPKs signaling. | [61] |
Calahorra et al., 2019 | Male C57BL/6JRj mice which underwent transient occlusion of the right middle cerebral artery | HT | 45 mg/kg/day for five weeks | Oral (Incorporated into the pellets) | Improved recovery after ischemic stroke by ameliorating stroke-associated learning and motor impairments. Increase in cerebral blood flow, functional and structural connectivity, and anti-inflammatory and neurogenic activity. | [60] |
Brunetti et al., 2020 | Wild type C. elegans strain N2 (Var. Bristol) and transgenic C. elegans strain OW13 | HT | 30 μg/mL, 100 μg/mL, 250 μg/mL and 500 μg/mL, | Oral | Enhancement of locomotion in worms suffering from α-synuclein-expression in muscles or rotenone exposure, reduction in α-synuclein accumulation in muscles cells, and prevention of neurodegeneration in α-synuclein-containing dopaminergic neurons. | [62] |
D’Andrea et al., 2020 | Btg1 knockout and Bgt1 wildtype strains (C57BL/6 background) mice | HT | 100 mg/kg/day for 13 days | Oral (in drinking water) | Activation of neurogenesis in the dentate gyrus, increase of new neurons survival, and decrease of neuronal apoptosis. | [59] |
Di Rosa et al., 2020 | Wild type C. elegans strain N2 (Var. Bristol) and transgenic C. elegans strain OW13 | HT | 100–500 μg/mL. | Oral | Reduction in neurodegeneration, increase of locomotion in worms suffering from α-synuclein-expression in muscles or rotenone exposure and prevention of α-synuclein accumulation. | [63] |
Pérez-Barrón et al., 2020 | Male Wistar rats PD model treated with MPP+ | HT | Single dose 1.5 mg/kg | Intravenous | Reduction in ipsilateral rotations, correlated with the preservation of striatal dopamine levels, due to the inhibitory effect on MAO activity. | [56] |
Zhang et al., 2020 | Male C57BL/6 mice treated with LPS | HT | Single dose 100 mg/kg | Oral gavage | Reduction in some pro-inflammatory mediators (COX-2, iNOS, TNF-α, IL-1β) levels and microglia/astrocyte activation in the brain. | [51] |
Pathania et al., 2021 | Male C57BL/6 mice treated with MPTP | HT | 50 mg/kg/day for 1 week before and after MPTP | Oral gavage | Restoration of brain dopamine levels and prevention dopaminergic neurons loss in the substantia nigra and striatum by MAO-B inhibition. | [58] |
Pérez-Barrón et al., 2021 | Male Wistar rats PD model treated with MPP+ | HT, HT acetate and nitro-HT | Single dose 1.5 mg/kg | Intravenous | Protection from dopamine neuron degeneration, restoration of MPP+-induced redox unbalance, decrease of lipid peroxidation products and rise of GSH/GSSG ratio. | [57] |
Qin et al., 2021 | Transgenic APP/PS1 mice | HT acetate | 50 mg/kg/day for twelve weeks | Oral gavage | Improved escape latency and distance, and the number of platform crossings of AD mice in the water maze test by ameliorating neuronal apoptosis and modulating NF-ĸB activity and MAPK signaling. | [52] |
5. Clinical Evidence of the Role of HT and Derivates in Cognitive Decline
5.1. Intervention Studies Using OO with High Phenolic Compounds (EVOO or Others) and Changes in Cognitive Performance
5.2. Clinical Trials Performed in Mediterranean Countries
5.2.1. PREDIMED Study
5.2.2. Clinical Trial: Replacement of Vegetables Oils for EVOO in Cognition
5.2.3. Management of Mild Cognitive Impairment Patients with EVOO Study (MICOIL)
5.2.4. PREDIMED PLUS Study
5.3. Clinical Trials Administering OO Performed in Non-Mediterranean Countries
5.4. Clinical Trials Administering Nutraceuticals with OO Phenolic Compounds
