From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders
Abstract
:1. Introduction
2. Bioactive Compounds from Plants as Antioxidant, Anti-Inflammatory, and Neuroprotective Agents
2.1. Neuropsychiatric Disorders
2.1.1. Major Depression Disorder: Plant-Based Bioactive Compounds as Therapeutical Agents
2.1.2. Bipolar Disorder: Plant-Based Bioactive Compounds as Therapeutical Agents
2.1.3. Schizophrenia Spectrum Disorders: Plant-Based Bioactive Compounds as Therapeutic Agents
2.2. Neurodevelopmental Disorders
2.2.1. Autism Spectrum Disorder: Plant-Based Bioactive Compounds as Therapeutic Agents
2.2.2. ADHD: Plant-Based Bioactive Compounds as Therapeutic Agents
2.3. Neurodegenerative Disorders
2.3.1. Alzheimer’s Disease: Plant-Based Bioactive Compounds as Therapeutic Agents
2.3.2. Parkinson’s Disease: Plant-Based Bioactive Compounds as Therapeutic Agents
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Laguerre, M.; Decker, E.A.; Lecomte, J.; Villeneuve, P. Methods for evaluating potency and efficacy of antioxidants. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—A critical review on in vitro an-tioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal phys-iological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Barroso, M.F.; de-los-Santos-Álvarez, N.; Delerue-Matos, C.; Oliveira, M.B.P.P. Towards a reliable technology for anti-oxidant capacity and oxidative damage evaluation: Electrochemical (bio)sensors, Biosens. Bioelectron 2011, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cömert, E.D.; Gökmen, V. Evolution of food antioxidants as a core topic of food science for a century. Food Res. Int. 2018, 105, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J.; Bohn, T. Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Asghar, W.; Khan, S.; Akhtar, A.; Ayub, H.; Khalid, N.; Alessa, F.M.; Al-Mssallem, M.Q.; Rezk, A.A.; Shehata, W.F. Therapeutic potential of marine bioactive peptides against human immunodeficiency virus: Recent evidence, challenges, and future trends. Mar. Drugs 2022, 20, 477. [Google Scholar] [CrossRef]
- Shoaib, S.; Ansari, M.A.; Fatease, A.A.; Safhi, A.Y.; Hani, U.; Khalid, N.; Alessa, F.M.; Al-Mssallem, M.Q.; Rezk, A.A.-S.; Shehata, W.F. Plant-derived bioactive compounds in the management of neurodegenerative disorders: Challenges, future directions and molecular mechanisms involved in neuroprotection. Pharmaceutics 2023, 15, 749. [Google Scholar] [CrossRef]
- Hussain, A.; Bourguet-Kondracki, M.-L.; Hussain, F.; Rauf, A.; Ibrahim, M.; Khalid, M.; Hussain, H.; Hussain, J.; Ali, I.; Khalil, A.A.; et al. The potential role of dietary plant ingredients against mammary cancer: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2580–2605. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Maqsummiya, Z.U.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacother 2022, 153, 113384. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [PubMed]
- DSM 5. In Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, TX, USA, 2013; Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 12 October 2022).
- Reyes, P.S.; Garza, P.R.; Sharma, A. MicroRNAs and child neuropsychiatric disorders: A brief Review. Neurochem. Res. 2020, 45, 232–240. [Google Scholar]
- Gruzdev, S.K.; Yakovlev, A.A.; Druzhkova, T.A.; Guekht, A.B.; Gulyaeva, N.V. The Missing link: How exosomes and miRNAs can help in bridging psychiatry and molecular biology in the context of depression, bipolar disorder and schizophrenia. Cell. Mol. Neurobiol. 2019, 39, 729–750. [Google Scholar] [CrossRef] [PubMed]
- Chiriţă, A.L.; Gheorman, V.; Bondari, D.; Rogoveanu, I. Current understanding of the neurobiology of major depressive disorder. Rom. J. Morphol. Embryol. 2015, 56, 651–658. [Google Scholar] [PubMed]
- World Health Organization. Depression. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 12 October 2022).
