Regulation of Ras Signaling by S-Nitrosylation
Abstract
:1. Introduction
2. Ras Biology
3. Post-Translational Modifications of Ras Are Major Regulators of Its Function and Subcellular Localization
4. S-Nitrosylation of Ras
5. S-Nitrosylation of Ras Enhances Guanine Nucleotide Exchange
6. S-Nitrosylation Affects Membrane Association and Subcellular Localization of Ras
7. How Is the Interaction between S-Nitrosylation of Ras and Other Targets of S-Nitrosylation in Neuronal Cells?
7.1. MAPK Pathway
7.2. PI3K Pathway
7.3. RalGEF Pathway
8. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AKT/PKB | protein kinase B |
BH4 | tetrahydrobiopterin |
BK | bradykinin |
BK-R | bradykinin receptor |
CAAX | C-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; X, any amino acid) |
CaM | calmodulin |
cGMP | cyclic guanosine monophosphate |
CysNO | S-nitrosocysteine |
DAG | diacylglycerol |
EGFR | epidermal growth factor receptor |
ERK | extracellular signal-regulated kinases |
FAD | flavin adenine dinucleotide |
FMN | flavin mononucleotide |
GAP | GTPase accelerating protein |
GDP | guanosine diphosphate |
GEF | guanine nucleotide exchange factors |
GSNO | S-nitrosoglutathione |
GTP | guanosine triphosphate |
HIF | hypoxia-inducible factor |
hnRNPK | heterogeneous nuclear ribonucleoprotein K |
HVR | hypervariable region |
MAPK | mitogen-activated protein kinase |
MEK | mitogen-activated protein kinase kinase |
NADPH | nicotinamide adenine dinucleotide phosphate |
NMDA | N-methyl-D-aspartate |
SNP | sodium nitroprusside |
NF-kB | nuclear factor kappa B |
NO | nitric oxide |
NOS | nitric oxide synthase |
NSC | neural stem cell |
PEBP-1/RKIP | phosphatidylethanolamine binding protein 1/Raf kinase inhibitory protein |
PI3K | phosphoinositide-3 kinase |
PLC | phospholipase C |
PTEN | phosphatase and tensin homolog |
PTM | post-translational modification |
RBD | Ras-binding domain |
SNO | S-nitrosothiol |
Src | non-receptor protein–tyrosine kinase (sarcoma) |
TCR | T cell receptor |
UPS | ubiquitin-proteasome system |
References
- Rhett, J.M.; Khan, I.; O’bryan, J.P. Biology, pathology, and therapeutic targeting of RAS. Adv. Cancer Res. 2020, 148, 69–146. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol. 2021, 14, 116. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Heiden, M.G.V.; McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2021, 2, 271–283. [Google Scholar] [CrossRef]
- Messina, S.; De Simone, G.; Ascenzi, P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol. 2019, 26, 101282. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.L.; Philips, M.R. Post-translational modification of RAS proteins. Curr. Opin. Struct. Biol. 2021, 71, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.I.; Carreira, B.P.; Izquierdo-Álvarez, A.; Ramos, E.; Lourenço, A.S.; Santos, D.F.; Morte, M.I.; Ribeiro, L.F.; Marreiros, A.; Sánchez-López, N.; et al. S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model. Antioxid. Redox Signal. 2018, 28, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Ruiz, A.; Lamas, S. S-nitrosylation: A potential new paradigm in signal transduction. Cardiovasc. Res. 2004, 62, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Carreira, B.P.; Morte, M.I.; Inácio, Â.; Costa, G.; Rosmaninho-Salgado, J.; Agasse, F.; Carmo, A.; Couceiro, P.; Brundin, P.; Ambrósio, A.F.; et al. Nitric Oxide Stimulates the Proliferation of Neural Stem Cells Bypassing the Epidermal Growth Factor Receptor. Stem Cells 2010, 28, 1219–1230. [Google Scholar] [CrossRef]
