Preventative and Therapeutic Effects of Astaxanthin on NAFLD
Abstract
:1. Introduction
2. Astaxanthin’s Effect and Underlying Mechanisms in NAFLD
2.1. Clinical Studies
2.2. In Vivo Studies
2.3. In Vitro Studies
3. Limitations and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, X.; Guo, X.; Liu, Z.; Wang, J. Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 2844. [Google Scholar] [CrossRef]
- Akmal, M.; Kamil, A.; Md Nor, N.; Ngiu, C.S.; Rizal, M.; Manaf, A.; Thevarajah, S.; Jamil, A.; Arumugam, M. Prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) Diagnosed by Controlled Attenuation Parameter on Transient Elastography and Its Predisposing Factors in Psoriasis. J. Ski. Stem Cell 2019, 64, 103245. [Google Scholar] [CrossRef]
- Dorairaj, V.; Sulaiman, S.A.; Abu, N.; Murad, N.A.A. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021, 10, 15. [Google Scholar] [CrossRef]
- Ayob, N.; Muhammad Nawawi, K.N.; Mohamad Nor, M.H.; Raja Ali, R.A.; Ahmad, H.F.; Oon, S.F.; Mohd Mokhtar, N. The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023, 11, 640. [Google Scholar] [CrossRef]
- Sarwar, R.; Pierce, N.; Koppe, S. Obesity and nonalcoholic fatty liver disease: Current perspectives. Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef]
- Hagström, H.; Simon, T.G.; Roelstraete, B.; Stephansson, O.; Söderling, J.; Ludvigsson, J.F. Maternal obesity increases the risk and severity of NAFLD in offspring. J. Hepatol. 2021, 75, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, B.; Arumugam, S.; Lu, Q.; Mankash, S.M.; Li, J.; Sun, B.; Li, J.; Flavell, R.A.; Li, H.B.; et al. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep. 2021, 37, 109968. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef] [PubMed]
- Marušić, M.; Paić, M.; Knobloch, M.; Liberati, P.A.M. NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6613827. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kubota, N.; Yamauchi, T.; Kadowaki, T. Role of Insulin Resistance in MAFLD. Int. J. Mol. Sci. 2021, 22, 4156. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 484–495. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Aubin, A.; Loomba, R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr. Diab. Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef]
- Mavromati, M.; Jornayvaz, F.R. Hypothyroidism-Associated Dyslipidemia: Potential Molecular Mechanisms Leading to NAFLD. Int. J. Mol. Sci. 2021, 22, 12797. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef]
- Wong, S.K.; Chin, K.Y.; Ahmad, F.; Ima-Nirwana, S. Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease. J. Funct. Foods 2020, 74, 104209. [Google Scholar] [CrossRef]
- Sundelin, E.I.O.; Gormsen, L.C.; Heebøll, S.; Vendelbo, M.H.; Jakobsen, S.; Munk, O.L.; Feddersen, S.; Brøsen, K.; Hamilton-Dutoit, S.J.; Pedersen, S.B.; et al. Hepatic exposure of metformin in patients with non-alcoholic fatty liver disease. Br. J. Clin. Pharmacol. 2019, 85, 1761. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.B.; Thorne, J.L. Predicting and reducing hepatic lipotoxicity in non-alcoholic fatty liver disease. Lab Anim. 2019, 48, 143–144. [Google Scholar] [CrossRef] [Green Version]
