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Abstract: Hydrogen sulfide (H2S), originally known as toxic gas, has now attracted attention as one
of the gasotransmitters involved in many reactions in the human body. H2S has been assumed to
play a role in the pathogenesis of many chronic diseases, of which the exact pathogenesis remains
unknown. One of them is inflammatory bowel disease (IBD), a chronic intestinal disease subclassified
as Crohn’s disease (CD) and ulcerative colitis (UC). Any change in the amount of H2S seems to be
linked to inflammation in this illness. These changes can be brought about by alterations in the
microbiota, in the endogenous metabolism of H2S and in the diet. As both too little and too much
H2S drive inflammation, a balanced level is needed for intestinal health. The aim of this review is to
summarize the available literature published until June 2023 in order to provide an overview of the
current knowledge of the connection between H2S and IBD.

Keywords: hydrogen sulfide (H2S); inflammatory bowel disease (IBD); Crohn’s disease (CD); ulcerative
colitis (UC)

1. Introduction

In 1996, the discovery of its neuromodulating effects changed the image of hydrogen
sulfide (H2S) from that of a toxic gas to that of an important messenger in cells [1,2]. Since
then, many important physiologic functions of H2S have been discovered, which is why
it now belongs to the family of gasotransmitters [3]. These physiologic functions range
from decreasing blood pressure to controlling the nervous system [4–6]. Like the other
gasotransmitters, nitric oxide (NO) and carbon monoxide (CO), H2S is able to cross cell
membranes independently of transporters or membrane receptors [7,8].

H2S can be the result of endogenous production or a product of microbial metabolism
(Figure 1). The intestinal epithelial cells are exposed to both, which is why the intestine
must be efficient in regulating the H2S concentration [9]. Endogenous H2S can be pro-
duced through the desulfhydration of L-cysteine with or without homocysteine, and from
3-mercaptopyruvate (3MP), produced from cysteine and α-ketoglutarate [10,11]. These
reactions are catalyzed by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS),
as well as 3-mercapto-sulfurtransferase (3-MST), respectively [10,12,13]. Normally, the
majority of H2S is produced from cysteine and approximately a third from homocys-
teine [12]. While CBS and CSE seem to be the most important H2S-producing enzymes,
3-MST might be more important in the colon [14–19]. Exogenously produced H2S is the
result of microbial metabolism degrading proteins into amino acids, with cysteine and
other sulfur-containing compounds among them [9,20]. Several bacterial groups, like
Fusobacterium, Clostridium, Escherichia, Salmonella, Klebsiella, Streptococcus, Desulfovibri, and
Enterobacter, are able to metabolize cysteine and create H2S in the process [21–23]. In partic-
ular, cysteine desulfhydrase-containing bacteria, which belong to the Clostridium cluster,
XIVa, are abundant in the group of high H2S-producing bacteria that can be found in fecal
samples [24].
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Figure 1. Hydrogen sulfide (H2S) production and detoxification. Exogenous H2S is a metabolic 
product of the degradation of sulfate (SO42−) through sulfate-reducing bacteria (SRB) or degradation 
of sulfur-containing compounds by intestinal bacteria. Endogenous H2S results from degradation 
of L-cysteine with or without homocysteine by cystathionine-γ-lyase (CSE) and cystathionine-
β-synthase (CBS) in the cytosol and from 3-mercaptopyruvate (3MP) by 3-mercapto-
sulfurtransferase (3-MST) in mitochondria. The detoxification process is catalyzed by 
sulfide:quinone oxidoreductase (SQOR) and subsequently by thiosulfate sulfurtransferase (TST) 
or ethylmalonic encephalopathy 1 protein (ETHE1). Detoxification occurs solely in the 
mitochondria. Cysteine aminotransferase (CAT), D-amino acid oxidase (DAO), glutathione 
persulfide (GSSH), thiosulfate (SSO32−

 ), sulfite (SO32−). 

H2S can be removed from the body in three ways: oxidation, methylation and 
expiration. Methylation and expiration, however, contribute only minimally to H2S 
disposal [25]. H2S is oxidized by sulfide:quinone oxidoreductase (SQOR), a mitochondrial 
enzyme on the inner membrane [26]. Then, either ethylmalonic encephalopathy 1 protein 
(ETHE1, also known as persulfide dioxygenase) or thiosulfate sulfurtransferase (TST, also 
known as rhodanese), other mitochondrial enzymes, further metabolize H2S to produce 
sulfate, which can exit the body in the urine via the kidneys [27–32]. 

Along with its physiological functions, which are still being discovered, H2S is 
gaining more and more attention as an influencing factor in many pathologies [33–36]. As 
the intestinal tract is exposed to more H2S than most other organs, many studies are 
focusing on the role of H2S in intestinal diseases, particularly its role in the not-yet well 
known pathogenesis of inflammatory bowel disease (IBD) [9,14,15,37–40]. 