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Trichopoulou, A.; Panza, F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 70, 101395. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Siervo, M.; Shannon, O.M.; Llewellyn, D.J.; Stephan, B.C.; Fontana, L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic. Biol. Med. 2021, 176, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A. Traditional Mediterranean diet and longevity in the elderly: A review. Public Health Nutr. 2004, 7, 943–947. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.H. Mediterranean and MIND Diets Containing Olive Biophenols Reduces the Prevalence of Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 2797. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
- Martínez-Huélamo, M.; Rodríguez-Morató, J.; Boronat, A.; de la Torre, R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Seidita, A.; Soresi, M.; Giannitrapani, L.; Di Stefano, V.; Citarrella, R.; Mirarchi, L.; Cusimano, A.; Augello, G.; Carroccio, A.; Iovanna, J.L.; et al. The clinical impact of an extra virgin olive oil enriched mediterranean diet on metabolic syndrome: Lights and shadows of a nutraceutical approach. Front. Nutr. 2022, 9, 980429. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.-I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.-J.F.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Rinaldi de Alvarenga, J.F.; Romero del Castillo-Alba, J.; Vallverdú-Queralt, A.; Escribano-Ferrer, E.; Lamuela-Raventós, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 2532–2548. [Google Scholar] [CrossRef]
- Rodríguez-Morató, J.; Boronat, A.; Kotronoulas, A.; Pujadas, M.; Pastor, A.; Olesti, E.; Pérez-Mañá, C.; Khymenets, O.; Fitó, M.; Farré, M.; et al. Metabolic disposition and biological significance of simple phenols of dietary origin: Hydroxytyrosol and tyrosol. Drug Metab. Rev. 2016, 48, 218–236. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Morató, J.; Robledo, P.; Tanner, J.-A.; Boronat, A.; Pérez-Mañá, C.; Oliver Chen, C.-Y.; Tyndale, R.F.; de la Torre, R.; Chen, O.; Tyndale, R.F.; et al. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol. Food Chem. 2017, 217, 716–725. [Google Scholar] [CrossRef] [Green Version]
- Kotronoulas, A.; Pizarro, N.; Serra, A.; Robledo, P.; Joglar, J.; Rubió, L.; Hernaéz, Á.; Tormos, C.; Motilva, M.J.; Fitó, M.; et al. Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacol. Res. 2013, 77, 47–56. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- de las Hazas, M.-C.C.L.; Rubió, L.; Kotronoulas, A.; de la Torre, R.; Solà, R.; Motilva, M.-J.J. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats. Mol. Nutr. Food Res. 2015, 59, 1395–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de las Hazas, M.C.L.; Godinho-Pereira, J.; Macià, A.; Almeida, A.F.; Ventura, M.R.; Motilva, M.J.; Santos, C.N. Brain uptake of hydroxytyrosol and its main circulating metabolites: Protective potential in neuronal cells. J. Funct. Foods 2018, 46, 110–117. [Google Scholar] [CrossRef]
- EFSA Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte. EFSA J. 2011, 9, 2033. [CrossRef]
- Gallardo-Fernández, M.; Gonzalez-Ramirez, M.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res. 2019, 143, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Food Safety and Nutrition Section of the Scientific Committee. AECOSAN Report of the Scientific Committee of the Spanish Agency for Consumer Affairs, Food Safety and Nutrition (AECOSAN) on a request for initial assessment for marketing of synthetic hydroxytyrosol under Regulation (EC) No 258/97 concerning novel foods and novel food ingredients. AECOSAN J. 2015, 21, 11–25. [Google Scholar]
- Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, 4728. [Google Scholar] [CrossRef]
- U.S. Food & Drug Admnisration. Gras Notice (GRN) No. 600 for Hydroxytyrosol. Gras Notif. 2015. Available online: https://www.fda.gov/media/96937/download (accessed on 18 July 2023).