- Di Giacomo, S.; Briz, O.; Vitalone, A.; Di Sotto, A. Editorial: Natural Products and Hepatic Health: Light and Shadows. Front. Pharmacol. 2022, 13, 868207. [Google Scholar] [CrossRef]
- Xiong, F.; Guan, Y.S. Cautiously using natural medicine to treat liver problems. World J. Gastroenterol. 2017, 23, 3388. [Google Scholar] [CrossRef]
- Lee, Y.; Hu, S.; Park, Y.K.; Lee, J.Y. Health Benefits of Carotenoids: A Role of Carotenoids in the Prevention of Non-Alcoholic Fatty Liver Disease. Prev. Nutr. Food Sci. 2019, 24, 103. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Ima-Nirwana, S.; Chin, K.Y. Effects of astaxanthin on the protection of muscle health (Review). Exp. Ther. Med. 2020, 20, 2941. [Google Scholar] [CrossRef] [PubMed]
- Abdol Wahab, N.R.; Meor Mohd Affandi, M.M.R.; Fakurazi, S.; Alias, E.; Hassan, H. Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants 2022, 11, 1676. [Google Scholar] [CrossRef]
- Wu, L.; Mo, W.; Feng, J.; Li, J.; Yu, Q.; Li, S.; Zhang, J.; Chen, K.; Ji, J.; Dai, W.; et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway. Br. J. Pharmacol. 2020, 177, 3760–3777. [Google Scholar] [CrossRef]
- Radice, R.P.; Limongi, A.R.; Viviano, E.; Padula, M.C.; Martelli, G.; Bermano, G. Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis. Free. Radic. Biol. Med. 2021, 171, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Le, D.; Ngo-My, T.; Vo-Minh, T.; Nguyen, C.T.; Tran, L.T.; Tran-Van, H. Astaxanthin prevents hepatosteatosis and hyperlipidemia but not obesity in high-fat diet fed mice. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e5950. [Google Scholar] [CrossRef]
- Ni, Y.; Nagashimada, M.; Zhuge, F.; Zhan, L.; Nagata, N.; Tsutsui, A.; Nakanuma, Y.; Kaneko, S.; Ota, T. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 2015, 5, 17192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemoto, M.; Yamaga, M.; Furuichi, Y.; Yokote, K. Astaxanthin Improves Nonalcoholic Fatty Liver Disease in Werner Syndrome with Diabetes Mellitus. J. Am. Geriatr. Soc. 2015, 63, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, W.; Yu, J.; Liu, Y.; Ma, H.; Ji, C.; Zhang, C.; Xue, J.; Li, R.; Cui, H. Astaxanthin From Haematococcus pluvialis Prevents High-Fat Diet-Induced Hepatic Steatosis and Oxidative Stress in Mice by Gut-Liver Axis Modulating Properties. Front. Nutr. 2022, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kimchi, E.T.; Staveley-O’carroll, K.F.; Li, G. Astaxanthin Prevents Diet-Induced NASH Progression by Shaping Intrahepatic Immunity. Int. J. Mol. Sci. 2021, 22, 11037. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Takahara, T.; Fujino, M.; Fukuhara, Y.; Sugiyama, T.; Li, X.K.; Takahara, S. Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice. PLoS ONE 2017, 12, e0187810. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Farruggia, C.; Ku, C.S.; Ham, T.X.; Yang, Y.; Bae, M.; Wegner, C.J.; Farrell, N.J.; Harness, E.; Park, Y.K.; et al. Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis. J. Nutr. Biochem. 