IBD describes two chronic intestinal diseases: ulcerative colitis (UC) and Crohn’s 
disease (CD). These differ in clinical, microscopic, macroscopic, and radiological features, 
and can affect different parts of the gastrointestinal tract [41]. However, if the 
inflammation pattern does not fit into any of these groups, it is classified as indeterminate 
colitis (IC, or IBD unclassified (IBD-U)) [42,43]. CD is characterized histopathologically as 

Figure 1. Hydrogen sulfide (H2S) production and detoxification. Exogenous H2S is a metabolic
product of the degradation of sulfate (SO4

2−) through sulfate-reducing bacteria (SRB) or degradation
of sulfur-containing compounds by intestinal bacteria. Endogenous H2S results from degradation
of L-cysteine with or without homocysteine by cystathionine-γ-lyase (CSE) and cystathionine-β-
synthase (CBS) in the cytosol and from 3-mercaptopyruvate (3MP) by 3-mercapto-sulfurtransferase
(3-MST) in mitochondria. The detoxification process is catalyzed by sulfide:quinone oxidoreductase
(SQOR) and subsequently by thiosulfate sulfurtransferase (TST) or ethylmalonic encephalopathy 1
protein (ETHE1). Detoxification occurs solely in the mitochondria. Cysteine aminotransferase (CAT),
D-amino acid oxidase (DAO), glutathione persulfide (GSSH), thiosulfate (SSO3

2−), sulfite (SO3
2−).

H2S can be removed from the body in three ways: oxidation, methylation and expira-
tion. Methylation and expiration, however, contribute only minimally to H2S disposal [25].
H2S is oxidized by sulfide:quinone oxidoreductase (SQOR), a mitochondrial enzyme on
the inner membrane [26]. Then, either ethylmalonic encephalopathy 1 protein (ETHE1,
also known as persulfide dioxygenase) or thiosulfate sulfurtransferase (TST, also known
as rhodanese), other mitochondrial enzymes, further metabolize H2S to produce sulfate,
which can exit the body in the urine via the kidneys [27–32].

Along with its physiological functions, which are still being discovered, H2S is gaining
more and more attention as an influencing factor in many pathologies [33–36]. As the
intestinal tract is exposed to more H2S than most other organs, many studies are focusing
on the role of H2S in intestinal diseases, particularly its role in the not-yet well known
pathogenesis of inflammatory bowel disease (IBD) [9,14,15,37–40].

IBD describes two chronic intestinal diseases: ulcerative colitis (UC) and Crohn’s
disease (CD). These differ in clinical, microscopic, macroscopic, and radiological features,
and can affect different parts of the gastrointestinal tract [41]. However, if the inflamma-
tion pattern does not fit into any of these groups, it is classified as indeterminate colitis
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(IC, or IBD unclassified (IBD-U)) [42,43]. CD is characterized histopathologically as a
patchy transmural inflammatory “skip lesions”, which might appear anywhere along the
gastrointestinal tract and show inflamed areas next to uninflamed ones, granulomas and
deep-penetrating ulcers. Complications can be fistulas, strictures, and abscesses [44–46].
UC is restricted to inflammatory lesions in the colonic mucosa [45]. In CD, the terminal
ileum is the most likely affected location, whereas the distal rectum is mainly affected in
UC [46,47]. Both CD and UC most commonly have a clinical course of recurrent flares and
remission [48].

IBD affects males and females equally, with a peak incidence between 10 and 30 years
and then again between 50 and 60 years [49]. The number of people affected is rising
globally, particularly in newly industrialized countries. This phenomenon is amplified by
the increasing rates of diagnosis and decreasing rates of mortality [50]. About 25% of cases
of newly diagnosed IBD occur during childhood and adolescence, where it tends to be
more aggressive [51,52]. Many studies have shown an increase in pediatric IBD incidence
in the past 20 years [53–56]. CD seems to occur earlier in the patient’s life than UC [57].

The exact pathogenesis of IBD is still unknown. Currently, it is hypothesized that a
combination of genetics, environmental factors, intestinal microbiota, and changes in the
immune response are responsible for triggering the onset of the disease [58–61]. There is an
increasing number of genes that are linked to the disease pathogenesis. However, these are
only increasing the susceptibility and are only explaining around 25% of heritability [59].
Therefore, it is proposed that interactions among genes and their products are an important
factor for the onset of the disease [62]. Additionally, environmental factors, like drugs,
diet, smoking, stress and geographical factors, are shown to influence the onset of IBD [63].
Furthermore, changes in the gut microbiota are observed in IBD patients, even though only
20–30% of these bacteria can be cultured [64]. Not only are there changes in the composition
of the microbiota, but also in the mucus layer, in which the microbiota is located [65,66].
Lastly, immunologic factors have been suspected to play a role in the pathogenesis of
IBD for the longest time. Alterations in the immune response of IBD patients have been
observed in innate and adaptive immunity. Interestingly, genetic alterations, environmental
factors, and the microbiota are all observed to affect the immune response too [59]. H2S
can affect many of these factors, as it has both pro- and anti-inflammatory effects, which is
why its influence in IBD is not yet well determined [15]. The following review will focus
on the crucial role of H2S in the pathogenesis of IBD.