- Soleimani, L.; Lapidus, K.A.B.; Iosifescu, D.V. Diagnosis and treatment of major de-pressive disorder. Neurol. Clin. 2011, 29, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Khawam, E.A.; Laurencic, G.; Malone, D.A. Side effects of antidepressants: An over-view. Cleve. Clin. J. Med. 2006, 73, 351–361. [Google Scholar]
- Moretti, M.; Rodrigues, A.L.S. Functional role of ascorbic acid in the central nervous system: A focus on neurogenic and synaptogenic processes. Nutr. Neurosci. 2021, 1–11. [Google Scholar] [CrossRef]
- O’neill Rothenberg, D.; Zhang, L. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients 2019, 11, 1361. [Google Scholar] [CrossRef]
- Horia, S.; Anwar, A.; Yang, Z.; Arslan, A.; Sakhawat, R.; Ahmal, K.; Mehany, T.; Qin, H. Tea polyphenols: Extraction techniques and its potency as a nutraceutical. Front. Sustain. Food Syst. 2023, 7, 1175893. [Google Scholar]
- Sun, Y.; Liang, C.; Zheng, L.; Liu, L.; Li, Z.; Yang, G.; Li, Y. Anti-fatigue effect of hypericin in a chronic forced exercise mouse model. J. Ethnopharmacol. 2022, 284, 114767. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Abdel-Hafiz, L.; Khabour, O.F.; El-Elimat, T.; Alzubi, M.A.; Alali, F.Q. Evaluation of the effect of Hypericum triquetrifolium Turra on memory impairment induced by chronic psychosocial stress in rats: Role of BDNF. Drug Des. Devel. Ther. 2020, 14, 5299–5314. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; Petra-lia, A.; Signorelli, M.S.; Aguglia, E. Curcumin for depression: A meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Guo, Y.J.; Han, W.X.; Yang, M.Q.; Wen, L.P.; Wang, K.Y.; Jiang, P. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int. Immunopharmacol. 2019, 67, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Lv, C.; Cao, L.; Yao, D.; Wu, Y.; Long, M.; Liu, N.; Jiang, P. Curcumin at-tenuates chronic unpredictable mild stress induced depressive-like behaviors via restoring changes in oxidative stress and the activation of nrf2 signaling pathway in rats. Oxid. Med. Cell. Longev. 2020, 2020, 9268083. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord. 2017, 207, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Morris-Rosendahl, D.J.; Crocq, M.A. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N.; Lack, D.W. Bipolar disorder and suicide: A review. Curr. Psychiatry Rep. 2020, 22, 6. [Google Scholar] [CrossRef]
- Murray, R.M.; Sham, P.; VAN Os, J.; Zanelli, J.; Cannon, M.; Mcdonald, C. A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr. Res. 2004, 71, 405–416. [Google Scholar] [CrossRef]
- Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.; George, R.; Sreeraj, T.; Divya, C.; Kunnumakkara, A.B.; et al. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytother. Res. 2017, 31, 1883–1891. [Google Scholar] [CrossRef]
- Nogoceke, F.P.; Barcaro, I.M.R.; de Sousa, D.P.; Andreatini, R. Antimanic-like effects of (R)-(−)-carvone and (S)-(+)-carvone in mice. Neurosci. Lett. 2016, 619, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Recart, V.M.; Spohr, L.; Soares, M.S.P.; Mattos, B.d.S.; Bona, N.P.; Pedra, N.S.; Teixeira, F.C.; Gamaro, G.D.; Stefanello, F.; Spanevello, R. Gallic acid protects cerebral cortex, hippocampus, and striatum against oxidative damage and cholinergic dysfunction in an experimental model of maniclike behavior: Comparison with lithium effects. Int. J. Dev. Neurosci. 2021, 81, 167–178. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Guo, C.; He, Y.; Shi, Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 2018, 155, 9. [Google Scholar] [CrossRef] [PubMed]
