Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review
Abstract
:1. Introduction
2. Chemical Components in Winery By-Products
2.1. Grape Pomace (Marc)
2.2. Grape Leaves
2.3. Grape Stems
2.4. Grape Seeds
2.5. Wine Lees
2.6. Wastewater
Winery By-Products | Chemical Components | References |
---|---|---|
Grape pomace | Protein Polymers (cellulose, hemicelluloses, lignin, pectin) Monosaccharides, Polysaccharides, Oligosaccharides Minerals (Fe, K, Zn, Ca, P) Tocopherols Polyphenols (anthocyanins, tannins, kaempferol, kaempferol-3-O-glucoside, quercetin 3-O-glucuronide, myricetin) Hydroxybenzoic acids (gallic acid) Hydroxycinnamic acids (caffeic acid, caftaric acid, p-coumaric acid, fertaric acid) | [11,25,26,27,46,47] |
Grape leaves | Polyphenols (flavonols, tannins) Lipids Vitamins Organic acids | [29] |
Grape seeds | Polysaccharides Hydroxybenzoic acids (syringic acid, vanillic acid p-hydroxybenzoic acid, protocatechuic acid) Polyphenols (anthocyanins, quercetin 3-O-glucuronide, myricetin, hydroxytyrosol) Stilbenes (glucosides piceid, resveratrol, astringin, viniferin) Vitamin E (tocopherol) Fatty acids Organic acids | [34,35,38,39,48,49] |
Grape stems | Proteins Lipids Polymers (cellulose, hemicelluloses, lignin, lignocellulose) Polyphenols (flavan-3-ols, flavonols) Hydroxycinnamic acids Hydroxybenzoic acids (gallic acid, protocatechuic acid, vanillic acid) Stilbenes (glucosides piceid, resveratrol, astringin, viniferin) | [33] |
Wine lees | Organic acids (tartaric acid) Anthocyanins Polymers (cellulose, hemicelluloses, lignin) | [41,42] |
Wastewater | Polyphenol compounds | [50] |
3. Innovative Applications of Winery By-Products
3.1. Substrate Source for Microbial Fermentation to Produce Metabolites
3.2. Source of the Phenolic Compounds
3.3. Natural Food Additives
Form of the Winery By-Product | Food Product | Functional/Technological Benefits | References |
---|---|---|---|
Grape seed flour | Wheat bread dough | Incorporating greater quantities of grape seed flour into dough reduces water absorption, which subsequently impacts the dough’s stability and rate of development. The decreasing number index exhibited a progressive decline as the addition level increased and the particle size decreased. | [88] |
Grape skin | Butter biscuits | Enhanced the apparent and plastic dough viscosity of the butter biscuits. The modulus of instant springiness and the modulus of elasticity were both reduced. | [89] |
Grape pomace | Crackers | The addition of 5, 10, and 15% grape pomace led to increased dietary fiber content, as per Regulation (EC) No. 1924/2006, suggesting a functional food. | [90] |
Grape pomace from white grapes | Wheat biscuits | The dietary fiber contents of addition levels up to 10% were considerably higher than those of the control samples, and they were also distinguished by considerably greater antioxidant activities linked to their phenolic contents. | [91] |
Grape skin and seed flour | Muffins | Fortification employing phenols and fibers. Improved physical and sensory qualities. | [66] |
Grape skin | Cookie dough | Decreased dough consistency and stability. Increased water absorption. The volume and thickness of cookies decreased. | [92] |
Grape skin | Pasta | Total polyphenols and antioxidant activities are increased Better sensory evaluation | [93] |
Grape seed | Roast chicken | Reduction of microbial growth and oxidation. Physical/color properties | [94] |
Red and white grape pomace extract | Chicken meatballs | Decreased TBARS values during storage and processing at −18 °C under vacuum | [95]) |
Freeze-drying wine lees | Hamburger | Increase in antioxidant and antimicrobial activity and phenolic compounds in burgers. | [77] |
Grape pomace | Salmon burger | Storage stability and dietary fiber content enhancements. A diminution in sensory characteristics. | [96] |
Grape pomace | Pork sausages | The addition of 0.5 and 1% grape pomace to the formulation resulted in a reduction in lipid oxidation and color lightening over a period of 10 days under refrigeration conditions. | [97] |
Red and white grape skin antioxidant dietary fiber | Yogurt | Acidity, total phenolic content, and antioxidant activity are higher than in the control group, whereas pH, syneresis, and fat are lower. Lactic acid bacteria, phenolic content, and antioxidant activity were constant during the three-week storage period. | [72] |
Red grape pomace antioxidant dietary fiber | Salad dressing and yogurt | Total dietary fiber, polyphenols, and radical scavenging activity increased. Peroxide results for yogurt and salad dressing have decreased. Yogurt’s lactic acid percentage and syneresis values were stable during storage for three weeks at 4 °C. | [74] |
Grape seeds extract | Ice cream | Enhancement of phenols, improvement of sensory qualities | [79] |
Microencapsulated anthocyanins from grape skins | Light-formulated mayonnaise | Compared to the control sample, the panelist gave the newly light mayonnaises enriched with 10% dry vesicles a favorable evaluation because of the ruby color provided by the anthocyanins. | [98] |