2. Materials and Methods

This review was conducted in line with the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guideline [67].

2.1. Data Source/Search Strategy

Research for studies on the connection of H2S and IBD was conducted on PubMed
with the use of the following search terms: H2S, hydrogen sulfide, IBD, inflammatory
bowel disease, Crohn‘s disease, ulcerative colitis, chronic inflammatory disorder of the
bowel, gastrointestinal tract, colonic mucosa, intestinal barrier dysfunction, SRB, sulfate-
reducing bacteria, H2S metabolism, cystathionine-γ-lyase, CSE, cystathionine-β-synthase,
CBS, 3-mercapto-sulfurtransferase, 3-MST, sulfide:quinone oxidoreductase, SQOR, thiosul-
fate sulfurtransferase, TST, and ethylmalonic encephalopathy 1 protein ETHE1. The results
included studies from July 1967 to June 2023.

2.2. Study Selection

The articles listed on PubMed were first screened based on titles and again after
reading the abstract. The list of references in the selected papers was then examined for
other studies which were relevant for this review. All studies written in English and listed
on PubMed were included in the screening, independently of the study design.
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The references in this review were extracted from Endnote software version X9
(Thompson Reuters; New York, NY, USA).

The selection process is visualized in Figure 2.
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3. The Connection between H2S and the Pathogenesis of IBD
3.1. Microbial H2S

In the gastrointestinal tract, the number of bacteria is higher than in any other ecosys-
tem [68]. There they form the microbiota, among which the many functions are the
degradation of otherwise undigestible food components, e.g., complex carbohydrates [69].
The result of this metabolic processes are short-chain fatty acids, which are an important
energy source for colonocytes [70]. Microbial degradation of sulfur-containing amino acids,
on the other hand, produces H2S [71]. Another important function of the microbiota is
the defense against pathogenic and opportunistic microorganisms. An imbalance in this
microbial system is linked to certain diseases, e.g., IBD, cancer and diabetes [68,72]. These
diseases might also be linked to H2S [68,73]. The crucial role of bacteria in the microbiota in
the pathogenesis of IBD is also seen in animal models, in which antibiotics or a germ-free
environment ameliorate an inflammation of the colon [74]. In bacteria, sulfide can either be
the result of degradation of sulfate-containing substances or as-/dissimilatory reduction of
sulfate or sulfur [20,71,75]. Since transit time and other factors, like pH, determine which
metabolizing pathways can be active, the majority of bacterial sulfide production is located
in the large intestine [20]. The substrate for bacterial H2S production can either be dietary
or endogenous [76,77]. In the large intestine, the endogenous colonic mucins are much
more sulfated than in the small intestine, providing a great supply for H2S production and
therefore an optimal environment for H2S-producing bacteria [78].

H2S can be produced by sulfate-reducing bacteria (SRB) in the colonic lumen. A change
in the microbiota is seen in patients with CD and UC compared to healthy ones, e.g., a
higher level of activity of SRB is suggested in the colon of UC patients [79,80]. Higher levels
of H2S and SRB are found in stool samples from patients with UC [38]. Likewise, a decrease
in butyrate, acetate, methylamine, and trimethylamine, all products of typical gut bacteria,
in fecal extracts of IBD patients reinforces the idea of a change in the microbiota [81]. Higher
level of SRB correlated with the symptom severity of IBD. Accordingly, in patients with
active disease, more SRB were detected than in patients in remission [82].

In contrast to the increased numbers of SRB, the autochthonous bacterial flora seems
to be reduced in UC patients [83]. The higher temperature, created by the inflammatory
process, increases the growth of some SRB, which then also increases H2S production [83].
SRB produces acetate, which in turn inhibits the enzyme TST. This leads not only to a
decrease in the detoxification of H2S but also to an increased permeability of H2S through
the intestinal barrier [84]. This synergy of H2S and acetate intensifies the aggressiveness of
H2S in the colonic lumen [83].

The microbiota of children with IBD is altered in contrast to that of healthy ones. The
changes differ from the alterations seen in adults. Here, different bacterial groups pre-
dominate, like Faecalibacterium prausnitzii, which is found to be decreased in adults with
IBD [85–87]. These studies used culture-based technology to examine the configuration
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of the microbiota. As not all bacteria in the microbiota can be cultured, a comprehensive
molecular analysis of the pediatric microbiota in IBD patients is needed [64,88]. Neverthe-
less, the number of H2S-producing bacteria is found to be increased in children as well as
in adults with new-onset IBD [39].