- Lavretsky, H. History of schizophrenia as a psychiatric disorder. Clin. Handb. Schizophr. 2008, 1, 3–13. [Google Scholar]
- Ajao, A.A.-N.; Alimi, A.A.; Olatunji, O.A.; Balogun, F.O.; Saheed, S.A. A synopsis of anti-psychotic medicinal plants in Nigeria. Trans. R. Soc. S. Afr. 2018, 73, 33–41. [Google Scholar] [CrossRef]
- Mitra, S.; Anjum, J.; Muni, M.; Das, R.; Rauf, A.; Islam, F.; Emran, T.B.; Semwal, P.; Hemeg, H.A.; Alhumaydhi, F.A.; et al. Exploring the journey of emodin as a potential neuro-protective agent: Novel therapeutic insights with molecular mechanism of action. Biomed. Pharmacother. 2022, 149, 112877. [Google Scholar] [CrossRef] [PubMed]
- Miodownik, C.; Lerner, V.; Kudkaeva, N.; Lerner, P.P.; Pashinian, A.; Bersudsky, Y.; Eliyahu, R.; Kreinin, A.; Bergman, J. Curcumin as add-on to anti-psychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo controlled study. Clin. Neuropharmacol. 2019, 42, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Takumi, T.; Tamada, K.; Hatanaka, F.; Nakai, N.; Bolton, P.F. Behavioral neuroscience of autism. Neurosci. Biobehav. Rev. 2020, 110, 60–76. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef]
- Curpan, A.S.; Luca, A.-C.; Ciobica, A. Potential novel therapies for neurodevelopmental diseases targeting oxidative stress. Oxid. Med. Cell. Longev. 2021, 2021, 6640206. [Google Scholar] [CrossRef]
- Cruz-Martins, N.; Quispe, C.; Kırkın, C.; Şenol, E.; Zuluğ, A.; Özçelik, B. paving plant-food-derived bioactives as effective therapeutic agents in autism spectrum dis-order. Oxid. Med. Cell. Longev. 2021, 2021, 1131280. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Kuhad, A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci. 2015, 141, 156–169. [Google Scholar] [CrossRef]
- Blaylock, R.L.; Strunecka, A. Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr. Med. Chem. 2009, 16, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Zuiki, M.; Chiyonobu, T.; Yoshida, M.; Maeda, H.; Yamashita, S.; Kidowaki, S.; Hasegawa, T.; Gotoh, H.; Nomura, T.; Ono, K.; et al. Luteolin attenuates interleu-kin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormal-ities. Neurosci. Lett. 2017, 653, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Theoharides, T.C. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J. Neuroinflammation 2012, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, B.; Crupi, R.; Impellizzeri, D. Beneficial effects of coultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of au-tism. CNS Neurosci. Ther. 2017, 23, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, C.; Pirozzi, C.; Coretti, L.; Cavaliere, G.; Lama, A.; Russo, R.; Lembo, F.; Mollica, M.P.; Meli, R.; Calignano, A.; et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav. Immun. 2018, 74, 166–175. [Google Scholar] [CrossRef]
- Bhandari, R.; Kuhad, A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem. Int. 2017, 103, 8–23. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Mizgier, M.; Speisky, H.; Gotteland, M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem. Biol. Interact. 2012, 195, 199–205. [Google Scholar] [CrossRef]