2017, 43, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Rong, S.; Gao, H.; Chen, C.; Yang, W.; Deng, Q.; Huang, Q.; Xiao, L.; Huang, F. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats. Nutrients 2017, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Kobori, M.; Takahashi, Y.; Sakurai, M.; Ni, Y.; Chen, G.; Nagashimada, M.; Kaneko, S.; Ota, T.; Bakovic, M. Hepatic Transcriptome Profiles of Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E. Int. J. Mol. Sci. 2017, 8, 593. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Le, D.; Ngo, M.T.; Vo, M.T.; Tran, T.L.; Tran-Van, H. Effects of Astaxanthin on Body and Liver Weight of High-Fat Diet through Regulation of Peroxisome Proliferator-Activated Receptors (PPARs). SSR Inst. Int. J. Life Sci. 2015, 6, 2502–2508. [Google Scholar] [CrossRef]
- Yang, Y.; Pham, T.X.; Wegner, C.J.; Kim, B.; Ku, C.S.; Park, Y.K.; Lee, J.Y. Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice. Br. J. Nutr. 2014, 112, 1797–1804. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pham, T.X.; Wegner, C.J.; Kim, B.; Ku, C.S.; Park, Y.K.; Lee, J.Y. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim. Biophys. Acta 2015, 1850, 178–185. [Google Scholar] [CrossRef]
- Braet, F.; Spector, I.; De Zanger, R.; Wisse, E. A novel structure involved in the formation of liver endothelial cell fenestrae revealed by using the actin inhibitor misakinolide. Proc. Natl. Acad. Sci. USA 1998, 95, 13635–13640. [Google Scholar] [CrossRef]
- Zapotoczny, B.; Braet, F.; Kus, E.; Ginda-Mäkelä, K.; Klejevskaja, B.; Campagna, R.; Chlopicki, S.; Szymonski, M. Actin-spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells. Traffic 2019, 20, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, C.; Wu, J. Astaxanthin in Liver Health and Disease: A Potential Therapeutic Agent. Drug Des. Dev. Ther. 2020, 14, 2275–2285. [Google Scholar] [CrossRef]
- Lorenz, R.T.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.D.; Kasabe, P.J.; Dandge, P.B. Pharmaceutical and nutraceutical potential of natural bioactive pigment: Astaxanthin. Nat. Prod. Bioprospect. 2022, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Young, L.J. Methods for Reversing Fibrosis|The Lens. Published Online 6 October 2016. Available online: https://www.lens.org/lens/patent/042-737-053-008-103/frontpage?l=en (accessed on 13 June 2023).
- Yumika, O.; Kumiko, L. Agent for Preventing Metabolic Syndrome|The Lens. Published Online 27 June 2007. Available online: https://www.lens.org/lens/patent/116-706-454-073-038/frontpage?l=en (accessed on 13 June 2023).
- Tae, H.J.; Ji Hye, H. Astaxanthin Therapeutic and Preventive Effect of Astaxanthin in Ethanol-Induced Liver Injury|The Lens. Published Online 5 April 2019. Available online: https://www.lens.org/lens/patent/036-770-114-337-400/frontpage?l=en (accessed on 13 June 2023).
- Choi, H.D.; Kang, H.E.; Yang, S.H.; Lee, M.G.; Shin, W.G. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 2011, 105, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambati, R.R.; Moi, P.S.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [Green Version]