In pediatric CD patients, a decrease in butyrate, a short-chain fatty acid, which is not
only an important energy source but also has anti-inflammatory properties, is seen [39,89].
Furthermore, butyrate is shown to improve the barrier function [90]. Butyrate seems
to stimulate mitochondrial gene expression as well as mitochondrial H2S-detoxification
enzymes [39,91]. The decrease in butyrate might be due to a decrease in butyrate-producing
bacteria, which is seen in the microbiota of pediatric CD patients [39]. This decrease in
butyrate—and consequently in the mitochondrial proteins that are less expressed—seems
to decrease the ability of H2S-detoxification [39]. Additionally, butyrate lowers the level of
epithelial oxygenation [92,93]. H2S, on the other hand, increases the level of oxygen through
the inhibition of β-oxidation [94]. This combination establishes a hostile environment for
obligate anaerobe bacteria, which produce short-chain fatty acids [95]. A reduction of
butyrate-producing bacteria is also linked to antibiotic exposure, which in turn is suspected
to increase the risk of pediatric CD [39,89,96]. The production of H2S seems to be a defense
mechanism against antibiotics, which favors SRB growth in the colon and might therefore
be partly responsible for the increased risk [97,98]. In addition, the lack of short-chain fatty
acids increases the pH, which favors the growth of SRB even more [95].

The decrease in butyrate combined with the ability of H2S to inhibit the cytochrome c
oxidase in mitochondria and β-oxidation may result in energy starvation and oxidative
stress, which damages colonocytes and subsequently the gut barrier [95,99]. This allows
intestinal microbes to get into direct contact with the mucosal immune system, which then
gets activated, resulting in inflammation [95]. This creates a vicious cycle: the inflammation
further damages the epithelial barrier, driving further activation of the immune system and
resulting in more inflammation [95,100].

Another factor that links the decrease of butyrate with H2S is the availability of H2.
H2 is crucial for anaerobic respiration in the intestinal lumen. One of the bacterial groups
that need H2 for anaerobic respiration are SRB [101]. H2 is the product of intraluminal
carbohydrate fermentation by bacteria [102]. In the event of too little production, e.g.,
low dietary intake of carbohydrate that can be fermented to H2, NADH is consumed
as an alternative source of H2, which is used for H2S-production at the cost of butyrate
production [95,103].

In stool samples from IBD patients, a higher amount of metabolites containing sulfur
compared to stool from healthy individuals is seen, which might indicate a dysfunction
in the metabolism of H2S [104,105]. The cause for this is most likely multifactorial, with
changes in diet and therefore in the availability of substrate and alterations in the synthesis
or metabolism of H2S produced from the cells themselves or bacteria in the microbiota
being some of these factors [105]. Part of the increase in these sulfur-containing metabolites
might originate from the increase in taurine. Taurine can result from the hydrolyzation
of taurine-conjugated bile acids. However, the activity of bile salt hydrolase is seen to
be decreased in active IBD [106,107]. One of the most important bile acid hydrolyzers
in the gastrointestinal tract is from the Firmicutes phylum, which is reduced in IBD pa-
tients [106,108,109]. The highest activity of bile salt hydrolase is seen in Lactobacilli [110].
In patients with UC, reduced numbers of lactic acid bacteria are found [111]. Neverthe-
less, Kushkevych et al. showed a reduction in lactic acid bacteria levels correlating with
increased levels of H2S [112]. Other bile salt hydrolyzers are also found to be decreased in
IBD patients [106,113]. The increase in the availability of taurine might therefore be due to
the promotion of endogenous taurine production by increased levels of methionine and
cysteine from diet or from a dysfunctional cysteine or methionine metabolism as seen in
IBD [105]. Taurine, when metabolized by bacteria in the gut, results in increased substrate
for H2S production [105]. E. coli, which commonly metabolizes taurine, among others, is
found to be increased in IBD [114,115]. The abundance of bile acids in combination with
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the increased availability of methionine and cysteine in IBD could therefore promote the
occurrence of certain bacteria, which consequently increase the level of H2S [105].

A common drug in the treatment of IBD, 5-aminosalicylic acid (mesalamine), sup-
presses the growth of SRB and consequently decreases the level of produced sulfide,
indicating another possible mechanism for its beneficial effects [82,116]. Additionally,
mesalamine, like butyrate, stimulates the peroxisome proliferator activated receptor gamma
(PPAR-γ) [117,118]. This receptor is responsible for the promotion of β-oxidation and
lowers the oxygen levels of the epithelium, which in turn drives the growth of obligate
anaerobes. These bacteria produce butyrate and therefore provide energy to the colono-
cytes [119]. However, an even more efficient decrease in inflammation and especially a
decrease in nociception, which is absent with 5-aminosalicylic acid, is seen in a study with
ATB-429, a H2S-releasing derivate of mesalamine [120]. Nevertheless, decreasing sulfide
levels by removing the substrate for its production from SRB through a reduction in sulfur-
containing amino acids ameliorates colitis as well [121,122]. An increased abundance of
SRB and consequently H2S is also linked to other inflammatory diseases like periodontitis
and pouchitis [98,123,124].