- Singh, K.; Connors, S.L.; Macklin, E.A.; Smith, K.D.; Fahey, J.W.; Talalay, P.; Zimmerman, A.W. Sulforaphane treatment of autism spectrum disorder (ASD). Proc. Natl. Acad. Sci. USA 2014, 111, 15550–15555. [Google Scholar] [CrossRef]
- Chung, S.; Yao, H.; Caito, S.; Hwang, J.W.; Arunachalam, G.; Rahman, I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys. 2010, 501, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Acuna, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 2014, 559, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Pan, J.; Cai, Q.Q.; Zhang, F.; Peng, M.; Fan, X.L.; Ji, H.; Dong, Y.W.; Wu, X.Z.; Wu, L.H. MicroRNA profile as potential molecular signature for attention deficit hyperactivity disorder in children. Biomarkers 2022, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Li, S.C.; Lee, M.J.; Chou, M.C.; Chou, W.J.; Lee, S.Y.; Hsu, C.W.; Huang, L.H.; Kuo, H.C. Blood-Bourne MicroRNA Biomarker Evaluation in Attention-Deficit/Hyperactivity Disorder of Han Chinese Individuals: An Exploratory Study. Front. Psychiatry 2018, 9, 227. [Google Scholar] [CrossRef]
- Custódio, L.; Vizetto-Duarte, C.; Cebeci, F.; Özçelik, B.; Sharopov, F.; Gürer, E.S.; Kumar, M.; Iriti, M.; Sharifi-Rad, J.; Calina, D. Natural products of relevance in the management of attention deficit hyperactivity disorder. Efoods 2023, 4, 1. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, X.; Li, F.; Xie, G.; Zhang, T. Anti-inflammatory treatment with beta-asarone improves impairments in social interaction and cognition in MK-801-treated mice. Brain Res. Bull. 2019, 150, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Dela Pena, I.C.; Young Yoon, S.; Kim, Y.; Park, H.; Man Kim, K.; Hoon Ryu, J.; Shin, C.Y.; Cheong, J.H. 5,7-Dihydroxy-6-methoxy-4′-phenoxyflavone, a derivative of oroxylin A improves attention-deficit/hyperactivity dis-order (ADHD)-like behaviors in spontaneously hypertensive rats. Eur. J. Pharmacol. 2013, 715, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Han, X.; Wang, J.; Sun, J. Baicalin may have a therapeutic effect in attention deficit hyperactivity disorder. Med. Hypotheses 2015, 85, 761–764. [Google Scholar] [CrossRef]
- Nam, Y.; Shin, E.J.; Shin, S.W.; Lim, Y.K.; Jung, J.H.; Lee, J.; Ha, J.R.; Chae, J.S.; Ko, S.K.; Jeong, J.H.; et al. YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET. Food Chem. Toxicol. 2014, 65, 280–292. [Google Scholar] [CrossRef]
- Trebatická, J.; Ďuračková, Z. Psychiatric disorders and polyphenols: Can they be helpful in therapy? Oxid. Med. Cell. Longev. 2015, 2015, 248529. [Google Scholar] [CrossRef]
- Capagnini, G.; Vasto, S.; Abraham, N.G.; Caruso, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol. 2011, 44, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Urdaneta, K.E.; Castillo, M.A.; Montiel, N.; Semprún-Hernández, N.; Antonucci, N.; Siniscalco, D. Autism spectrum disorders: Potential neu-ro-psychopharmacotherapeutic plant-based drugs. Assay Drug Dev. Technol. 2018, 16, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, G.; Dordevic, A.; Smelcerovic, A. Do other Hypericum species have medical potential as St. John’s wort (Hypericum perforatum)? Curr. Med. Chem. 2013, 20, 2273–2295. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Ahn, H.S.; Cheong, J.H.; Dela Pena, I. Natural product-derived treatments for attention-deficit/hyperactivity disorder: Safety, efficacy, and therapeutic potential of combination therapy. Neural Plast. 2016, 2016, 1320423. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Bennett, D.A. What is dementia? JAMA 2019, 322, 1728. [Google Scholar] [CrossRef]