White grape skin | Model fruit juice | Enhancement of antioxidant activity and color stability Probiotic strains L. rhamnosus, B. lactis, and L. paracasei maintained their stability during storage | [39] |
Red Grape Skin Extract | White Beer | Increase in the level of bioactive compounds (total polyphenols, total flavonoid contents) and the antioxidant potential of beer samples. | [99] |
3.4. Active Ingredients in Cosmetics and Pharmaceutical
3.5. Food Packaging
3.6. Biofuels
3.7. Biosurfactants
3.8. Other Winery Waste Applications
4. Winery Waste Bioactive Compounds Extraction Techniques
4.1. Solid-Liquid Extraction (SLE)
4.2. Pulsed Electric Fields (PEF)
Winery Waste | Conditions and Technique of Extraction | Compounds | Remarks | References |
---|---|---|---|---|
Red grape skins | SLE, Central Composite Design using ethanol (38.06–96.93% ethanol) acidified with citric acid (0.01 to 2.64%), at 13.06–71.9 °C for 11.36 to 78.6 min | Total anthocyanins, total polyphenols, and antioxidant activity | The optimized parameters were 0.85% citric acid concentration, 85% ethanol concentration, temperature 57.39 °C, extraction time 52.14 min. 25 mg cyanidin 3 glucoside/g 37.41 mg gallic acid/g 17.2 mM Trolox/g | [133] |
Grape pomace, skin and seed | SLE, 70% ethanol at room temperature, 20 min at 3500 rpm | Total polyphenols | 650 ± 32µg gallic acid/g 550 ± 23 µg gallic acid/g 480 ± 34 µg gallic acid/g | [134] |
Grape pomace | PEF, 1.2 kV/cm, 18 kJ/kg | Polyphenols | Depending on the temperature utilized, higher extraction yields | [135] |
Grape pomace | PEF, power supply 40 kV—10 kA, frequency 0.5 Hz, 0–564 kJ/kg of energy input | Anthocyanins | Compared to UAE, the anthocyanins are 22% greater | [131] |
Vine shoots | PEF, 13.3 kV/cm, 0–1500 pulses, 50 °C, 50–762 kJ/kg/3 h diffusion | Polyphenols | Total polyphenols may have increased up to twofold above untreated samples. Resveratrol (0.032 mg/g), kaempferol (0.156 mg/g), and epicatechin (1.747 mg/g) | [136] |
Pomace (seeds, stalks, and skin) | UAE, time of 2.5, 5, and 10 min, pulse treatment 5 s on/5 s off, temperature 25, 40 and 55 °C, ultrasound amplitude 20, 30 and 40%, water, 5 g/L | Anthocyanins | 25% increase in total anthocyanins Optimum conditions were temperature of 55 °C, ultrasound amplitude of 40%, 6 min of treatment | [137] |
Grape pomace | UAE, temperature of 17 ± 3 °C, liquid-solid ratio of 5:1 mL/g, water as solvent, power of 50–150 W; time of 5–25 min, frequency of 40–120 kHz | Polyphenols | Optimum conditions were power of 150 w, time of 25 min, frequency of 40 kHz 12% to 38% of phenolic compounds | [138] |
Grape pomace | UAE, 5 g sample/100 mL solvent, power 200 W, 40:1 (solvent: solid), 1:1 (water: ethanol), 45 °C, 10 min extraction, and 30 min stirring | Polyphenols | Ultrasound as an independent technique reduced polyphenol yields, but when combined with shaking extractions, yields of 2079.33 mg/100 g were obtained. | [139] |
Vine shoots | UAE, 24 kHz, 400 W, 50 °C, 3 h diffusion (1010–3428 kJ/kg) | Polyphenols | An increase in total polyphenol yields up to 45%. Epicatechin (0.671 mg/g), kaempferol (0.097 mg/g), and resveratrol (0.024 mg/g) | [136] |
Grape skins | MAE, 100–540 W, 3–10 min, 0–50, solvent (0–50% ethanol in water) | Polyphenols | The best polyphenol extraction was achieved using 540 W for 3 min and 50% ethanol. | [140] |
Grape skins | MAE, 2458 MHz, 1000 W/L, (8–92%) ethanol, 30 min | Total polyphenols | 104 mg gallic acid/g | [141] |
Grape skins | MAE, power of 100–500 W, solvent (50–80% methanol in water) time of 5 and 20 min, temperature of 50 and 100 °C | Anthocyanins | Compared to conventional extraction, the optimal extraction conditions (500 W, 100 °C, and 40% methanol in water extraction solvent) resulted in a 5 h to 5 min reduction in extraction time. | [142] |
Grape pomace | MAE, power of 1000 W, time of 10 min, distilled water solution acidified with 2% (m/v) citric acid in a ratio of 1:3 | Total polyphenols, total anthocyanins, antioxidant activity | 6.68 ± 0.05 mg gallic acid/g 1.32 ± 0.03 mg malvidin-3,5-diglycoside/g 23.84 ± 0.57 μmol Trolox/g | [143] |
Grape seeds | SFE, Box-Behnken design, 80–120 bar pressure, 4–6 kg/h CO2 flow rate, 10–20% (w/w) co-solvent percentage | Polyphenols Proanthocyanidin fractionation (FI and FII) | Optimized conditions were: pressure 80 bar, temperature 40 °C, flow rate 6 kg/h and 20% co-solvent. The total phenolic content of 7132 mg gallic acid/100 g. FI (>1000 mg catechin/100 g) and FII (>800 mg catechin/100 g) | [144] |
Grape pomace, skin and seed | SFE, 70% ethanol, a flow rate of 2 mL/min, 60 °C, and 250 bar | Total polyphenols | 570 ± 10 µg gallic acid/g 603 ± 14 µg gallic acid/g 336 ± 28 µg gallic acid/g | [134] |
Grape pomace | PLE, 60–140 °C, ethanol/water (30:70; 70:30, v/v) | Total polyphenols | When a mixture of ethanol/water at a ratio of 70% was utilized at 140 °C, the yield of polyphenol was significantly increased for both wet (16.2 g gallic acid/100 g) and dry (7.28 g gallic acid/100 g) grape pomace extracts. | [136] |