A decrease in the number of SRB might be one possible explanation for the beneficial
effect of an appendectomy in UC [125]. In a healthy state, the appendix harbors many gut
microbes, one of which is Fusobacterium spp., which is an efficient producer of H2S [126,127].
This genus of bacteria is increased in an inflamed appendix [128]. Consequently, an
appendectomy and therefore the removal of a source of H2S production, may be a reason
for the preventive effect of UC [95].

Nevertheless, some studies found no change in the luminal H2S of IBD patients and
indicate that the bacterially produced H2S might be bound and therefore metabolically
inactive [129,130]. However, the accuracy of the estimates of luminal H2S has been ques-
tioned [14]. The analysis of fecal samples is limited since it examines only the end product
and therefore only the metabolizing processes at the end of the gastrointestinal tract [100].
Additionally, the colonic transition rate of feces influences the fecal H2S levels, resulting in
lower accuracy of the estimates of luminal H2S [131].

In colon samples from healthy individuals, the microbiota is organized in biofilms,
which form when colonies encapsule themselves in secreted polysaccharides. This supports
them in the harsh living conditions they face in the gastrointestinal tract [132,133]. In control
colon samples from mice and rats, these biofilms form on the sterile mucus layer. After
induction of colitis, they were disorganized with bacterial translocation into the lamina
propria [40]. Likewise, in healthy humans, the bacteria from the microbiota have no contact
with the intestinal epithelium because of these biofilms [66,134]. In IBD patients, however,
this is not the case [135–137]. Here, the bacteria actually do have contact because of an even
thinner and more discontinuous mucus layer, which results in less epithelium covered
than in healthy colons [137–139]. In UC patients, the mucus is even seen to be more
permeable and less viscous [122,140]. This results in decreased barrier function, which is
also suspected to play a significant role in the pathogenesis of IBD [141]. The changes in
mucus permeability approach normal levels when IBD patients are in remission [136]. H2S
might be able to reduce the linking of disulfide bonds in the mucus layer and allow bacteria
to penetrate the remaining mucus layer, distorting it even more [142].

On the contrary, in animal models, it is shown that giving H2S donors does not elicit
an inflammatory response but even helps to maintain a normal mucus and microbiota
structure [40,143]. H2S is an important stimulant for mucus production in the colon, which
promotes the establishment of a microbiota biofilm [144]. During inflammation of the
colon, mucus production is reduced, which leads to fragmentation of the otherwise linear
biofilms. This effect is reversed by administration of H2S donors [40]. Healing of the tissue
damaged by colitis is delayed by inhibiting the synthesis of H2S and accelerated by adding
H2S donors [14,19].
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The beneficial or destroying effects of H2S on the mucus might therefore be concentra-
tion dependent, too, and underline the assumption of H2S having a dome-shaped curve
of beneficial concentration levels in the colon, with too high and too low levels being
harmful [145].

3.2. Non-Microbial and Endogenous H2S

The contribution of sulfur to the pathogenesis of IBD is supported by many animal
models in which dextran sodium sulfate (DSS) damages the colonocytes, which allows for
luminal bacteria to enter, consistently resulting in an inflammatory state very similar to
that of IBD [146].

In the colon of rats, intraluminal exposure to NaHS, a salt that eventually forms H2S,
even for a short period of time, leads to an inflammatory response. The rise in genetic
expression interleukin-6 (IL6) is only seen with high concentrations of NaHS; a lower
concentration does not seem to elicit an inflammatory response. In those rats as well as in
human colonocytes, DNA is not harmed by NaHS. However, it seems to put colonocytes
in a hypoxia-like state by inhibiting mitochondrial oxygen consumption. This inhibitory
effect is seen at high concentrations of NaHS, whereas low concentrations seem to stimulate
oxygen consumption. This leads to the assumption that higher luminal H2S concentrations
have a negative effect on colonocytes due to the inhibition of oxygen consumption and,
in turn, of the energy metabolism of this highly energy-demanding tissue, as well as due
to the elicitation of inflammatory gene expression [147]. However, this seems to be a
reversible effect [147,148]. The inhibition of oxygen consumption can be reduced by dietary
proanthocyanidin-containing polyphenols in different fruit extracts. It is suggested that
these polyphenols can bind H2S [149]. This H2S-binding characteristic is also seen with
zinc chloride [150].