- Zahra, W.; Rai, S.N.; Birla, H.; Singh, S.S.; Dilnashin, H.; Rathore, A.S.; Singh, S.P. The Global Economic Impact of Neurodegenerative Diseases: Opportunities and Challenges. In Bioeconomy for Sustainable Development; Keswani, C., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Vrijsen, J.; Abu-Hanna, A.; de Rooij, S.E.; Smidt, N. Association between dementia parental family history and mid-life modifiable risk factors for dementia: A cross-sectional study using propensity score matching within the Lifelines cohort. BMJ Open 2021, 11, e049918. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.P. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007, 69, 223–224. [Google Scholar] [CrossRef]
- Zhi, Z.; Tang, X.; Wang, Y.; Chen, R.; Ji, H. Sinensetin attenuates amyloid beta25-35-induced oxidative stress, inflammation, and apoptosis in sh-sy5y cells through the tlr4/nf-b signaling pathway. Neurochem. Res. 2021, 46, 3012–3024. [Google Scholar] [CrossRef]
- Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci. 2022, 292, 120326. [Google Scholar] [CrossRef]
- Ahsan, A.U.; Sharma, V.L.; Wani, A.; Chopra, M. Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from β-amyloid(1–42) evoked neurotoxicity. Mol. Neurobiol. 2020, 57, 3589–3602. [Google Scholar] [CrossRef]
- Afzal, M.; Alzarea, S.I.; Alharbi, K.S.; Alzarea, A.I.; Alenezi, S.K.; Alshammari, M.S.; Alquraini, A.H.; Kazmi, I. Rosiridin attenuates scopolamine-induced cognitive impairments in rats via inhibition of oxidative and nitrative stress leaded caspase-3/9 and TNF-α signaling pathways. Molecules 2022, 27, 5888. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Shen, X.; Ma, Y. Rehmannioside A attenuates cognitive deficits in rats with vascular dementia (VD) through suppressing oxidative stress, inflammation and apoptosis. Biomed. Pharmacother. 2019, 120, 109492. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ashraf, G.M.; Liu, M.; Zhao, K.; Wang, Y.; Wang, L.; Xing, J.; Alghamdi, B.S.; Li, Z.; Liu, R. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-dependent MAPK/NF-B pathways. Oxidative Med. Cell. Longev. 2021, 2021, 6673967. [Google Scholar] [CrossRef] [PubMed]
- Kouhestani, S.; Jafari, A.; Babaei, P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res. 2018, 13, 1827. [Google Scholar] [PubMed]
- Yi, X.X.; Li, J.Y.; Tang, Z.Z.; Jiang, S.; Liu, Y.H.; Deng, J.G.; Gao, C.H. Marinoid J, a phenylglycoside from Avicennia marina fruit, ameliorates cognitive impairment in rat vascular dementia: A quantitative iTRAQ proteomic study. Pharm. Biol. 2020, 58, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- El-Gazar, A.A.; Soubh, A.A.; Mohamed, E.A.; Awad, A.S.; El-Abhar, H.S. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/-catenin signaling pathway. Brain Res. 2019, 1717, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Sathyamoorthy, Y.; Kaliappan, K.; Nambi, P.; Radhakrishnan, R. Glycyrrhizic acid renders robust neuroprotection in rodentmodel of vascular dementia by controlling oxidative stress and curtailing cytochrome-c release. Nutr. Neurosci. 2020, 23, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Guo, H.; Li, Z.; Zhang, C.; Zhang, X.; Cui, Q.; Tian, J. Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with Alzheimer’s diseases. Front. Aging Neurosci. 2020, 12, 601603. [Google Scholar] [CrossRef]