- Carreira, B.P.; Santos, D.F.; Santos, A.I.; Carvalho, C.M.; Araújo, I.M. Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures. Oxidative Med. Cell. Longev. 2015, 2015, 451512. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.I.; Lourenço, A.S.; Simão, S.; da Silva, D.M.; Santos, D.F.; de Carvalho, A.P.O.; Pereira, A.C.; Izquierdo-Álvarez, A.; Ramos, E.; Morato, E.; et al. Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biol. 2020, 32, 101457. [Google Scholar] [CrossRef]
- Nakamura, T.; Oh, C.-K.; Zhang, X.; Lipton, S.A. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free. Radic. Biol. Med. 2021, 172, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Bai, W.; Bepler, G.; Zhang, X. Chapter 6—Activation of Ras by Post-Translational Modifications. In Conquering RAS; Azmi, A.S., Ed.; Academic Press: Boston, FL, USA, 2017; pp. 97–118. [Google Scholar]
- Gentry, L.R.; Nishimura, A.; Cox, A.D.; Martin, T.D.; Tsygankov, D.; Nishida, M.; Elston, T.C.; Der, C.J. Divergent Roles of CAAX Motif-signaled Posttranslational Modifications in the Regulation and Subcellular Localization of Ral GTPases. J. Biol. Chem. 2015, 290, 22851–22861. [Google Scholar] [CrossRef] [Green Version]
- Cox, A.D.; Der, C.J. Ras history: The saga continues. Small GTPases 2010, 1, 2–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigil, D.; Cherfils, J.; Rossman, K.L.; Der, C.J. Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat. Rev. Cancer 2010, 10, 842–857. [Google Scholar] [CrossRef] [Green Version]
- Inouye, K.; Mizutani, S.; Koide, H.; Kaziro, Y. Formation of the Ras Dimer Is Essential for Raf-1 Activation. J. Biol. Chem. 2000, 275, 3737–3740. [Google Scholar] [CrossRef] [Green Version]
- Hannoush, R.N.; Sun, J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 2010, 6, 498–506. [Google Scholar] [CrossRef]
- Choy, E.; Chiu, V.K.; Silletti, J.; Feoktistov, M.; Morimoto, T.; Michaelson, D.; Ivanov, I.E.; Philips, M.R. Endomembrane Trafficking of Ras: The CAAX Motif Targets Proteins to the ER and Golgi. Cell 1999, 98, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buday, L.; Vas, V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev. 2020, 39, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Bunda, S.; Heir, P.; Srikumar, T.; Cook, J.D.; Burrell, K.; Kano, Y.; Lee, J.E.; Zadeh, G.; Raught, B.; Ohh, M. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proc. Natl. Acad. Sci. USA 2014, 111, E3785–E3794. [Google Scholar] [CrossRef]
- Kano, Y.; Gebregiworgis, T.; Marshall, C.B.; Radulovich, N.; Poon, B.P.K.; St-Germain, J.; Cook, J.D.; Valencia-Sama, I.; Grant, B.M.M.; Herrera, S.G.; et al. Tyrosyl phosphorylation of KRAS stalls GTPase cycle via alteration of switch I and II conformation. Nat. Commun. 2019, 10, 224. [Google Scholar] [CrossRef] [Green Version]
- Ting, P.Y.; Johnson, C.W.; Fang, C.; Cao, X.; Graeber, T.G.; Mattos, C.; Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. FASEB J. 2015, 29, 3750–3761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bivona, T.G.; Quatela, S.E.; Bodemann, B.O.; Ahearn, I.M.; Soskis, M.J.; Mor, A.; Miura, J.; Wiener, H.H.; Wright, L.; Saba, S.G.; et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 2006, 21, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Washington, C.; Chernet, R.; Gokhale, R.H.; Martino-Cortez, Y.; Liu, H.-Y.; Rosenberg, A.M.; Shahar, S.; Pfleger, C.M. A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5. PLoS Genet. 2020, 16, e1008715. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhu, B.; Zhang, T.; Liu, T.; Chen, S.; Liu, Y.; Li, X.; Miao, X.; Li, S.; Mi, X.; et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell 2019, 176, 1113–1127.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.J.; Yoon, J.; Park, J.C.; Lee, S.H.; Lee, S.H.; Kaduwal, S.; Kim, H.; Yoon, J.B.; Choi, K.Y. Ras stabilization through aberrant activation of Wnt/beta-catenin signaling promotes intestinal tumorigenesis. Sci. Signal. 2012, 5, ra30. [Google Scholar] [CrossRef]