- Nair, A.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Boronat, A.; Rodriguez-Morató, J.; Serreli, G.; Fitó, M.; Tyndale, R.F.; Deiana, M.; de la Torre, R. Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv. Nutr. 2021, 12, 2172–2189. [Google Scholar] [CrossRef]
- Omar, S.; Kerr, P.; Scott, C.; Hamlin, A.; Obied, H. Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules 2017, 22, 1858. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Deng, A.; Tang, W.; Ma, J.; Yuan, C.; Ma, J. Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicity. Neurochem. Int. 2016, 96, 113–120. [Google Scholar] [CrossRef]
- Crespo, M.C.; Tomé-Carneiro, J.; Pintado, C.; Dávalos, A.; Visioli, F.; Burgos-Ramos, E. Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer’s disease. BioFactors 2017, 43, 540–548. [Google Scholar] [CrossRef]
- Funakohi-Tago, M.; Sakata, T.; Fujiwara, S.; Sakakura, A.; Sugai, T.; Tago, K.; Tamura, H. Hydroxytyrosol butyrate inhibits 6-OHDA-induced apoptosis through activation of the Nrf2/HO-1 axis in SH-SY5Y cells. Eur. J. Pharmacol. 2018, 834, 246–256. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Protective effects of hydroxytyrosol against α-synuclein toxicity on PC12 cells and fibril formation. Food Chem. Toxicol. 2018, 120, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Fernández, M.; Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; García-Parrilla, M.C. Melatonin, protocatechuic acid and hydroxytyrosol effects on vitagenes system against alpha-synuclein toxicity. Food Chem. Toxicol. 2019, 134, 110817. [Google Scholar] [CrossRef] [PubMed]
- Leri, M.; Natalello, A.; Bruzzone, E.; Stefani, M.; Bucciantini, M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ1-42 aggregation. Food Chem. Toxicol. 2019, 129, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-S.; Lin, Y.-S.; Liang, W.-Z. Inhibition of the pesticide rotenone-induced Ca2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cells by the phenolic compound hydroxytyrosol. Pestic. Biochem. Physiol. 2021, 179, 104979. [Google Scholar] [CrossRef]
- Mursaleen, L.; Noble, B.; Somavarapu, S.; Zariwala, M.G. Micellar nanocarriers of hydroxytyrosol are protective against parkinson’s related oxidative stress in an in vitro hcmec/d3-sh-sy5y co-culture system. Antioxidants 2021, 10, 887. [Google Scholar] [CrossRef]
- Visioli, F.; Rodríguez-Pérez, M.; Gómez-Torres, Ó.; Pintado-Losa, C.; Burgos-Ramos, E. Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer’s disease. Nutr. Neurosci. 2022, 25, 990–1000. [Google Scholar] [CrossRef]
- Nardi, M.; Brocchini, S.; Somavarapu, S.; Procopio, A. Hydroxytyrosol oleate: A promising neuroprotective nanocarrier delivery system of oleuropein and derivatives. Int. J. Pharm. 2023, 631, 122498. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Grao-Cruces, E.; Lopez-Enriquez, S.; Alba, G.; Marquez-Paradas, E.; Claro-Cala, C.M.; Santa-Maria, C.; Montserrat-de la Paz, S. Modulation of Beta-Amyloid-Activated Primary Human Neutrophils by Dietary Phenols from Virgin Olive Oil. Nutrients 2023, 15, 941. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. In vivo formed metabolites of polyphenols and their biological efficacy. Food Funct. 2019, 10, 6999–7021. [Google Scholar] [CrossRef]
- Leri, M.; Bertolini, A.; Stefani, M.; Bucciantini, M. EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 7225. [Google Scholar] [CrossRef]