- Zhang, R.; Miao, Q.W.; Zhu, C.X.; Zhao, Y.; Liu, L.; Yang, J.; An, L. Sulforaphane ameliorates neurobehavioral deficits and protects the brain from amyloid deposits and peroxidation in mice with Alzheimer-like lesions. Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 183–191. [Google Scholar] [CrossRef]
- Yu, H.; Yamashita, T.; Hu, X.; Bian, Z.; Hu, X.; Feng, T.; Tadokoro, K.; Morihara, R.; Abe, K. Protective and anti-oxidative effects of curcumin and resveratrol on Aβ-oligomer-induced damage in the SH-SY5Y cell line. J. Neurol. Sci. 2022, 441, 120356. [Google Scholar] [CrossRef]
- Kim, Y.J.; Sohn, E.; Kim, J.-H.; Na, M.; Jeong, S.-J. Catechol-Type Flavonoids from the Branches of Elaeagnus glabra f. oxyphylla Exert Antioxidant Activity and an Inhibitory Effect on Amyloid-β Aggregation. Molecules 2020, 25, 4917. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, P.; Dokumacı, A.H.; Gündüz, M.G.; Perez, C.; Göger, F.; Paksoy, M.Y.; Yerer, M.B.; Demirezer, L.Ö. In vitro bi-ological activity of Salvia fruticosa Mill. infusion against amyloid β-peptide-induced toxicity and inhibition of GSK-3β, CK-1δ, and BACE-1 enzymes relevant to Alzheimer’s disease. Saudi Pharm. J. 2021, 29, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.H.; Kim, B.-R.; Cho, M.L.; Kim, T.-S.; Im, S.; Han, S.; Jeong, J.-W.; Jung, H.A.; Choi, J.S. Phytoestrogen coumestrol selectively inhibits monoamine oxidase-a and amyloid β self-aggregation. Nutrients 2022, 14, 3822. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.J.; Park, B.H.; Hou, J.; Oh, J.P.; Han, J.H.; Kim, S.C. Ginsenoside F1 protects the brain against amyloid beta-induced toxicity by regulating IDE and NEP. Life 2022, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Laws, J.S., III; Shrestha, S.; Smid, S.D. Cannabis terpenes display variable protective and anti-aggregatory actions against neurotoxic β amyloid in vitro: Highlighting the protective bioactivity of α-bisabolol in motorneuronal-like NSC-34 cells. Neurotoxicology 2022, 90, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.H.; Ardah, M.T.; Durairajan, S.S.K.; Liu, L.F.; Xie, L.X.; Fong, W.F.D.; Hasan, M.Y.; Huang, J.D.; El-Agnaf, O.M.A.; Lin, M. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents aβ peptide fibrillation and oligomerisation. ChemBioChem 2011, 12, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.H.; Fonseca, F.N.; Pimenta, A.T.; Lima, M.S.; Silveira, E.R.; Viana, G.S.; Vasconcelos, S.M.M.; Leal, L.K.A.M. Pharmacognostical analysis and protective effect of standardized extract and rizonic acid from Erythrina velutina against 6-hydroxydopamineinduced neurotoxicity in Sh-Sy5Y cells. Pharmacogn. Mag. 2016, 12, 307–312. [Google Scholar]
- Jiménez-Cabrera, T.; Bautista, M.; Velázquez-González, C.; Jaramillo-Morales, O.A.; Guerrero-Solano, J.A.; Urrutia-Hernández, T.A.; De la O-Arciniega, M. Promising antioxidant activity of erythrina genus: An alternative treatment for inflammatory pain? Int. J. Mol. Sci. 2021, 22, 248. [Google Scholar] [CrossRef]