Grape pomace | PLE, ethanol and water mixtures (acidified or not) (50% w/w), pure ethanol and acidified water at 40–100 °C | Total anthocyanins, total phenolic compounds | The best PLE conditions for bioactives extraction (50% ethanol-water pH 2.0, 40 °C) resulted in 10.21 mg of malvidin-3-O-glucoside/g and 35.30 mg gallic acid/g | [145] |
4.3. Ultrasound-Assisted Extraction (UAE)
4.4. Microwave-Assisted Extraction (MAE)
4.5. Supercritical Fluid Extraction (SFE)
4.6. Pressurized Liquid Extraction (PLE)
5. Potential Health-Promoting Benefits of Winery By-Products
5.1. Antioxidant Potential
5.2. Cardioprotective Effect
5.3. Anti-Cancer Effect
5.4. Anti-Hyperlipidemic Effect
5.5. Gut Health
5.6. Anti-Hyperglycemic Effect
5.7. Antimicrobial Effect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spekreijse, J.; Lammens, T.; Parisi, C.; Ronzon, T.; Vis, M. Insights into the European Market for Bio-Based Chemicals; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- OIV. OIV 2019 Report on the World Vitivinicultural Situation; OIV: Dijon, France, 2019. [Google Scholar]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for Recycling and Valorization of Grape Marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 November 2023).
- Zacharof, M.-P.; Lovitt, R.W. Adding Value to Wastewater by Resource Recovery and Reformulation as Growth Media: Current Prospects and Potential. J. Water Reuse Desalination 2015, 5, 473–479. [Google Scholar] [CrossRef]
- Rani, J.; Indrajeet; Rautela, A.; Kumar, S. Chapter 4—Biovalorization of Winery Industry Waste to Produce Value-Added Products. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Krishnaraj Rathinam, N., Sani, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–85. ISBN 978-0-12-817951-2. [Google Scholar]
- Chakka, A.K.; Babu, A.S. Bioactive Compounds of Winery By-Products: Extraction Techniques and Their Potential Health Benefits. Appl. Food Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of Grape (Vitis vinifera L.) Seed Oil Production as a Valuable Source of Phenolic Antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and Chemical Variability of Grape Pomaces from French Vineyard. Ind. Crop. Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef] [PubMed]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. 2—The Biorefinery Concept for the Industrial Valorization of Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 29–53. ISBN 978-0-12-809870-7. [Google Scholar]
- Amulya, K.; Jukuri, S.; Venkata Mohan, S. Sustainable Multistage Process for Enhanced Productivity of Bioplastics from Waste Remediation through Aerobic Dynamic Feeding Strategy: Process Integration for up-Scaling. Bioresour. Technol. 2015, 188, 231–239. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Nikhil, G.N.; Chiranjeevi, P.; Nagendranatha Reddy, C.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste Biorefinery Models towards Sustainable Circular Bioeconomy: Critical Review and Future Perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Lara-Flores, A.A.; Araújo, R.G.; Rodríguez-Jasso, R.M.; Aguedo, M.; Aguilar, C.N.; Trajano, H.L.; Ruiz, H.A. Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. In Waste to Wealth; Singhania, R.R., Agarwal, R.A., Kumar, R.P., Sukumaran, R.K., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 141–170. ISBN 978-981-10-7431-8. [Google Scholar]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Poon, C.S. Sustainable Food Waste Management towards Circular Bioeconomy: Policy Review, Limitations and Opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef] [PubMed]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable Wineries through Waste Valorisation: A Review of Grape Marc Utilisation for Value-Added Products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Botelho, R.V.; Bennemann, G.D.; Torres, Y.R.; Sato, A.J.; Botelho, R.V.; Bennemann, G.D.; Torres, Y.R.; Sato, A.J. Potential for Use of the Residues of the Wine Industry in Human Nutrition and as Agricultural Input. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; IntechOpen: London, UK, 2018; ISBN 978-953-51-3834-1. [Google Scholar]
- Spigno, G.; Marinoni, L.; Garrido, G.D. 1—State of the Art in Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–27. ISBN 978-0-12-809870-7. [Google Scholar]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. 5—Extraction of Bioactive Compounds from Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 105–135. ISBN 978-0-12-809870-7. [Google Scholar]
- Varelas, V.; Tataridis, P.; Liouni, M.; Nerantzis, E.T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. Waste Biomass Valorization 2016, 7, 807–817. [Google Scholar] [CrossRef]
- Goula, A.M.; Thymiatis, K.; Kaderides, K. Valorization of Grape Pomace: Drying Behavior and Ultrasound Extraction of Phenolics. Food Bioprod. Process. 2016, 100, 132–144. [Google Scholar] [CrossRef]