CSE, CBS, and 3-MST are endogenous enzymes that produce H2S [10,12,13]. SQOR,
ETHE1, and TST are responsible for the detoxification process [26–32]. Some studies have
shown differences in the enzymatic expression and the presence of enzymes involved in
the metabolism of H2S in inflamed tissue and healthy controls [14,16,17,39,100,145,151,152]
(Table 1). Hirata et al. demonstrated an increase in mRNA levels of CSE and CBS and,
consequently, in H2S levels in the colonic mucosa of mice with DSS-induced colitis. In this
animal model, the CSE seems to be the dominant producer of H2S, as CSE mRNA levels
were more than 200 times higher than those of CBS [151]. De Cicco et al. showed decreased
expression of CBS [16]. Wallace et al., however, concluded that the observed increase in the
capacity of H2S production in rats with colitis is due to an increase in activity rather than
expression, which was decreased overall [14]. In IBD as well as in in vitro inflammatory
settings, 3-MST is reduced and in an animal model with complete deficiency of this enzyme,
the inflammation, based on the level of inflammatory cytokines, the clinical symptoms and
the histological findings, is seen to be more extensive than in the wild-type counterpart.
The level of ROS and consequently intestinal epithelial cell apoptosis also correlated with
3-MST expression [153]. Interestingly, providing NaSH as an external source of H2S does
not ameliorate the intestinal inflammation in 3-MST-deficient mice. This study suggests
that the influence of 3-MST on AKT signaling, a regulator for epithelium inflammation,
epithelium apoptosis, cell proliferation and dendritic cell maturation, and not the changes
in H2S, is responsible for 3-MST-mediated colitis [153].
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Table 1. Overview of studies on changes in hydrogen sulfide-producing and -detoxifying enzymes
(cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST),
ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosul-
fate sulfurtransferase (TST)) in human and animal samples. Ulcerative colitis (UC), Crohn’s disease
(CD), dextran sulfate sodium (DSS).

Enzyme Method
Difference in Enzyme

Expression in Comparison
to the Control Group

Species Reference Year

CBS mRNA measurement increased Mouse (DSS-induced colitis) Hirata et al. [151] 2011

CBS mRNA and protein
expression decreased

Mouse (Helicobacter
hepaticus induced colitis in

mice without adaptive
immune system

De Cicco et al. [16] 2018

CBS Protein expression
(Western blot)

first lower (days 3–7 after
induction), then increased

Rat (trinitrobenzene sulfonic
acid induced colitis) Wallace et al. [14] 2009

CBS Immunohistochemical
staining increased Rat (trinitrobenzene sulfonic

acid induced colitis) Wallace et al. [14] 2009

CSE mRNA measurement increased Mouse (DSS-induced colitis) Hirata et al. [151] 2011

CSE Protein expression
(Western blot) decreased Rat (trinitrobenzene sulfonic

acid induced colitis) Wallace et al. [14] 2009

CSE Immunohistochemical
staining

Unstained epithelial cells,
while increased staining of

mucosa and submucosa

Rat (trinitrobenzene sulfonic
acid induced colitis) Wallace et al. [14] 2009

CSE
mRNA and protein

expression
(Western blot)

decreased protein levels,
decreased mRNA

Rat and mouse
(DSS-induced colitis) Taniguchi et al. [17] 2009

CSE Immunohistochemical
staining decreased Human (CD + UC) Stummer et al. [145] 2022

3-MST Protein levels
(Western blot) decreased Human (CD + UC) Zhang et al. [153] 2022

3-MST Immunohistochemical
staining decreased Human (CD + UC) Zhang et al. [153] 2022

3-MST mRNA and
protein expression decreased Mouse (DSS induced colitis) Zhang et al. [153] 2022

3-MST Immunohistochemical
staining decreased Human (CD + UC) Stummer et al. [145] 2022

ETHE1 mRNA decreased Human (CD) Mottawea et al. [39] 2016

ETHE1 Immunohistochemical
staining

decreased, except for the
terminal ileum in pediatric

patients
Human (CD + UC) Stummer et al. [145] 2022

SQOR mRNA decreased Human (CD) Mottawea et al. [39] 2016

SQOR Immunohistochemical
staining

decreased, except for the
terminal ileum Human (CD + UC) Stummer et al. [145] 2022

TST
mRNA and protein

expression
(Western blot)

decreased Rat and mouse (DSS
induced colitis) Taniguchi et al. [17] 2009

TST mRNA decreased Human (UC) De Preter et al. [100] 2012

TST mRNA decreased Human (CD) Mottawea et al. [39] 2016

TST Immunohistochemical
staining decreased Human (CD + UC) Stummer et al. [145] 2022
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The detoxification of H2S also seems to be altered in IBD. Activity and expression
of rhodanese are significantly reduced in DSS-induced colitis [17]. De Preter et al. also
reported a decrease in TST enzyme activity and gene expression in tissue samples from UC
patients [100]. This is in contrast to the study by Picton et al., which showed no difference
in the activity of this enzyme in patients with IBD. The samples used, however, were taken
from patients who had already been on medication and only rectal biopsies were used [152].
Other H2S-detoxification enzymes, namely ETHE1 and SQOR, are downregulated in the
colon of patients with CD. This study, again, showed a repression of TST [39]. Another
study, which examined all enzymes except CBS, showed a decrease in all enzymes in
intestinal epithelial cells of adult IBD patients when compared to healthy adults by im-
munohistochemical examination of intestinal samples. Interestingly, in children with IBD,
there is not such a pronounced difference in enzyme expression in epithelial cells [145].