- Rezaei, M.; Nasri, S.; Roughani, M.; Niknami, Z.; Ziai, S.A.J. Peganum harmala L. extract reduces oxidative stress and improves symptoms in 6-Hydroxydopamine-induced Parkinson’s disease in rats. Iran. J. Pharm. Res. 2016, 15, 275–281. [Google Scholar]
- Amro, M.; Teoh, S.; Norzana, A.; Srijit, D.J.L.C. The potential role of herbal products in the treatment of Parkinson’s disease. Clin. Ter. 2018, 169, e23–e33. [Google Scholar]
- Rahman, M.; Rahaman, M.; Islam, M.; Hossain, M.; Mannan Mithi, F.; Ahmed, M.; Saldías, M.; Akkol, E.K.; Sobarzo-Sánchez, E. Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiot 2021, 10, 1076. [Google Scholar] [CrossRef]
- Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M.J.C. Hypericum perforatum hydroalcoholic extract miti-gates motor dysfunction and is neuroprotective in intrastriatal 6-Hydroxydopamine rat model of Parkin-son’s disease. Cell. Mol. Neurobiol. 2016, 36, 521–530. [Google Scholar] [CrossRef]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.J.P. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Karakida, F.; Ikeya, Y.; Tsunakawa, M.; Yamaguchi, T.; Ikarashi, Y.; Takeda, S.; Aburada, M. Cerebral protec-tive and cognition-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 2007, 30, 514–519. [Google Scholar] [CrossRef]
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | Antioxidant | Anti-Inflammatory | Antidepressant | OS Reduction | Increase on BDNF Levels | Refs. |
Citrus sp. | Ascorbic acid | X | [20] | ||||
Camelia sinensis (dose 50–100 mg/kg mice) | Catechin, gallocatechin, epicatechin, kaempferol, quercetin, gallic acid, and chlorogenic acid | X | X | [21,22] | |||
Crocus sativus (dose 5–10 mg/kg mice) | Curcumin, crocins, crocetin, picrocrocin, and safranal | X | X | [25,26] | |||
Hypericum perforatum (dose 0.1–1 mg/kg mice) | Hyperforin, rutin, and melatonin | X | X | X | [23] | ||
Hypericum triquetrifolium (dose 0.1–1 mg/kg mice) | Hypericin | X | X | [24] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | Na Channels Block | GABAergic Block | Kinase C Inhibition | Cholinergic Increase | Improve Antioxidant | Refs. |
Crocus sativus (dose 0.15–0.35 mL/kg mice) | Safranal; crocin | X | [31] | ||||
Mentha spp., Carum carvi dose 50–100 mg/kg mice) | Carvone | X | X | [32] | |||
Vegetables (dose 50–100 mg/kg animal) | Gallic acid | X | X | [33] | |||
Cammelia sinensis (dose 10–40 mg/kg mice) | Quercetin | X | X | [34] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | ERbB Stimulation | CNNB-r Inhibition | PHPH Increase | Il-6 Levels Decrease | BDNF Levels Increase | Refs. |
Scopolia carniolica Scopolia japonica | Scopoletin | X | X | [37] | |||
Reynoutria japonica | Emodin | X | X | [38] | |||
Curcuma longa | Curcumin | X | X | [39] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | OS Reduction | TNF Reduction | MMP-9 Redution | GSH Increase | IL Redution | Refs. |
Curcuma longa (dose 200 mg/kg autistic rats) | Curcumin | X | X | X | X | [44] | |
Vegetables/fruits (dose 1 mg/kg mice) | Luteolin | X | X | X | [46,47,48,49] | ||
Grapes, peanuts, cocoa, berries (dose 20–80 mg/kg mice) | Resveratrol | X | X | [51] | |||
Broccoli(dose 50–150 µmol) | Sulforaphane | X | X | [52] | |||
Matricaria recutita, Sophora chrysophylla, Camelia sinensis (dose 75–300 mg/Kg mice) | Quercetin Rutin | X | [53,54] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | OS Reduction | AChE Reduction | Il Supression | Dopamine Increase | TrkB, BDNF Reduction | Refs. |