- Niculescu, V.-C.; Ionete, R.-E. An Overview on Management and Valorisation of Winery Wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from Ten Grape Varieties and Their Byproducts: Grape Pomaces and Stems. LWT—Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; Tommasi, N.D. Polyphenol Constituents and Antioxidant Activity of Grape Pomace Extracts from Five Sicilian Red Grape Cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Corbin, K.R.; Hsieh, Y.S.Y.; Betts, N.S.; Byrt, C.S.; Henderson, M.; Stork, J.; DeBolt, S.; Fincher, G.B.; Burton, R.A. Grape Marc as a Source of Carbohydrates for Bioethanol: Chemical Composition, Pre-Treatment and Saccharification. Bioresour. Technol. 2015, 193, 76–83. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Souquet, J.M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic Composition of Grape Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Domínguez-Perles, R.; Aires, A.; Teixeira, A.; Rosa, E.; Barros, A.; Saavedra, M.J. Phytochemistry and Activity against Digestive Pathogens of Grape (Vitis vinifera L.) Stem’s (Poly)Phenolic Extracts. LWT—Food Sci. Technol. 2015, 61, 25–32. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary Fibre Content and Antioxidant Activity of Manto Negro Red Grape (Vitis vinifera): Pomace and Stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of Response Surface Methodology to Optimize Recovery of Grape (Vitis vinifera) Stem and Seed Polyphenols. Procedia Food Sci. 2011, 1, 1686–1693. [Google Scholar] [CrossRef]
- Martinello, M.; Hecker, G.; Carmen Pramparo, M. del Grape Seed Oil Deacidification by Molecular Distillation: Analysis of Operative Variables Influence Using the Response Surface Methodology. J. Food Eng. 2007, 81, 60–64. [Google Scholar] [CrossRef]
- Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef]
- González-Paramás, A.M.; Esteban-Ruano, S.; Santos-Buelga, C.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Flavanol Content and Antioxidant Activity in Winery Byproducts. J. Agric. Food Chem. 2004, 52, 234–238. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Sovová, H.; Planinić, M.; Tomas, S. Temperature-Dependent Kinetics of Grape Seed Phenolic Compounds Extraction: Experiment and Model. Food Chem. 2013, 136, 1136–1140. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H.; et al. Current and Future Trends in Food Waste Valorization for the Production of Chemicals, Materials and Fuels: A Global Perspective. Biofuels Bioprod. Biorefining 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the Genus Vitis: Phenolic Compounds, Anticancer Properties and Clinical Relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Council of the European Union. Council Regulation (EEC) No 337/79 of 5 February 1979 on the Common Organization of the Market in Wine. Off. J. Eur. Communities 1979, 1–47.
- Alañón, M.E.; Alarcón, M.; Marchante, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Extraction of Natural Flavorings with Antioxidant Capacity from Cooperage By-Products by Green Extraction Procedure with Subcritical Fluids. Ind. Crop. Prod. 2017, 103, 222–232. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Ellagic Acid Production and Phenolic Antioxidant Activity in Cranberry Pomace (Vaccinium Macrocarpon) Mediated by Lentinus Edodes Using a Solid-State System. Process Biochem. 2003, 39, 367–379. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Pérez-Rodríguez, N.; Aguilar-Uscanga, M.G.; Domínguez, J.M. Evaluation of the Liquid, Solid and Total Fractions of Beer, Cider and Wine Lees as Economic Nutrient for Xylitol Production. J. Chem. Technol. Biotechnol. 2015, 90, 1027–1039. [Google Scholar] [CrossRef]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Karabelas, A.J. Tartaric Acid Recovery from Winery Lees Using Cation Exchange Resin: Optimization by Response Surface Methodology. Sep. Purif. Technol. 2016, 165, 32–41. [Google Scholar] [CrossRef]
- Toze, S. Reuse of Effluent Water—Benefits and Risks. Agric. Water Manag. 2006, 80, 147–159. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, J. Wine Industry By-Product: Full Polyphenolic Characterization of Grape Stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Chen, W.-K.; Wang, Y.; Gao, X.-T.; Yang, X.-H.; He, F.; Duan, C.-Q.; Wang, J. Flavonoid and Aromatic Profiles of Two Vitis vinifera L. Teinturier Grape Cultivars. Aust. J. Grape Wine Res. 2018, 24, 379–389. [Google Scholar] [CrossRef]
- Cotea, V.; Luchian, C.; Marius, N.; Zamfir, C.-I.; Moraru, I.; Nechita, C.B.; Colibaba, C. Evaluation of Phenolic Compounds Content in Grape Seeds. Environ. Eng. Manag. J. 2018, 17, 795–803. [Google Scholar] [CrossRef]
- Pintać, D.; Četojević-Simin, D.; Berežni, S.; Orčić, D.; Mimica-Dukić, N.; Lesjak, M. Investigation of the Chemical Composition and Biological Activity of Edible Grapevine (Vitis vinifera L.) Leaf Varieties. Food Chem. 2019, 286, 686–695. [Google Scholar] [CrossRef]
- Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial Xylanases and Their Industrial Application in Pulp and Paper Biobleaching: A Review. 3 Biotech 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Moldes, A.B.; Vázquez, M.; Domínguez, J.M.; Díaz-Fierros, F.; Barral, M.T. Evaluation of Mesophilic Biodegraded Grape Marc as Soil Fertilizer. Appl. Biochem. Biotechnol. 2007, 141, 27–36. [Google Scholar] [CrossRef]
- Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J.M.; Belo, I. Combined Bioremediation and Enzyme Production by Aspergillus Sp. in Olive Mill and Winery Wastewaters. Int. Biodeterior. Biodegrad. 2016, 110, 16–23. [Google Scholar] [CrossRef]
- Díaz, A.B.; de Ory, I.; Caro, I.; Blandino, A. Enhance Hydrolytic Enzymes Production by Aspergillus Awamori on Supplemented Grape Pomace. Food Bioprod. Process. 2012, 90, 72–78. [Google Scholar] [CrossRef]
- Botella, C.; de Ory, I.; Webb, C.; Cantero, D.; Blandino, A. Hydrolytic Enzyme Production by Aspergillus Awamori on Grape Pomace. Biochem. Eng. J. 2005, 26, 100–106. [Google Scholar] [CrossRef]
- Matassa, S.; Verstraete, W.; Pikaar, I.; Boon, N. Autotrophic Nitrogen Assimilation and Carbon Capture for Microbial Protein Production by a Novel Enrichment of Hydrogen-Oxidizing Bacteria. Water Res. 2016, 101, 137–146. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Wang, S.; Sun, X.; Ma, H.; Tushiro, Y. Effects of Pretreatment on the Microbial Community and L-Lactic Acid Production in Vinasse Fermentation. J. Biotechnol. 2013, 164, 260–265. [Google Scholar] [CrossRef]
- Bustos, G.; de la Torre, N.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Revalorization of Hemicellulosic Trimming Vine Shoots Hydrolyzates Trough Continuous Production of Lactic Acid and Biosurfactants by L. pentosus. J. Food Eng. 2007, 78, 405–412. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Production of Fermentable Media from Vine-Trimming Wastes and Bioconversion into Lactic Acid by Lactobacillus Pentosus. J. Sci. Food Agric. 2004, 84, 2105–2112. [Google Scholar] [CrossRef]
- Papadaki, E.; Mantzouridou, F.T. Citric Acid Production from the Integration of Spanish-Style Green Olive Processing Wastewaters with White Grape Pomace by Aspergillus Niger. Bioresour. Technol. 2019, 280, 59–69. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Grape Stem Extracts: Polyphenolic Content and Assessment of Their in Vitro Antioxidant Properties. LWT—Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-Products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Decendit, A.; Waffo-Teguo, P.; Richard, T.; Krisa, S.; Vercauteren, J.; Monti, J.-P.; Deffieux, G.; Mérillon, J.-M. Galloylated Catechins and Stilbene Diglucosides in Vitis vinifera Cell Suspension Cultures. Phytochemistry 2002, 60, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Amico, V.; Chillemi, R.; Mangiafico, S.; Spatafora, C.; Tringali, C. Polyphenol-Enriched Fractions from Sicilian Grape Pomace: HPLC–DAD Analysis and Antioxidant Activity. Bioresour. Technol. 2008, 99, 5960–5966. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Galanakis, C.M. Phenols Recovered from Olive Mill Wastewater as Additives in Meat Products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Smith, J.; Hong-Shum, L. Food Additives Data Book, 2nd ed.; Wiley Online Library: State Avenue, Ames, Iowa, 2011; pp. 581–596. ISBN 978-1-4443-9774-1. [Google Scholar]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.H.; Zeppa, G. Physicochemical and Nutritional Qualities of Grape Pomace Powder-Fortified Semi-Hard Cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.F.; Smith, P.; Bindon, K.A. Application of Insoluble Fibers in the Fining of Wine Phenolics. J. Agric. Food Chem. 2013, 61, 4424–4432. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Zhao, Y. Wine Grape Pomace as Antioxidant Dietary Fibre for Enhancing Nutritional Value and Improving Storability of Yogurt and Salad Dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Sánchez-Alonso, I.; Jiménez-Escrig, A.; Saura-Calixto, F.; Borderías, A.J. Effect of Grape Antioxidant Dietary Fibre on the Prevention of Lipid Oxidation in Minced Fish: Evaluation by Different Methodologies. Food Chem. 2007, 101, 372–378. [Google Scholar] [CrossRef]
- Acun, S.; Gül, H. Effects of Grape Pomace and Grape Seed Flours on Cookie Quality. Qual. Assur. Saf. Crop. Foods 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Alarcón, M.; López-Viñas, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants 2020, 9, 687. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Vieira, C.; Rubio, B.; Martínez, B.; Gallardo, B.; Mantecón, A.R.; Lavín, P.; Manso, T. Effects of Grape Pomace in Growing Lamb Diets Compared with Vitamin E and Grape Seed Extract on Meat Shelf Life. Meat Sci. 2016, 116, 221–229. [Google Scholar] [CrossRef]
- Sagdic, O.; Ozturk, I.; Ozkan, G.; Yetim, H.; Ekici, L.; Yilmaz, M.T. RP-HPLC–DAD Analysis of Phenolic Compounds in Pomace Extracts from Five Grape Cultivars: Evaluation of Their Antioxidant, Antiradical and Antifungal Activities in Orange and Apple Juices. Food Chem. 2011, 126, 1749–1758. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of Natural Extracts on the Shelf Life of Modified Atmosphere-Packaged Pork Patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, A.A.; Lanteri, S.; Perego, P. Production of a Novel Fermented Milk Fortified with Natural Antioxidants and Its Analysis by NIR Spectroscopy. LWT—Food Sci. Technol. 2015, 62, 376–383. [Google Scholar] [CrossRef]