- Østerlie, M.; Bjerkeng, B.; Liaaen-Jensen, S. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J. Nutr. Biochem. 2000, 11, 482–490. [Google Scholar] [CrossRef]
- Okada, Y.; Ishikura, M.; Maoka, T. Bioavailability of Astaxanthin in Haematococcus Algal Extract: The Effects of Timing of Diet and Smoking Habits. Biosci. Biotechnol. Biochem. 2009, 73, 1928–1932. [Google Scholar] [CrossRef] [Green Version]
- Fukami, H.; Namikawa, K.; Sugiura-Tomimori, N.; Sumida, M.; Katano, K.; Nakao, M. Chemical Synthesis of Astaxanthin n-Octanoic Acid Monoester and Diester and Evaluation of Their Oral Absorbability. J. Oleo. Sci. 2006, 55, 653–656. [Google Scholar] [CrossRef] [Green Version]
References | Subjects and Experiment Duration | Experimental Groupings | Effects |
---|---|---|---|
[30] | 12 biopsy-confirmed NASH patients 24 weeks treatment | Placebo and astaxanthin 12 mg/day | ↓ Steatohepatitis ↓ Grade of steatosis ↓ NAS ↓ Progression of NASH |
[31] | 58-year-old woman with Werner syndromeand diabetes mellitus 3 and 6 months | Treatment with astaxanthin 12 mg/day | ↑ Liver-to-spleen Hounsfield units ↓ Severity of fatty liver ↓ AST ↓ ALT ↓ GGT |
References | Animal Model and Duration of Experiment | Experimental Groupings | Effects | Mechanisms |
---|---|---|---|---|
[29] | Female Swiss mice 16 weeks and 8 weeks | 3 groups: Normal diet; HFD; HFD + astaxanthin (30 mg/kg BW/day First phase: Normal diet, HFD + astaxanthin Second phase (prolonged for 8 weeks): Normal diet, HFD + astaxanthin (astaxanthin supplementation was discontinued) group | ↑ BW ↓ Hepatosteatosis ↓ Lipid droplets ratio ↓ AST ↓ TC ↓ TG ↓ LDL-c Maintaining blood cholesterol | - |
[32] | Male C57BL/6 mice 9 weeks | 5 groups: Normal diet; HFD; HFD + 0.25% astaxanthin; HFD + 0.5% astaxanthin; HFD + 0.75% astaxanthin | ↓ BW gain ↓ Energy intake ↓ Liver wet weights ↓ TC, ↓ TG ↓ LDL-C, ↓ AST ↓ Lipid peroxidation ↓ Steatohepatitis scores ↓ Fatty droplets ↓ Apoptosis ↑ Lipid metabolism ↑ Cholesterol metabolism ↓ Fat synthesis | ↑: CAT, SOD, GSH, CPT-1,Lxrα, CYP7A1, CYP27A1 ↓: ACC, FAS, SCD-1 |
[33] | Male C57BL/6 mice 6 weeks | 4 groups: Normal diet; CDAHFD; HFD; HFD + astaxanthin (80 mg/kg of mouse BW) | ↓ Liver-to-BW ratio ↓ Infiltration of inflammatory cells ↓ Hepatocyte death ↓ aHSCs ↓ Infiltration of monocyte-derived macrophages ↓ Oxidative stress | ↓: Collagen α-SMA, Col1α1, Col4α1, IL-1β, TGF-β1, TNF-α, bFGF, Slc25a24, Mmp9, Anxa1, G6pdx, SOD3, Pcna, Parp1, Dnm2, Cfl1 |
[27] | Male C57 10 weeks | 6 groups: Control: standard chow diet; HFD: HFD + saline every 2 days in later 10 weeks; HFD + astaxanthin: 10, 30, and 60 mg/kg of astaxanthin by gavage every 2 days in later 10 weeks; HFD + tail-vein injection of control-siRNA 8x (first 4 weeks); HFD + tail-vein injection of FGF21-siRNA 8x during (first 4 weeks); HFD + tail-vein injection of FGF21-siRNA 8x (first 4 weeks) + 60 mg/kg of astaxanthin by gavage every 2 days during the later 10 weeks | ↓ BW, ↓ NAS ↓ Liver weight ↓ Serum TG ↓ AST, ↓ ALT ↓ Steatosis ↓ Lobular inflammation ↓ Hepatocellular ballooning ↓ Hepatic lipid deposition ↓ Enlargement of adipocytes ↓ Fatty acid uptake and synthesis ↑ Lipid decomposition ↑ Fatty acid oxidation ↓ Hepatic inflammation | ↑: ApoB, ApoE, CPT1α, FGF21, FOXA, PGC-1α, PPARα, Tm6 ↓: Bax, Caspase 9. TNF-α, IL-1β, iNOS, Collagen I, TGF-β1, α-SMA, CTGF, ADRP, CD36, FATP5, SREBP-1c |