Acorus gramineus (dose 0.1 mg/kg mice) | α-Asarone, β-asarone | X | X | X | X | X | [58] |
Scutellaria baicalensis (dose 2–10 mg/kg mice) | Oroxylin A, baicalin | X | X | [59] | |||
Ginkgo biloba (dose 50 mg/patient) | Ginsenoside | X | X | [60] | |||
Pinus pinaster (dose 25 mg or 50 mg/patient) | Pycnogenol | X | X | [61] | |||
Curcuma longa (dose 1 g/kg mice) | Curcumin, Curcuminoid | X | [62] | ||||
Camelia sinensis (dose 2 mg/kg rats) | Catechin, EGCG | X | [63] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | NrF Activation | Antioxidant | Antiapoptotic | OS Reduction | AChE Decrease | Refs. |
Citrus plants (dose 50 µM/cells culture) | Naringenin, quercetin, sinensetin | X | X | [71,72,73] | |||
Orthosiphon stamineus (dose 10/20/40 µM/SH-SY5Y cell) | Sinensetin | X | X | [72] | |||
Cammelia sinensis (dose 12.5–25 mg/kg mice) | Quercetin | X | X | X | [74] | ||
Rhodiola rosea (dose 1 mg/kg mice) | Rosidin | X | X | X | [74] | ||
Glutinous rehmannia Dracocephalum moldavica (dose 80 mg/kg mice) | Rehrmannioside A, tilianin | X | X | [75,76] | |||
Cammelia sinensis (dose 10 mg/kg mice) | Kaempferol, | X | X | [77] | |||
Morinda lucida (dose 5 mg/kg mice) | Morin, marinoid J | X | X | [78,79] | |||
Curcuma longa (dose 1–15 µM/SH-Sy5Y cells) | Curcumin | X | X | [81] | |||
Elaeagnus glabra f. oxyphylla | Procyanindin | [84] | |||||
Glycine max (dose 40–160 µM/kg mice) | Coumestrol | X | X | [85] | |||
Aralia nudicaulis (dose 2.5 µM/mouse neuroblastoma neuro-2a) | Ginsenoside | X | X | [87] | |||
Gochnatia polymorpha (dose 1–1000 mouse neuroblastoma neuro-2a)/NSC-34 cells) | Bisalol | X | X | [88] |
Neuroprotective-Based Activity | |||||||
---|---|---|---|---|---|---|---|
Plant | Bioactive Compound | Reduction α-Synuclein | OS Reduction | Antioxidant | DA Levels | Proteasomal Activation | Refs. |
Scutellaria baicalensis (dose 25–100 µM/SH-Sy5Y cell culture) | Baicalein | [89] | |||||
Erythrina velutina (dose 25 µg/mL/SH-SY5Y cell culture) | Sigmoidin A and B, erycristagallin, abyssinone V-4′-methyl ether, waragalone, mildbenone, 2″-O-galloyl orientin, neobavaisoflavone, and hypaphorine | X | X | [90] | |||
Peganum harmala (dose 300–600 mg/kg mice) | Harmalol, harmaline, and harmine | X | X | [92] | |||
Carthamus tinctorius (dose 10 mg/kg rats) | Kaempferol, hyperoside, naringenin, quercetin, and luteolin | X | X | [93] | |||
Pueraria lobata (dose 25 or 50 mg/kg rats) | Puerarin | X | X | [94] | |||
Ginkgo biloba | Ginsenosides | X | X | X | [95] | ||
Hypericum perforatum (dose 200 mg/kg rats) | Naphthodianthrones and phloroglucinols | X | X | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosso, C.; Santos, M.; Barroso, M.F. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants 2023, 12, 1603. https://doi.org/10.3390/antiox12081603
Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants. 2023; 12(8):1603. https://doi.org/10.3390/antiox12081603
Chicago/Turabian StyleGrosso, Clara, Marlene Santos, and M. Fátima Barroso. 2023. "From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders" Antioxidants 12, no. 8: 1603. https://doi.org/10.3390/antiox12081603
APA StyleGrosso, C., Santos, M., & Barroso, M. F. (2023). From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants, 12(8), 1603. https://doi.org/10.3390/antiox12081603