- Xu, C.; Yagiz, Y.; Marshall, S.; Li, Z.; Simonne, A.; Lu, J.; Marshall, M.R. Application of Muscadine Grape (Vitis Rotundifolia Michx.) Pomace Extract to Reduce Carcinogenic Acrylamide. Food Chem. 2015, 182, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Rosales Soto, M.U.; Brown, K.; Ross, C.F. Antioxidant Activity and Consumer Acceptance of Grape Seed Flour-Containing Food Products. Int. J. Food Sci. Technol. 2012, 47, 592–602. [Google Scholar] [CrossRef]
- Rațu, R.N.; Stoica, F.; Usturoi, M.G.; Veleșcu, I.D.; Arsenoaia, V.N.; Cârlescu, P.M.; Postolache, A.N.; Rapeanu, G. A Preliminary Investigation into the Enhancement of Cheese with Grape Skin Powder. Sci. Pap. 2013, LXVI, 484–496. [Google Scholar]
- Li, L.; Shao, J.; Zhu, X.; Zhou, G.; Xu, X. Effect of Plant Polyphenols and Ascorbic Acid on Lipid Oxidation, Residual Nitrite and N-Nitrosamines Formation in Dry-Cured Sausage. Int. J. Food Sci. Technol. 2013, 48, 1157–1164. [Google Scholar] [CrossRef]
- Wang, W.; Jung, J.; Tomasino, E.; Zhao, Y. Optimization of Solvent and Ultrasound-Assisted Extraction for Different Anthocyanin Rich Fruit and Their Effects on Anthocyanin Compositions. LWT—Food Sci. Technol. 2016, 72, 229–238. [Google Scholar] [CrossRef]
- Anghel, L.; Milea, A.; Constantin, O.E.; Barbu, V.; Chițescu, C.; Enachi, E.; Râpeanu, G.; Mocanu, G.D.; Stănciuc, N. Dried Grape Pomace with Lactic Acid Bacteria as a Potential Source for Probiotic and Antidiabetic Value-Added Powders. Food Chem. X 2023, 19, 100777. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Dabija, A.; Mironeasa, C. Influence of Particle Sizes and Addition Level of Grape Seeds on Wheat Flour Dough Rheological Properties. In Proceedings of the International Conference on Earth and Geo Sciences, Vienna, Austria, 27–29 November 2017. [Google Scholar]
- Brykova, T.; Samohvalova, O.; Grevtseva, N.; Kasabova, K.; Grygorenko, A. The Influence of Grape Powders on the Rheological Properties of Dough and Characteristics of the Quality of Butter Biscuits. Food Sci. Technol. 2018, 12, 33–38. [Google Scholar] [CrossRef]
- Marcos, J.; Carriço, R.; Sousa, M.J.; Palma, M.L.; Pereira, P.; Nunes, M.C.; Nicolai, M. Effect of Grape Pomace Flour in Savory Crackers: Technological, Nutritional and Sensory Properties. Foods 2023, 12, 1392. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Gośliński, M. Phenolic Compounds from Winemaking Waste and Its Antioxidant Activity towards Oxidation of Rapeseed Oil. Int. J. Food Sci. Technol. 2010, 45, 2272–2280. [Google Scholar] [CrossRef]
- Kohajdová, V.K.Z.; Karovičová, J.; Lauková, M. Physical, Textural and Sensory Properties of Cookies Incorporated with Grape Skin and Seed Preparations. Pol. J. Food Nutr. Sci. 2018, 68, 309–317. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poina, M.A. Designing of High Value-Added Pasta Formulas by Incorporation of Grape Pomace Skins. Rom. Biotechnol. Lett. 2018, 25, 1607–1614. [Google Scholar] [CrossRef]
- Kulkarni, S.; De Santos, F.A.; Kattamuri, S.; Rossi, S.J.; Brewer, M.S. Effect of Grape Seed Extract on Oxidative, Color and Sensory Stability of a Pre-Cooked, Frozen, Re-Heated Beef Sausage Model System. Meat Sci. 2011, 88, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, J.; Chen, Y.; Hou, Q.; Huang, M. Effect of Grape Seed Extract Combined with Modified Atmosphere Packaging on the Quality of Roast Chicken. Poult. Sci. 2020, 99, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Nascimento, M.S.; Yoshida, C.M.P.; Venturini, A.C. Effects of Grape Pomace Flour on Quality Parameters of Salmon Burger. J. Food Process. Preserv. 2020, 44, e14329. [Google Scholar] [CrossRef]
- Ryu, K.S.; Shim, K.S.; Shin, D. Effect of Grape Pomace Powder Addition on TBARS and Color of Cooked Pork Sausages during Storage. Korean J. Food Sci. Anim. Resour. 2014, 34, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Constantin, O.; Stanciuc, N.; Yan, Y.; Ghinea, I.; Ungureanu, C.; Circiumaru, A.; Wang, D.; Ulrih, N.; Rapeanu, G. Polymers and Protein-Associated Vesicles for the Microencapsulation of Anthocyanins from Grape Skins Used for Food Applications. J. Sci. Food Agric. 2021, 101, 2676–2686. [Google Scholar] [CrossRef]
- Serea, D.; Horincar, G.; Constantin, O.E.; Aprodu, I.; Stănciuc, N.; Bahrim, G.E.; Stanciu, S.; Rapeanu, G. Value-Added White Beer: Influence of Red Grape Skin Extract on the Chemical Composition, Sensory and Antioxidant Properties. Sustainability 2022, 14, 9040. [Google Scholar] [CrossRef]
- Baydar, N.G.; Sagdic, O.; Ozkan, G.; Cetin, S. Determination of Antibacterial Effects and Total Phenolic Contents of Grape (Vitis vinifera L.) Seed Extracts. Int. J. Food Sci. Technol. 2006, 41, 799–804. [Google Scholar] [CrossRef]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef]