In UC and CD patients, the gene expression, as well as the enzyme activity of the
detoxification enzyme TST are reduced [100,154]. In CD patients, the reduction is less
extensive after therapy with anti-tumor necrosis factor α-therapy with infliximab [154]. In
these studies, a connection between inflammation and the expression of these enzymes is
postulated. The authors of these studies therefore describe the changes in gene expression
as a result of inflammation rather than a cause [100,154].

The reason for the contradictory data regarding the difference in enzyme expression
has not been identified yet. Most studies discovered a lower expression, while only a few
reported an increase in the enzyme expression [14,16,17,39,100,145,151,153].

None of the studies that showed increased expression were conducted on human
samples and Wallace et al. reported in the immunohistochemical staining an increase
in CSE expression in the mucosa and submucosa while the epithelial cells remained un-
stained [14,151]. To fully comprehend the changes in the endogenous metabolism further
and more extensive studies are needed.

The crucial role of a healthy detoxification ability of the colon is confirmed in an animal
study. Here, it is shown that the colonic mucosa of healthy rats absorbs up to 95% of the
produced H2S. The amount of absorbed H2S would be lethal if it were to reach systemic
circulation. Due to the efficient conversion of H2S to thiosulfate, the colonic tissue is not
damaged by the high luminal H2S levels and the toxic amount of H2S is prevented from
entering the systemic circulation [131]. The colonic mucosa is especially equipped for this
task, as it detoxifies H2S much faster than other parts of the gastrointestinal tract [155].

CBS and CSE, two endogenous synthesizers of H2S, both require vitamin B6 as a
cofactor [156]. This vitamin is deficient in nearly a third of IBD patients due to inadequate
intake or absorption secondary to the inflammation [157]. Flannigan et al. showed that
an induced vitamin B6 deficiency resulted in an impairment of H2S synthesis in the colon
and worsened colitis in animal models. Consequently, a H2S donor ameliorated these
effects. They even observed decreased colonic CSE expression in rats with vitamin B6
deficiency [156].

On the other hand, H2S provides a source of energy to the epithelial cells in the gas-
trointestinal tract as long as the concentration does not exceed certain levels [158]. H2S itself
seems to have anti-inflammatory effects in low concentrations: H2S prevents leucocyte
adherence in the vasculature [159] and inflammation-triggered plasma exudation [160].
H2S can also decrease pain sensation in the colon [161], and promotes healing [162] as well
as resolution of colitis in preclinical animal trials [14,19,151,163]. Moreover, H2S protects
mitochondria and their function in situations in which oxygen is low by upregulating the
nuclear factor erythroid 2-related factor 2 (Nrf2) stress response pathway, which increases
detoxifying proteins and antioxidants [164–167]. Endogenous H2S is also able to reduce
inflammation by decreasing the production of pro-inflammatory cytokines and by modu-
lating the frequency and number of granulocyte-like myeloid-derived suppressor cells [16].
Hirata et al. showed that endogenously derived H2S also acts as an antioxidant [151].
Furthermore, H2S suppresses the activation of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), an important regulator for the immune response, and even
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promotes the healing of gastric ulcers [168,169]. Giving H2S donors significantly allevi-
ated colitis in rat models, whereas inhibition of H2S synthesis in those rats and healthy
rats induced or worsened colitis. The mechanism behind this might be a decrease in
cyclooxygenase-2 messenger RNA expression and the resulting decrease in prostaglandin
synthesis [14]. In chronic inflammation, this is important for the resolution of the inflam-
matory response [144]. The exacerbation of inflammation after blocking the synthesis of
H2S is also seen in cells with DSS-induced colitis [170].

Flannigan et al. confirmed a connection between IL-10, an anti-inflammatory cytokine,
and H2S [156]. The initially observed reduction in H2S synthesis in IL-10-deficient mice was
reestablished to normal levels with recombinant IL-10 [156]. H2S has a stimulatory effect
on IL-10 production while decreasing pro-inflammatory cytokines such as IL-1β, IL-6, IL-8,
IL-18, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) [120,171–174]. A
link between IL-10 and IBD has already been shown in many studies, which confirm that
impaired IL-10 secretion intensifies the inflammation in IBD [175–177]. IL-10 is crucial for
mucosal homeostasis and regulation of the immune response in the colon [178,179]. Indeed,
a mutation in IL-10 signaling, as seen in nucleotide-binding oligomerization domain 2
(NOD2) mutations, is linked to an increased susceptibility to IBD [175,180]. H2S thereby
decreases inflammation by stimulation of IL-10. This is also observed in other organs, such
as the brain, liver or lung [181–183]. Additionally, H2S protects the mucosa by increasing
blood flow through vasodilation. This is important for decreasing mucosal damage through
all erosive substances, like bile, acids and digestive enzymes, it faces and for fastening
tissue repair after damage occurs [167,184–186].

This controversy in pro- and anti-inflammatory effect of H2S shows, again, that
unbalanced levels of H2S—whether they are too high or too low—drive inflammation.
Therefore, a certain range of H2S concentration level might be needed for intestinal health.