- Knyphausen, P.; Lang, F.; Baldus, L.; Extra, A.; Lammers, M. Insights into K-Ras 4B regulation by post-translational lysine acetylation. Biol. Chem. 2016, 397, 1071–1085. [Google Scholar] [CrossRef]
- Yang, M.H.; Nickerson, S.; Kim, E.T.; Liot, C.; Laurent, G.; Spang, R.; Philips, M.R.; Shan, Y.; Shaw, D.E.; Bar-Sagi, D.; et al. Regulation of RAS oncogenicity by acetylation. Proc. Natl. Acad. Sci. USA 2012, 109, 10843–10848. [Google Scholar] [CrossRef]
- Dharmaiah, S.; Tran, T.H.; Messing, S.; Agamasu, C.; Gillette, W.K.; Yan, W.; Waybright, T.; Alexander, P.; Esposito, D.; Nissley, D.V.; et al. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Sci. Rep. 2019, 9, 10512. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.; Wilkerson, E.M.; Sumita, K.; Isom, D.G.; Sasaki, A.T.; Dohlman, H.G.; Campbell, S.L. Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination. J. Biol. Chem. 2013, 288, 36856–36862. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, A.T.; Carracedo, A.; Locasale, J.W.; Anastasiou, D.; Takeuchi, K.; Kahoud, E.R.; Haviv, S.; Asara, J.M.; Pandolfi, P.P.; Cantley, L.C. Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Sci. Signal. 2011, 4, ra13. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.H.; Chen, C.; Philips, M.; Dai, W. RAS GTPases are modified by SUMOylation. Oncotarget 2017, 9, 4440–4450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, T.; Pimentel, D.R.; Heibeck, T.; Hou, X.; Lee, Y.J.; Jiang, B.; Ido, Y.; Cohen, R.A. S-Glutathiolation of Ras Mediates Redox-sensitive Signaling by Angiotensin II in Vascular Smooth Muscle Cells. J. Biol. Chem. 2004, 279, 29857–29862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgoyne, J.R.; Haeussler, D.J.; Kumar, V.; Ji, Y.; Pimental, D.R.; Zee, R.S.; Costello, C.E.; Lin, C.; McComb, M.E.; Cohen, R.A.; et al. Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosis. FASEB J. 2011, 26, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ruiz, A.; Cadenas, S.; Lamas, S. Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms. Free. Radic. Biol. Med. 2011, 51, 17–29. [Google Scholar] [CrossRef]
- Martínez-Ruiz, A.; Lamas, S. Two decades of new concepts in nitric oxide signaling: From the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 2009, 61, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Martinezruiz, A.; Lamas, S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: Convergences and divergences. Cardiovasc. Res. 2007, 75, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Miller, M.J.S.; Joshi, M.S.; Thomas, D.D.; Lancaster, J.R. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl. Acad. Sci. USA 1998, 95, 2175–2179. [Google Scholar] [CrossRef]
- Stomberski, C.T.; Hess, D.T.; Stamler, J.S. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid. Redox Signal. 2019, 30, 1331–1351. [Google Scholar] [CrossRef]
- Barbakadze, T.; Goloshvili, G.; Narmania, N.; Zhuravliova, E.; Mikeladze, D. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia. Cell J. 2017, 19, 443–451. [Google Scholar] [CrossRef]
- Batista, W.L.; Ogata, F.T.; Curcio, M.F.; Miguel, R.B.; Arai, R.J.; Matsuo, A.L.; Moraes, M.S.; Stern, A.; Monteiro, H.P.; Rychter, M.; et al. S-Nitrosoglutathione and Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Regulate Compartmentalized Ras S-Nitrosylation and Stimulate Cell Proliferation. Antioxid. Redox Signal. 2013, 18, 221–238. [Google Scholar] [CrossRef]