- Sun, Y.; Xiu, C.; Liu, W.; Tao, Y.; Wang, J.; Qu, Y. Grape Seed Proanthocyanidin Extract Protects the Retina against Early Diabetic Injury by Activating the Nrf2 Pathway. Exp. Ther. Med. 2016, 11, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Serea, D.; Condurache, N.N.; Aprodu, I.; Constantin, O.E.; Bahrim, G.-E.; Stănciuc, N.; Stanciu, S.; Rapeanu, G. Thermal Stability and Inhibitory Action of Red Grape Skin Phytochemicals against Enzymes Associated with Metabolic Syndrome. Antioxidants 2022, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kushwaha, V.; Sharma, P.K. Pharmaceutical Microemulsion: Formulation, Characterization and Drug Deliveries across Skin. Int. J. Drug Dev. Res. 2014, 6, 1–21. [Google Scholar]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential Uses and Applications of Treated Wine Waste: A Review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Vilela, A.; Pinto, T. Grape Infusions: The Flavor of Grapes and Health-Promoting Compounds in Your Tea Cup. Beverages 2019, 5, 48. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of Grape Pomace Extract Incorporation on Chitosan Films Properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef]
- Shahbazi, Y. The Properties of Chitosan and Gelatin Films Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil as Biodegradable Materials for Active Food Packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable Options for the Utilization of Solid Residues from Wine Production. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Mäkelä, M.; Kwong, C.W.; Broström, M.; Yoshikawa, K. Hydrothermal Treatment of Grape Marc for Solid Fuel Applications. Energy Convers. Manag. 2017, 145, 371–377. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, D. Winery Waste Recycling through Anaerobic Co-Digestion with Waste Activated Sludge. Waste Manag. 2014, 34, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L. Anaerobic Digestion of Grape Pomace: Biochemical Characterization of the Fractions and Methane Production in Batch and Continuous Digesters. Waste Manag. 2016, 50, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lee, C.; Yu, C.; Cheng, Y.-S.; Simmons, C.W.; Zhang, R.; Jenkins, B.M.; VanderGheynst, J.S. Ensilage and Bioconversion of Grape Pomace into Fuel Ethanol. J. Agric. Food Chem. 2012, 60, 11128–11134. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L.; Hobaika, Z. Influence of Pretreatment Conditions on Lignocellulosic Fractions and Methane Production from Grape Pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, C.; Cavinato, C.; Bolzonella, D.; Pavan, P. Renewable Energy from Thermophilic Anaerobic Digestion of Winery Residue: Preliminary Evidence from Batch and Continuous Lab-Scale Trials. Biomass Bioenergy 2016, 91, 150–159. [Google Scholar] [CrossRef]
- Khandaker, M.M.; Abdullahi, U.A.; Abdulrahman, M.D.; Badaluddin, N.A.; Mohd, K.S.; Khandaker, M.M.; Abdullahi, U.A.; Abdulrahman, M.D.; Badaluddin, N.A.; Mohd, K.S. Bio-Ethanol Production from Fruit and Vegetable Waste by Using Saccharomyces Cerevisiae. In Bioethanol Technologies; IntechOpen: London, UK, 2020; ISBN 978-1-83968-394-7. [Google Scholar]
- Stanley, D.; Bandara, A.; Fraser, S.; Chambers, P.J.; Stanley, G.A. The Ethanol Stress Response and Ethanol Tolerance of Saccharomyces Cerevisiae. J. Appl. Microbiol. 2010, 109, 13–24. [Google Scholar] [CrossRef]
- Council of the European Union. Council Regulation (EC) No 479/2008 of 29 April 2008 on the Common Organisation of the Market in Wine, Amending Regulations (EC) No 1493/1999, (EC) No 1782/2003, (EC) No 1290/2005, (EC) No 3/2008 and Repealing Regulations (EEC) No 2392/86 and (EC) No 1493/1999. Off. J. Eur. Union 2008, 148, 1–61. [Google Scholar]
- Cortés-Camargo, S.; Pérez-Rodríguez, N.; Oliveira, R.P.d.S.; Huerta, B.E.B.; Domínguez, J.M. Production of Biosurfactants from Vine-Trimming Shoots Using the Halotolerant Strain Bacillus Tequilensis ZSB10. Ind. Crop. Prod. 2016, 79, 258–266. [Google Scholar] [CrossRef]
- Rodríguez-Pazo, N.; Salgado, J.M.; Cortés-Diéguez, S.; Domínguez, J.M. Biotechnological Production of Phenyllactic Acid and Biosurfactants from Trimming Vine Shoot Hydrolyzates by Microbial Coculture Fermentation. Appl. Biochem. Biotechnol. 2013, 169, 2175–2188. [Google Scholar] [CrossRef]
- Carmona, E.; Moreno, M.T.; Avilés, M.; Ordovas, J. Composting of Wine Industry Wastes and Their Use as a Substrate for Growing Soilless Ornamental Plants. Span. J. Agric. Res. 2012, 10, 482–491. [Google Scholar] [CrossRef]
- Nicula, N.-O.; Lungulescu, E.-M.; Rîmbu, G.A.; Marinescu, V.; Corbu, V.M.; Csutak, O. Bioremediation of Wastewater Using Yeast Strains: An Assessment of Contaminant Removal Efficiency. Int. J. Environ. Res. Public. Health 2023, 20, 4795. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Santos, J.A.L.; Reis, A.; Lopes da Silva, T. The Use of Oleaginous Yeasts and Microalgae Grown in Brewery Wastewater for Lipid Production and Nutrient Removal: A Review. Waste Biomass Valorization 2023, 14, 1799–1822. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Muchenje, V.; Nolte, J.E.; Dugan, M.E.R.; Mapiye, C. Grape Pomace (Vitis vinifera L. Cv. Pinotage) Supplementation in Lamb Diets: Effects on Growth Performance, Carcass and Meat Quality. Meat Sci. 2019, 147, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, G.; Patras, A.; Cara, I.G.; Sturza, R.; Ghendov-Mosanu, A. Innovative Recovery of Winemaking Waste for Effective Lead Removal from Wastewater. Agronomy 2022, 12, 604. [Google Scholar] [CrossRef]