- D’Angelo, S.; Manna, C.; Migliardi, V.; Mazzoni, O.; Morrica, P.; Capasso, G.; Pontoni, G.; Galletti, P.; Zappia, V. Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metab. Dispos. 2001, 29, 1492–1498. [Google Scholar]
- Fan, L.; Peng, Y.; Li, X. Brain regional pharmacokinetics of hydroxytyrosol and its molecular mechanism against depression assessed by multi-omics approaches. Phytomedicine 2023, 112, 154712. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yao, X.; Zhao, F.; Zhao, H.; Cheng, Z.; Yang, W.; Cui, R.; Xu, S.; Li, B. Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast. 2020, 2020, 8861903. [Google Scholar] [CrossRef] [PubMed]
- Kealy, J.; Greene, C.; Campbell, M. Blood-brain barrier regulation in psychiatric disorders. Neurosci. Lett. 2020, 726, 133664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Hou, C.; Yang, Z.; Li, C.; Jia, L.; Liu, J.; Tang, Y.; Shi, L.; Li, Y.; Long, J.; et al. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Mol. Nutr. Food Res. 2016, 60, 2331–2342. [Google Scholar] [CrossRef]
- Arunsundar, M.; Shanmugarajan, T.S.; Ravichandran, V. 3,4-Dihydroxyphenylethanol Attenuates Spatio-Cognitive Deficits in an Alzheimer’s Disease Mouse Model: Modulation of the Molecular Signals in Neuronal Survival-Apoptotic Programs. Neurotox. Res. 2015, 27, 143–155. [Google Scholar] [CrossRef]
- Fan, L.; Peng, Y.; Wang, J.; Ma, P.; Zhao, L.; Li, X. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: Bidirectional interaction of the phytochemicals and gut microbiota. Phytomedicine 2021, 83, 153471. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Zhang, L.; Yin, H.; Shen, L.; Zheng, W.; Zhang, K.; Zeng, J.; Hu, C.; Liu, Y. Hydroxytyrosol alleviates oxidative stress and neuroinflammation and enhances hippocampal neurotrophic signaling to improve stress-induced depressive behaviors in mice. Food Funct. 2021, 12, 5478–5487. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Jiang, X.; Yang, L.; Zhang, Q.; Wang, B.; Cui, L.; Wang, X. Hydroxytyrosol Inhibits LPS-Induced Neuroinflammatory Responses via Suppression of TLR-4-Mediated NF-κB P65 Activation and ERK Signaling Pathway. Neuroscience 2020, 426, 189–200. [Google Scholar] [CrossRef]
- Qin, C.; Hu, S.; Zhang, S.; Zhao, D.; Wang, Y.; Li, H.; Peng, Y.; Shi, L.; Xu, X.; Wang, C.; et al. Hydroxytyrosol Acetate Improves the Cognitive Function of APP/PS1 Transgenic Mice in ERβ-dependent Manner. Mol. Nutr. Food Res. 2021, 65, 2000797. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; et al. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: Role of AMP-activated protein kinase activation. Br. J. Nutr. 2015, 113, 1667–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Monte, S.M. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimers Disease. Curr. Alzheimer Res. 2012, 9, 35–66. [Google Scholar] [CrossRef]
- Özdemir, Z.; Alagöz, M.A.; Bahçecioğlu, Ö.F.; Gök, S. Monoamine Oxidase-B (MAO-B) Inhibitors in the Treatment of Alzheimer’s and Parkinson’s Disease. Curr. Med. Chem. 2021, 28, 6045–6065. [Google Scholar] [CrossRef]
- Perez-Barron, G.A.; Montes, S.; Rubio-Osornio, M.; Avila-Acevedo, J.G.; Garcia-Jimenez, S.; Rios, L.C.; Monroy-Noyola, A. Hydroxytyrosol inhibits MAO isoforms and prevents neurotoxicity inducible by MPP+ in vivo. Front. Biosci.–Sch. 2020, 12, 25–37. [Google Scholar] [CrossRef]