- Ibiza, S.; Pérez-Rodríguez, A.; Ortega, Á.; Martínez-Ruiz, A.; Barreiro, O.; García-Domínguez, C.A.; Víctor, V.M.; Esplugues, J.V.; Rojas, J.M.; Sánchez-Madrid, F.; et al. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc. Natl. Acad. Sci. USA 2008, 105, 10507–10512. [Google Scholar] [CrossRef] [PubMed]
- Lander, H.M.; Ogiste, J.S.; Pearce, S.F.A.; Levi, R.; Novogrodsky, A. Nitric Oxide-stimulated Guanine Nucleotide Exchange on p21ras. J. Biol. Chem. 1995, 270, 7017–7020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanshiashvili, L.; Narmania, N.; Barbakadze, T.; Zhuravliova, E.; Natsvlishvili, N.; Ramsden, J.; Mikeladze, D.G. S-Nitrosylation Decreases the Adsorption of H-Ras in Lipid Bilayer and Changes Intrinsic Catalytic Activity. Cell Biochem. Biophys. 2010, 59, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.K.; Esposito, D.K.; Schwartz, G.D.; Lander, H.M.; Hempstead, B.L. Activation of c-Ha-Ras by Nitric Oxide Modulates Survival Responsiveness in Neuronal PC12 Cells. J. Biol. Chem. 1999, 274, 37315–37320. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Pappu, K.; Campbell, S.L. Structural and biochemical studies of p21RasS-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc. Natl. Acad. Sci. USA 2003, 100, 6376–6381. [Google Scholar] [CrossRef]
- Lander, H.M.; Milbank, A.J.; Tauras, J.M.; Hajjar, D.P.; Hempstead, B.L.; Schwartz, G.D.; Kraemer, R.T.; Mirza, U.A.; Chait, B.T.; Burk, S.C.; et al. Redox regulation of cell signalling. Nature 1996, 381, 380–381. [Google Scholar] [CrossRef]
- Lander, H.M.; Hajjar, D.P.; Hempstead, B.L.; Mirza, U.A.; Chait, B.T.; Campbell, S.; Quilliam, L.A. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem. 1997, 272, 4323–4326. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Choy, J.C. Positive Feedback Regulation of Human Inducible Nitric-oxide Synthase Expression by Ras Protein S-Nitrosylation. J. Biol. Chem. 2013, 288, 15677–15686. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Campbell, S.L. Mechanism of p21Ras S-Nitrosylation and Kinetics of Nitric Oxide-Mediated Guanine Nucleotide Exchange. Biochemistry 2004, 43, 2314–2322. [Google Scholar] [CrossRef]
- Mott, H.R.; Carpenter, J.W.; Campbell, S.L. Structural and Functional Analysis of a Mutant Ras Protein That Is Insensitive to Nitric Oxide Activation. Biochemistry 1997, 36, 3640–3644. [Google Scholar] [CrossRef]
- Yun, H.Y.; Gonzalez-Zulueta, M.; Dawson, V.L.; Dawson, T.M. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. Proc. Natl. Acad. Sci. USA 1998, 95, 5773–5778. [Google Scholar] [CrossRef]
- Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing complexity of Ras signaling. Oncogene 1998, 17, 1395–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-F.; Raab-Graham, K.; Jan, Y.N.; Jan, L.Y. NO stimulation of ATP-sensitive potassium channels: Involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. Proc. Natl. Acad. Sci. USA 2004, 101, 7799–7804. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, G.A.; Bonini, M.G.; Gunawardena, H.P.; Chen, X.; Campbell, S.L. Glutathiolated Ras: Characterization and implications for Ras activation. Free Radic. Biol. Med. 2013, 57, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turan, H.T.; Meuwly, M. Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb). J. Phys. Chem. B 2023, 127, 1526–1539. [Google Scholar] [CrossRef]
- Goloshvili, G.; Barbakadze, T.; Mikeladze, D. Sodium nitroprusside induces H-Ras depalmitoylation and alters the cellular response to hypoxia in differentiated and undifferentiated PC12 cells. Cell Biochem. Funct. 2019, 37, 545–552. [Google Scholar] [CrossRef]