3.3. Dietary H2S

Dietary factors also seem to influence the inflammatory activity in IBD. Sulfur-containing
amino acids, which can be transformed to H2S, can also be derived through diet [20,187].
Sulfate can be absorbed in the small intestine very efficiently; however, this mechanism
has a saturation point [188]. Once this level is reached, the amount of sulfate reaching the
colon increases with dietary intake. Nevertheless, other factors, like food preparation or
meal consumption habits, can also influence the number of sulfates reaching the colon,
making dietary factors difficult to study regarding their role on H2S and IBD even harder
to study [95,189–191]. A western diet seems to be especially rich in inorganic sulfate and
protein-derived sulfate [192]. A link between IBD and diet seems likely, considering the
rise in IBD numbers in westernized nations. Until a decade ago, mostly Caucasian people
were affected by IBD. Nevertheless, the incidence has been rising recently in the Asian and
Hispanic populations, especially in those who immigrated into high-prevalence countries
and particularly in their children [193]. Additionally, residents of urban centers are more at
risk of developing IBD than those in rural settings [49]. Studies on the link between H2S
and IBD are limited. Most of them focus on lowering sulfur intake by transitioning to a
more plant-based diet, which seemed to ameliorate the disease activity. However, these
studies are either case reports or have relatively low patient numbers [121,194–197].

Sulfate can be found in high amounts in many food additives, dried fruit, nuts,
some vegetables, wheat bread, sausages, milk products, beer, canned and pickled prod-
ucts [68,198]. Dietary habits also have an influence on the microbiota. A diet high in protein
is linked to increased numbers of SRB, which increases H2S production and decreases the
number of butyrate producers and therefore the amount of butyrate in the colon [199,200].
These changes are also observed in patients with IBD [200–203]. A diet providing a high
amount of fermentable carbohydrates leads to increased butyrate production, which subse-
quently lowers the pH [204,205]. A more acidic environment favors the growth of other
bacterial groups, like butyrate producers, over SRB [95,204,206], while H2S production
works best in an alkaline environment [207]. In vegans and vegetarians, a lower stool pH is
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found in comparison to omnivores, consistent with a more even distribution of short-chain
fatty acid up to the distal end of the colon [95,208]. When feeding mice a diet with a high fat
content, a reduced production of short-chain fatty acid and an increase in H2S production
is observed [209]. In IL-10 knockout mice, which show a similar colitis to that of IBD, a diet
containing a lot of saturated fat increases inflammation severely and leads, in combination
with a mutagen, to the formation of adenomas [95,209,210]. All in all, a typical western
animal-based diet, consisting of a high fat and protein intake, might create the perfect
environment for H2S production at the expense of butyrate production, which subsequently
drives inflammation [95]. Accordingly, many IBD patients believe that their symptomatic
relief relies more on their diet than their medication [211].

This assumption is partly supported by the success of exclusive enteral nutrition
(EEN) in the treatment of CD. EEN describes a strict liquid diet consisting of formula
for a duration of 4 to 12 weeks [212,213]. Especially with pediatric IBD patients, EEN
is shown to be as efficient as therapies with corticosteroids and to achieve remission
in nearly 80% [212,214,215]. The reason for the reduction in inflammation with EEN is
still mostly unknown [216]. One of its mechanisms of action could be alterations in the
microbiota [217,218]. It was reported that EEN reduced the number of a very potent
H2S producer, Atopobium parvulum [39,219]. Unfortunately, after cessation of EEN, the
changes in the composition of the microbiota return to their prior state, concurrently with
rising fecal sulfide levels [199,220,221].

4. Conclusions

The pressing need for a deeper understanding of the pathogenesis of IBD is growing
with the rising numbers of people affected by this chronic disease [222]. As suspected in
many other diseases, H2S is believed to play a crucial role in IBD [33–36]. As the intestinal
tract is exposed to microbial, endogenous and dietary H2S and therefore, to more than
most other organ systems, a change in the level of H2S is hypothesized to influence the
health of the intestinal system [9,14,15,37–40]. Changes in the microbiota as seen in IBD,
e.g., an increase in SRB and consequently a decrease in butyrate-producing bacteria, the
decrease of H2S-detoxifying enzymes in the intestinal epithelial cells and the increasing
intake of dietary sulfate by eating a typical western animal-based diet, indicate that too
much H2S has pro-inflammatory effects in IBD. However, the restorative effects of H2S
on the mucus barrier and microbiota biofilms, its decreasing effects on pro-inflammatory
cytokines and its overall healing-promoting characteristics also suggest that too little H2S
can be pro-inflammatory. Therefore, it is likely that there is a dome-shaped curve of
beneficial concentration levels in the intestinal tract. Even though it would be essential to
measure intraluminal intestinal H2S levels directly to determine if H2S could be a possible
target in the treatment of IBD, all these studies definitely underline the connection between
H2S and the pathogenesis of IBD.
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