- Pérez-Barrón, G.; Montes, S.; Aguirre-Vidal, Y.; Santiago, M.; Gallardo, E.; Espartero, J.L.; Ríos, C.; Monroy-Noyola, A. Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP+ Model of Parkinson’s Disease. Neurochem. Res. 2021, 46, 2923–2935. [Google Scholar] [CrossRef]
- Pathania, A.; Kumar, R.; Sandhir, R. Hydroxytyrosol as anti-parkinsonian molecule: Assessment using in-silico and MPTP-induced Parkinson’s disease model. Biomed. Pharmacother. 2021, 139, 111525. [Google Scholar] [CrossRef]
- D’Andrea, G.; Ceccarelli, M.; Bernini, R.; Clemente, M.; Santi, L.; Caruso, C.; Micheli, L.; Tirone, F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J. 2020, 34, 4512–4526. [Google Scholar] [CrossRef] [Green Version]
- Calahorra, J.; Shenk, J.; Wielenga, V.H.; Verweij, V.; Geenen, B.; Dederen, P.J.; Peinado, M.Á.; Siles, E.; Wiesmann, M.; Kiliaan, A.J. Hydroxytyrosol, the major phenolic compound of olive oil, as an acute therapeutic strategy after ischemic stroke. Nutrients 2019, 11, 2430. [Google Scholar] [CrossRef] [Green Version]
- Nardiello, P.; Pantano, D.; Lapucci, A.; Stefani, M.; Casamenti, F. Diet Supplementation with Hydroxytyrosol Ameliorates Brain Pathology and Restores Cognitive Functions in a Mouse Model of Amyloid-β Deposition. J. Alzheimer’s Dis. 2018, 63, 1161–1172. [Google Scholar] [CrossRef]
- Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan maintenance and prevention of parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int. J. Mol. Sci. 2020, 21, 2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rosa, G.; Brunetti, G.; Scuto, M.; Salinaro, A.T.; Calabrese, E.J.; Crea, R.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan enhancement by olive polyphenols in c. Elegans wild type and parkinson’s models. Int. J. Mol. Sci. 2020, 21, 3893. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Lamuela-Raventós, R.M.; Medina-Remón, A.; Quintana, M.; Corella, D.; Pintó, X.; Martínez-González, M.Á.; Estruch, R.; Ros, E. Polyphenol-rich foods in the mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J. Alzheimer’s Dis. 2012, 29, 773–782. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; San Julian, B.; Sanchez-Tainta, A.; Corella, D.; Lamuela-Raventos, R.M.; Martinez, J.A.; Martinez-Gonzalez, M.Á. Virgin olive oil supplementation and long-term cognition: The Predimed-Navarra randomized, trial. J. Nutr. Health Aging 2013, 17, 544–552. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; De La Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [Green Version]
- Mazza, E.; Fava, A.; Ferro, Y.; Rotundo, S.; Romeo, S.; Bosco, D.; Pujia, A.; Montalcini, T. Effect of the replacement of dietary vegetable oils with a low dose of extravirgin olive oil in the Mediterranean Diet on cognitive functions in the elderly. J. Transl. Med. 2018, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Tsolaki, M.; Lazarou, E.; Kozori, M.; Petridou, N.; Tabakis, I.; Lazarou, I.; Karakota, M.; Saoulidis, I.; Melliou, E.; Magiatis, P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J. Alzheimer’s Dis. 2020, 78, 801–817. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Lyssoudis, C.; Tsolaki, A.C.; Lazarou, E.; Kozori, M.; Tsolaki, M. Greek High Phenolic Early Harvest Extra Virgin Olive Oil Reduces the Over-Excitation of Information-Flow Based on Dominant Coupling Mode (DoCM) Model in Patients with Mild Cognitive Impairment: An EEG Resting-State Validation Approach. J. Alzheimer’s Dis. 2021, 83, 191–207. [Google Scholar] [CrossRef]