- Hernansanz-Agustín, P.; Izquierdo-Álvarez, A.; García-Ortiz, A.; Ibiza, S.; Serrador, J.M.; Martínez-Ruiz, A.; Maes, M.; Nowak, G.; Caso, J.R.; Leza, J.C.; et al. Nitrosothiols in the Immune System: Signaling and Protection. Antioxid. Redox Signal. 2013, 18, 288–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Ruiz, A.; Araújo, I.M.; Izquierdo-Alvarez, A.; Hernansanz-Agustin, P.; Lamas, S.; Serrador, J.M. Specificity in S-nitrosylation: A short-range mechanism for NO signaling? Antioxid. Redox Signal. 2013, 19, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Bivona, T.G.; Pérez de Castro, I.; Ahearn, I.M.; Grana, T.M.; Chiu, V.K.; Lockyer, P.J.; Cullen, P.J.; Pellicer, A.; Cox, A.D.; Philips, M.R. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 2003, 424, 694–698. [Google Scholar] [CrossRef]
- Berg, D.; Holzmann, C.; Riess, O. 14-3-3 proteins in the nervous system. Nat. Rev. Neurosci. 2003, 4, 752–762. [Google Scholar] [CrossRef]
- McKay, M.M.; Morrison, D.K. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007, 26, 3113–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyo-Oka, K.; Wachi, T.; Hunt, R.F.; Baraban, S.C.; Taya, S.; Ramshaw, H.; Kaibuchi, K.; Schwarz, Q.P.; Lopez, A.F.; Wynshaw-Boris, A. 14-3-3epsilon and zeta regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J. Neurosci. 2014, 34, 12168–12181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuncewicz, T.; Sheta, E.A.; Goldknopf, I.L.; Kone, B.C. Proteomic Analysis of S-Nitrosylated Proteins in Mesangial Cells. Mol. Cell. Proteom. 2003, 2, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-H.; Lechuga, T.J.; Chen, Y.; Yang, Y.; Huang, L.; Chen, D.-B. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS. Biol. Reprod. 2016, 94, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frayne, J.; Ingram, C.; Love, S.; Hall, L. Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res. 1999, 298, 415–423. [Google Scholar] [CrossRef]
- Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999, 401, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Christofi, T.; Zaravinos, A. Chapter 18—RKIP in human diseases and its potential as a prognostic indicator and therapeutic target. In Prognostic and Therapeutic Applications of RKIP in Cancer; Bonavida, B., Baritaki, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 337–356. [Google Scholar]
- Wang, Y.-T.; Piyankarage, S.C.; Williams, D.L.; Thatcher, G.R.J. Proteomic Profiling of Nitrosative Stress: Protein S-Oxidation Accompanies S-Nitrosylation. ACS Chem. Biol. 2014, 9, 821–830. [Google Scholar] [CrossRef]
- Hellmann, J.; Rommelspacher, H.; Mühlbauer, E.; Wernicke, C. Raf Kinase Inhibitor Protein Enhances Neuronal Differentiation in Human SH-SY5Y Cells. Dev. Neurosci. 2009, 32, 33–46. [Google Scholar] [CrossRef]
- Sagisaka, T.; Matsukawa, N.; Toyoda, T.; Uematsu, N.; Kanamori, T.; Wake, H.; Borlongan, C.V.; Ojika, K. Directed neural lineage differentiation of adult hippocampal progenitor cells via modulation of hippocampal cholinergic neurostimulating peptide precursor expression. Brain Res. 2010, 1327, 107–117. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, H.; He, J.; Liu, L.; Xue, W.; Fox, A.; Tickner, J.; Xu, J. The emerging roles of hnRNPK. J. Cell. Physiol. 2019, 235, 1995–2008. [Google Scholar] [CrossRef]
- Gao, C.; Guo, H.; Wei, J.; Mi, Z.; Wai, P.; Kuo, P.C. S-Nitrosylation of Heterogeneous Nuclear Ribonucleoprotein A/B Regulates Osteopontin Transcription in Endotoxin-stimulated Murine Macrophages. J. Biol. Chem. 2004, 279, 11236–11243. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Gao, F.-H. The Molecular Mechanisms and the Role of hnRNP K Protein Post- Translational Modification in DNA Damage Repair. Curr. Med. Chem. 2017, 24, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Okano, H.J.; Okano, H. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J. Biol. Chem. 2005, 280, 12690–12699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Yu, Y.; Inoue, A.; Widodo, N.; Kaul, S.C.; Wadhwa, R. Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis. J. Biol. Chem. 2013, 288, 15046–15056. [Google Scholar] [CrossRef] [Green Version]