[34] | Male C57BL/6 mice 3 weeks | 3 groups: MCDHF group: olive oil by gavagewith shame operation MCDHF IR group: olive oil by gavage before IR MCDHF IR + ASTX group: astaxanthin (25 mg/kg) for 48, 24 h and 40 min | ↓ TUNEL-positive cells F4/80-positive cells ↓ 4-HNE-positive cells ↓ AST ↓ ALT | ↑: HO-1, HIF-1α ↓: IL-6, OPN, iNOS |
[35] | Male C57BL/6J mice 30 weeks (DIO model) and 18 weeks (NASH model) | 5 groups: DIO model: Low fat (6% fat, w/w); High fat/high sucrose (HF/HS): 35% fat, 35% sucrose (w/w); HF/HS + astaxanthin (AHF/HS): 0.03% astaxanthin (w/w) NASH model: HF/HS + 2% cholesterol (HF/HS/HC); HF/HS/HC + 0.015% astaxanthin | ↓ TC ↓ TG ↓ Glucose ↓ Inflammation ↓ Fibrosis | DIO model: ↓: F4/80, CD11c, MCP-1, Caspase 3, Collagen type I & VI, COL1A1, COL6A1, COL6A3, LOXL2, HIF-1α, FAS, SCD-1, LUM; ↑: Arg-1, CPT-1α, Acox-1, PPARα, PGC-1α NASH model: ↑: CD206; ↓: F4/80, CD68, CD11c, MCP-1, Lumican, Vimentin, COL1A1, COL6A1, COL6A3, MMP2, HIF-1α, TGFβ1, TNC |
[36] | Male Sprague–Dawley rats 10 weeks | 4 groups: HFD; L-FO + astaxanthin group: 75% lard + 25% flaxseed oil (FO) + astaxanthin M-FO + astaxanthin group: 50% lard + 50% FO + astaxanthin H-FO + astaxanthin group: 100% FO + astaxanthin | ↓ Circular lipid droplets ↓ Steatosis ↓ Hepatic TG | ↑: PPARα, CPT-1, ACO, SOD, CAT, GPx, GSH ↓: SREBP1, HMGCR, FAS, ACC, TBARs |
[37] | C57BL/6J male mice 12 weeks | 4 groups: Normal diet; CL diet: 60% calories from fat, 1.25% cholesterol, 0.5% sodium cholate); CL diet + 0.02% astaxanthin; CL diet + 0.02% vitamin E | ↑ EIF2 ↑ mTOR signalling | ↑: Akt2, RICTOR, ERN1,PML, MAP3K8, IKZF1, CD28 ↓: Cpt1a, Acox1, Scd1, PNPLA2, PPARD, PPARα,RXRA, IL-6 |
[30] | Male C57BL/6J mice and male ob/ob mice 10 weeks (hepatic model) 12 weeks (NASH model) | 9 groups: Hepatic model: Normal chow (NC): 10% of calories from fat; HFD; HFD + 0.02% astaxanthin NASH model: NC; NC + 0.02% astaxanthin; NC + 0.02% vitamin E; High-fat, cholesterol, and cholate diet (CL diet): 60% of calories from fat, 1.25% cholesterol, 0.5% sodium cholate); CL + 0.02% astaxanthin; CL + 0.02% vitamin E | Hepatic model: ↓ Steatosis ↓ TG NASH model: ↓ Dyslipidaemia ↓ Lipid peroxidation ↓ Blood glucose ↑ Insulin sensitivity ↓ F4/80+ cells ↓ Kupffer cells ↓ Hepatic inflammation ↓ Total macrophage ↓ TG, ↓ TC, ↓ NEFA ↓ AST, ↓ ALT | ↓: Srebp1c, Lxrα, Chrebp, FASN, Scd1, CD36, p38, MAPK, NF-κB p65, ERK, F4/80, Tnf, IL-6, IL-1β, α-SMA, TGF-β1, Col1a1, PAI-1, Cd11c, iNOS, MCP-1, Ccr2 ↑: p-IRβ/IRβ, p-Akt/Akt, CD163, CD206, Il10, Chi3l3, Mgl1 |
[38] | Female Swiss Mice 16 weeks and 8 weeks | 3 groups: Phase 1 (16 weeks): Normal diet; HFD: 60% total calories from fat; HFD + astaxanthin (30 mg/kg BW) Phase 2 (8 weeks): Normal, HFD and HFD + astaxanthin (astaxanthin was terminated after 16 weeks) | ↓ Fat/BW ↓ Liver weight | ↓: PPARγ, PPARα |