- Tzekaki, E.E.; Tsolaki, M.; Pantazaki, A.A.; Geromichalos, G.; Lazarou, E.; Kozori, M.; Sinakos, Z. The pleiotropic beneficial intervention of olive oil intake on the Alzheimer’s disease onset via fibrinolytic system. Exp. Gerontol. 2021, 150, 111344. [Google Scholar] [CrossRef] [PubMed]
- Tzekaki, E.E.; Papaspyropoulos, A.; Tsolaki, M.; Lazarou, E.; Kozori, M.; Pantazaki, A.A. Restoration of BMI1 levels after the administration of early harvest extra virgin olive oil as a therapeutic strategy against Alzheimer’s disease. Exp. Gerontol. 2021, 144, 111178. [Google Scholar] [CrossRef]
- Nishi, S.K.; Babio, N.; Gómez-Martínez, C.; Martínez-González, M.Á.; Ros, E.; Corella, D.; Castañer, O.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function: The 2-Year Longitudinal Changes in an Older Spanish Cohort. Front. Aging Neurosci. 2021, 13, 782067. [Google Scholar] [CrossRef] [PubMed]
- Kaddoumi, A.; Denney, T.S.; Deshpande, G.; Robinson, J.L.; Beyers, R.J.; Redden, D.T.; Praticò, D.; Kyriakides, T.C.; Lu, B.; Kirby, A.N.; et al. Extra-Virgin Olive Oil Enhances the Blood–Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022, 14, 5102. [Google Scholar] [CrossRef] [PubMed]
- Marianetti, M.; Pinna, S.; Venuti, A.; Liguri, G. Olive polyphenols and bioavailable glutathione: Promising results in patients diagnosed with mild Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12089. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Arós, F.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012, 41, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Alfredo Martínez, J.; Wärnberg, J.; López-Miranda, J.; et al. Cohort profile: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2019, 48, 387–388. [Google Scholar] [CrossRef] [Green Version]
- Soldevila-Domenech, N.; Forcano, L.; Vintró-Alcaraz, C.; Cuenca-Royo, A.; Pintó, X.; Jiménez-Murcia, S.; García-Gavilán, J.F.; Nishi, S.K.; Babio, N.; Gomis-González, M.; et al. Interplay between cognition and weight reduction in individuals following a Mediterranean Diet: Three-year follow-up of the PREDIMED-Plus trial. Clin. Nutr. 2021, 40, 5221–5237. [Google Scholar] [CrossRef]
Humans | Mice | Rats | |
---|---|---|---|
HED (mg/kg) | Total Dose (mg) a | Dose (mg/kg) b | Dose (mg/kg) c |
10 | 600 | 140.4 | 72.2 |
7 | 420 | 98.3 | 50.6 |
1.5 | 90 | 21.1 | 10.8 |
0.75 | 45 | 10.5 | 5.4 |
0.25 | 15 | 3.5 | 1.8 |
0.01 | 0.6 | 0.14 | 0.07 |
Study | Type of Study | Intervention | Control Group | Health Status at Baseline | N and Duration | Measures of Cognition | Significant Outcomes of the Interventions | Ref. |
---|---|---|---|---|---|---|---|---|
Valls-Pedret et al., 2012 | Cross-sectional | Not applicable | Not applicable | High cardiovascular risk | 477 NA | Cognitive performance (MMSE, RAVLT, WMS, WAIS, and the Color Trail Test). | Total olive oil intake associated with immediate verbal memory. | [64] |
Virgin olive oil intake associated with delayed verbal memory. | ||||||||
Total urinary polyphenols associated with better immediate verbal memory. | ||||||||
Martínez-Lapiscina et al., 2013 | RCT | Int G1: MedDiet + EVOO (1 L/week) | Low fat diet | High cardiovascular risk | 522 6.5 years | Cognitive performance (MMSE and CDT) and dementia/MCI incidence. | EVOO vs. control: better MMSE and CDT. | [65] |