- Grassilli, E.; Pisano, F.; Cialdella, A.; Bonomo, S.; Missaglia, C.; Cerrito, M.G.; Masiero, L.; Ianzano, L.; Giordano, F.; Cicirelli, V.; et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene 2016, 35, 4368–4378. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.-D.; Ma, T.; Diao, S.; Zhang, X.; Chen, Y.; Hsu, J.; A Lipton, S.; Masliah, E.; Xu, H.; Liao, F.-F. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol. Neurodegener. 2010, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Numajiri, N.; Takasawa, K.; Nishiya, T.; Tanaka, H.; Ohno, K.; Hayakawa, W.; Asada, M.; Matsuda, H.; Azumi, K.; Kamata, H.; et al. On–off system for PI3-kinase–Akt signaling through S -nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl. Acad. Sci. USA 2011, 108, 10349–10354. [Google Scholar] [CrossRef]
- Choi, M.S.; Nakamura, T.; Cho, S.J.; Han, X.; Holland, E.A.; Qu, J.; Petsko, G.A.; Yates, J.R.; Liddington, R.C.; Lipton, S.A. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson’s disease models. J. Neurosci. 2014, 34, 15123–15131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Theodorescu, D. RAL GTPases: Biology and Potential as Therapeutic Targets in Cancer. Pharmacol. Rev. 2017, 70, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rangarajan, A.; Hong, S.J.; Gifford, A.; Weinberg, R.A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004, 6, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Pollock, C.; Tracy, K.; Chock, M.; Martin, P.; Oberst, M.; Kelly, K. Activation of the RalGEF/Ral Pathway Promotes Prostate Cancer Metastasis to Bone. Mol. Cell. Biol. 2007, 27, 7538–7550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-García, A.; Pritchard, C.A.; Paterson, H.F.; Mavria, G.; Stamp, G.; Marshall, C.J. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005, 7, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsetti, S.C.; Wang, D.-A.; Peng, H.; Carrico, D.; Cox, A.D.; Der, C.J.; Hamilton, A.D.; Sebti, S.M. Geranylgeranyltransferase I Inhibitors Target RalB To Inhibit Anchorage-Dependent Growth and Induce Apoptosis and RalA To Inhibit Anchorage-Independent Growth. Mol. Cell. Biol. 2007, 27, 8003–8014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiatt, S.M.; Neu, M.B.; Ramaker, R.C.; Hardigan, A.A.; Prokop, J.W.; Hancarova, M.; Prchalova, D.; Havlovicova, M.; Prchal, J.; Stranecky, V.; et al. De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay. PLoS Genet. 2018, 14, e1007671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simão, S.; Agostinho, R.R.; Martínez-Ruiz, A.; Araújo, I.M. Regulation of Ras Signaling by S-Nitrosylation. Antioxidants 2023, 12, 1562. https://doi.org/10.3390/antiox12081562
Simão S, Agostinho RR, Martínez-Ruiz A, Araújo IM. Regulation of Ras Signaling by S-Nitrosylation. Antioxidants. 2023; 12(8):1562. https://doi.org/10.3390/antiox12081562
Chicago/Turabian StyleSimão, Sónia, Rafaela Ribeiro Agostinho, Antonio Martínez-Ruiz, and Inês Maria Araújo. 2023. "Regulation of Ras Signaling by S-Nitrosylation" Antioxidants 12, no. 8: 1562. https://doi.org/10.3390/antiox12081562
APA StyleSimão, S., Agostinho, R. R., Martínez-Ruiz, A., & Araújo, I. M. (2023). Regulation of Ras Signaling by S-Nitrosylation. Antioxidants, 12(8), 1562. https://doi.org/10.3390/antiox12081562