[39] | Male C57BL/6J mice 12 weeks | 4 groups: HFD control diet (35%, w/w); HFD + 0.003% of astaxanthin; HFD + 0.01% of astaxanthin; HFD + 0.03% of astaxanthin (by weight) | 0.03% astaxanthin: ↑ eWAT ↓ Plasma TAG ↓ AST ↓ ALT ↑ HMGR ↑ LDL | 0.03% astaxanthin: ↑: ACOX-1, TGF-β1, Nrf2,SOD1, FASN, GCLm, GPx-1 ↓: IL-6 |
References | Cell Model | Experimental Design | Effects | Mechanisms |
---|---|---|---|---|
[27] | Human liver cell, L02 | Cells were exposed to an FFA mixture of 800 µM oleic acid and palmitic acid for 48 h 5 groups: Control: 5% BSA; FFA: FFA mixture for 48 h; Ax30: 30 uM astaxanthin + FFA; Ax60: 60 uM astaxanthin + FFA; Ax90: 90 uM astaxanthin + FFA (for another 48 h) | ↑ Cell survival rate ↓ Mitochondrial ROS ↑ ATP generation ↑ mtDNA copies ↑ ΔΨm ↓ TG | ↑: ApoB, ApoE, CPT-1α, FGF21, FOXA, PGC-1α, PPAR- α, Tm6sf2, UCP1, NRF1, TFAM, FGF21, PGC-1α ↓: Bax, Caspase 9, ADRP, CD36, FATP5, SREBP-1c |
[34] | Kupffer cells and fatty hepatocyte (isolated from steatotic liver) | 3 groups: Control: Kupffer cells or fatty hepatocyte; HR: Kupffer cells or fatty hepatocyte suffered 4 h of hypoxia and 6 h of reoxygenation; HR + astaxanthin: Kupffer cells or fatty hepatocyte treated with astaxanthin before HR | Kupffer cells: ↓ ROS Hepatocytes cell: ↑ Apoptosis | Kupffer cells: ↑: HO-1, Nrf2, HIF-1α, p-mTOR, p-Akt ↓: IL-1β, TNF-α Hepatocytes cell: ↓:Bax, Bc1-2, Caspase-9, Cleaved caspase 9, Caspase-3, Cleaved caspase-3, p-p38 MAPK, p-ERK, p-JNK |
[30] | Mouse primary hepatocytes, isolated from a male C57BL/6J mouse | Primary hepatocytes were incubated with either astaxanthin or α-tocopherol for 6 h Treatment: 400 μM oleic acid and astaxanthin (25, 50, 100 μM) for another 16 h | ↓ TG ↓ Lipid accumulation | ↓ CD36 |
[40] | Primary HSCs isolated from C57BL/6J mouse liver and LX-2 cells | Primary HSCs: astaxanthin (25 μM) was added at day 2 or day 4 after plating until day 6 LX-2 cells: incubated with astaxanthin (varying concentrations) for 12 or 24 h, and subsequently activated by 2 ng/mL of TGFβ1 | LX-2 cells: Minimal cytotoxicity ↓ ROS | LX-2 cells: ↓: TGFβ1, α-SMA, Col1A1, Smad3, Smad7, TβRI, TβRIIPrimary HSCs: ↓: α- SMA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayuti, N.H.; Muhammad Nawawi, K.N.; Goon, J.A.; Mokhtar, N.M.; Makpol, S.; Tan, J.K. Preventative and Therapeutic Effects of Astaxanthin on NAFLD. Antioxidants 2023, 12, 1552. https://doi.org/10.3390/antiox12081552
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. Preventative and Therapeutic Effects of Astaxanthin on NAFLD. Antioxidants. 2023; 12(8):1552. https://doi.org/10.3390/antiox12081552
Chicago/Turabian StyleSayuti, Nor Hafiza, Khairul Najmi Muhammad Nawawi, Jo Aan Goon, Norfilza Mohd Mokhtar, Suzana Makpol, and Jen Kit Tan. 2023. "Preventative and Therapeutic Effects of Astaxanthin on NAFLD" Antioxidants 12, no. 8: 1552. https://doi.org/10.3390/antiox12081552
APA StyleSayuti, N. H., Muhammad Nawawi, K. N., Goon, J. A., Mokhtar, N. M., Makpol, S., & Tan, J. K. (2023). Preventative and Therapeutic Effects of Astaxanthin on NAFLD. Antioxidants, 12(8), 1552. https://doi.org/10.3390/antiox12081552