Int G2: MedDiet + nuts (30 g/day) | EVOO: low odds ratio of MCI. | |||||||
Martínez-Lapiscina et al., 2013 | RCT | Int G1: MedDiet + EVOO (1 L/week) | Low fat diet | High cardiovascular risk | 285 6.5 years | Cognitive performance (MMSE, CDT, WMS, RAVLT, ROCF, BNT, FAS, WAIS-IIIR, and CDR). | EVOO vs. control: higher MMSE, ROCF immediate and delayed, FAS, and digital forward scores. | [66] |
Int G2: MedDiet + nuts (30 g/day) | EVOO vs. nuts: higher ROCF immediate and delayed and verbal (VPA) memory. | |||||||
Valls-Pedret et al., 2015 | RCT | Int G1: MedDiet + EVOO (1 L/week) | Low fat diet | High cardiovascular risk | 477 4.1 years (mean) | Cognitive performance (MMSE, RAVLT, ASF, DST from WAIS, color trait test, and WMS) in 3 composites: memory, frontal, and global cognition. | MedDiet + EVOO improved frontal cognition and global cognition adjusted composites for changes from baseline. Changes were significant compared to control group. | [67] |
Int G2: MedDiet + nuts (30 g/day) | ||||||||
Mazza et al., 2018 | RCT | MedDiet + EVOO (20–30 g/day) | MedDiet | Healthy ≥ 65 | 180 1 year | Cognitive performance (MMSE and ADAS-cog). | ADAS-Cog score showed greater improvement with MedDiet + EVOO vs. MedDiet. | [68] |
Tsolaki M et al., 2020 | RCT | Int G1: High phenolic (HP)- EVOO (50 mL/day) | MedDiet | MCI (60–80 years) | 50 1 year | Cognitive performance (MMSE, RBMT, ROCF, Trail Making Test parts A and B, ADAS-Cog, WMS DST, fluency, and CDT). | HP-EVOO improved ADAS-Cog and letter Fluency (follow-up vs. baseline) compared to control group. | [69] |
Int G2: Moderate phenolic (MP)- EVOO (50 mL/day) | MP-EVOO improved MMSE and ADAS-Cog (follow-up vs. baseline) compared to control group. | |||||||
Dimitriadis S et al., 2021 | RCT | Int G1: High phenolic (HP)- EVOO (50 mL/day) | MedDiet | MCI (60–80 years) | 43 1 year | EEG resting-state with open eyes and close eyes conditions. | HP-EVOO decrease signal spectrum within 1–13 Hz and theta/beta. | [70] |
HP and MP-EVOOs improved the flexibility index being more noticeable in the HP- EVOO group. | ||||||||
Int G1: High phenolic (HP)- EVOO (50 mL/day) | HP-EVOO had a significant higher post-intervention reduction in non-linearity index. | |||||||
Tzekaki E et al., 2021 | RCT/ observational | EVOO | MedDiet | 3 groups: MCI, AD and healthy | 84 1 year | Fibrinolytic system (levels of PAI-1, a2-antiplasmin, tPA). | EVOO reduced PAI-1, and tPA in MCI, restoring levels to those of healthy individuals. | [71] |
AD hallmarks (levels of p-tau, Aβ1-42, Aβ1-40). | EVOO reduced p-tau in MCI, restoring levels to those of healthy individuals and maintained AB-40 levels, downregulated in MCI without EVOO. | |||||||
Oxidative stress: levels of MDA. | EVOO reduced MDA in MCI and restoring levels of healthy individuals | |||||||
Tzekaki E et al., 2021 | RCT/ observational | EVOO | MedDiet | Three groups: MCI, AD and healthy | 80 1 year | Levels of BMI1, p53, tau, p-tau, Aβ1–42, Aβ1–40, TNF-a, IL-6, and MDA. | EVOO increased BMI and decreases p53 and MDA in MCI patients. | [72] |
IL6 and TNF-a were downregulated in MCI patients by EVOO intervention. | ||||||||
12-month EVOO restored AD-related biomarkers (p-tau, Aβ1–42 and Aβ1–42/Aβ-40 ratio) to normal levels in MCI. | ||||||||
Nishi et al., 2021 | Observational | Not applicable | Not applicable | Overweight/obese + Metabolic syndrome | 6647 2 year | Cognitive performance (MMSE, CDT, VFT-a and VFT-p, TMT A and B, DST-f and DST-b, and WAIS-III), and a global composite. | Baseline OO used as the primary oil was positively associated with changes in global cognitive function and in working memory (forward and backward DSTs). | [73] |
Kaddoumi et al., 2022 | RCT | EVOO (1200 mg/kg of total polyphenols) (30 mL/day) | Refined OO (null polyphenol content) (30 mL/day) | MCI (55–75 years) | 26 6 months | MRI: contrast-enhanced MRI and fMRI. | EVOO decrease BBB permeability and brain connectivity. | [74] |
Cognitive performance (MMSE, CDR, WMS-IV). | EVOO and ROO decreased CDR and increased WMS-IV sub-sections. | |||||||
AD biomarkers Aβ40, Aβ42, Tau, and p-tau181. | EVOO and ROO reduced Aβ42/Aβ40 ratio and p-tau/tau. | |||||||
Marianetti et al. in 2022 | RCT | Nutraceutical formulation with SAG (50 mg), oleuropein (80 mg), vitamin B6 (1 mg), B12 (3 µg), vitamin E (15 IU), vitamin D3 (4 µg), piperine (3 mg), bacopa dry extract (100 mg) twice a day. | Absence of nutraceutical formulation | Mild AD | 18 6 months | Cognitive performance (MMSE, CDT, RAVLT, RCF C, MA (attentive matrices), AAT, FAB, STEP, SVF, PVF). | Nutraceutical improved MMSE and CDT significantly vs. control group. | [75] |
Memory: nutraceutical improved RAVLT-immediate and delayed recall, and RCF-immediate recall vs. a deterioration in control group. | ||||||||
Attention: nutraceutical improved attentive matrices vs. a reduction was observed in control group. | ||||||||
Language and speech: nutraceutical improved AAT vs. no change in control group. | ||||||||
Executive functions: nutraceutical improved all measured indications vs. a decrease in control group. |
Study | Intervention | Cognitive Domains | Ref | ||||
---|---|---|---|---|---|---|---|
Cognitive Deterioration | Memory | Attention | Fluency | Executive Function | |||
Valls-Pedret et al., 2012 | Total OO | ● | ● | ● | ● | ● | [69] |
Virgin OO | ● | ● | ● | ● | ● | ||
Martínez-Lapiscina et al., 2013 | EVOO | ● | ● | ● | ● | ● | [70] |
Martínez-Lapiscina et al., 2013 | EVOO | ● | ● | ● | ● | ● | [71] |
Valls-Pedret et al., 2015 | EVOO | ● | ● | ● | ● | ● | [72] |
Mazza et al., 2018 | EVOO | ● | ● | ● | ● | ● | [77] |
Tsolaki et al., 2020 | HP-EVOO | ● | ● | ● | ● | ● | [73] |
MP-EVOO | ● | ● | ● | ● | ● | ||
Nishi et al., 2021 | Total OO | ● | ● | ● | ● | ● | [4] |
Kaddoumi et al., 2022 | EVOO | ● | ● | ● | ● | ● | [74] |
Marianetti et al., 2022 | Oleuropein | ● | ● | ● | ● | ● | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boronat, A.; Serreli, G.; Rodríguez-Morató, J.; Deiana, M.; de la Torre, R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants 2023, 12, 1472. https://doi.org/10.3390/antiox12071472
Boronat A, Serreli G, Rodríguez-Morató J, Deiana M, de la Torre R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants. 2023; 12(7):1472. https://doi.org/10.3390/antiox12071472
Chicago/Turabian StyleBoronat, Anna, Gabriele Serreli, Jose Rodríguez-Morató, Monica Deiana, and Rafael de la Torre. 2023. "Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence" Antioxidants 12, no. 7: 1472. https://doi.org/10.3390/antiox12071472
APA StyleBoronat, A., Serreli, G., Rodríguez-Morató, J., Deiana, M., & de la Torre, R. (2023). Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants, 12(7), 1472. https://doi.org/10.3390/antiox12071472