- Dimou, C.; Kopsahelis, N.; Papadaki, A.; Papanikolaou, S.; Kookos, I.K.; Mandala, I.; Koutinas, A.A. Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis. Food Res. Int. 2015, 73, 81–87. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jakobek, L.; Šeruga, M. Influence of Solvent and Temperature on Extraction of Phenolic Compounds from Grape Seed, Antioxidant Activity and Colour of Extract. Int. J. Food Sci. Technol. 2009, 44, 2394–2401. [Google Scholar] [CrossRef]
- Ghoshal, G. Comprehensive Review on Pulsed Electric Field in Food Preservation: Gaps in Current Studies for Potential Future Research. Heliyon 2023, 9, e17532. [Google Scholar] [CrossRef]
- Rocha, C.M.R.; Genisheva, Z.; Ferreira-Santos, P.; Rodrigues, R.; Vicente, A.A.; Teixeira, J.A.; Pereira, R.N. Electric Field-Based Technologies for Valorization of Bioresources. Bioresour. Technol. 2018, 254, 325–339. [Google Scholar] [CrossRef]
- Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-Compounds from Fermented Grape Pomace. Food Bioprocess Technol. 2015, 8, 1139–1148. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to Extract Bioactive Compounds from Food By-Products of Plant Origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Serea, D.; Constantin, O.E.; Horincar, G.; Stănciuc, N.; Aprodu, I.; Bahrim, G.E.; Râpeanu, G. Optimization of Extraction Parameters of Anthocyanin Compounds and Antioxidant Properties from Red Grape (Băbească Neagră) Peels. Inventions 2023, 8, 59. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. Combined Densification and Pulsed Electric Field Treatment for Selective Polyphenols Recovery from Fermented Grape Pomace. Innov. Food Sci. Emerg. Technol. 2015, 29, 2–8. [Google Scholar] [CrossRef]
- Rajha, H.N.; Ziegler, W.; Louka, N.; Hobaika, Z.; Vorobiev, E.; Boechzelt, H.G.; Maroun, R.G. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction. Int. J. Mol. Sci. 2014, 15, 18640–18658. [Google Scholar] [CrossRef]
- Bruno Romanini, E.; Misturini Rodrigues, L.; Finger, A.; Perez Cantuaria Chierrito, T.; Regina da Silva Scapim, M.; Scaramal Madrona, G. Ultrasound Assisted Extraction of Bioactive Compounds from BRS Violet Grape Pomace Followed by Alginate-Ca2+ Encapsulation. Food Chem. 2021, 338, 128101. [Google Scholar] [CrossRef] [PubMed]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis vinifera L.)—A Response Surface Approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation Potential of Cabernet Grape Pomace for the Recovery of Polyphenols: Process Intensification, Optimisation and Study of Kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Yu, H.B.; Ding, L.F.; Wang, Z.; Shi, L.X. Study on Extraction of Polyphenol from Grape Peel Microwave-Assisted Activity. Adv. Mater. Res. 2014, 864–867, 520–525. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crop. Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Liazid, A.; Guerrero, R.F.; Cantos, E.; Palma, M.; Barroso, C.G. Microwave Assisted Extraction of Anthocyanins from Grape Skins. Food Chem. 2011, 124, 1238–1243. [Google Scholar] [CrossRef]
- Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical Fluid Extraction of Polyphenols from Grape Seed (Vitis vinifera): Study on Process Variables and Kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Grape Marc. J. Food Eng. 2019, 240, 105–113. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2020, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Linares, G.; Rojas, M.L. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Decorti, D.; Natolino, A. Water and Ethanol as Co-Solvent in Supercritical Fluid Extraction of Proanthocyanidins from Grape Marc: A Comparison and a Proposal. J. Supercrit. Fluids 2014, 87, 1–8. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of Power Ultrasound Application on Aqueous Extraction of Phenolic Compounds and Antioxidant Capacity from Grape Pomace (Vitis vinifera L.): Experimental Kinetics and Modeling. Ultrason. Sonochem. 2015, 22, 506–514. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Ghafoor, K.; Park, J.; Choi, Y.-H. Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Grape (Vitis labrusca B.) Peel by Using Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical Composition, Antioxidant and Antimicrobial Activity of Phenolic Compounds Extracted from Wine Industry by-Products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Decean, H.; Fischer-Fodor, E.; Tatomir, C.; Perde-Schrepler, M.; Somfelean, L.; Burz, C.; Hodor, T.; Orasan, R.; Virag, P. Vitis vinifera Seeds Extract for the Modulation of Cytosolic Factors BAX-α and NF-kB Involved in UVB-Induced Oxidative Stress and Apoptosis of Human Skin Cells. Clujul Med. 1957 2016, 89, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Bocsan, I.C.; Măgureanu, D.C.; Pop, R.M.; Levai, A.M.; Macovei, O.; Pătrașca, I.M.; Chedea, V.S.; Buzoianu, A.D. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022, 10, 2337. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Centeno, C.; Romero, C.; Arija, I.; Brenes, A. Effects of Dietary Grape Seed Extract on Growth Performance, Amino Acid Digestibility and Plasma Lipids and Mineral Content in Broiler Chicks. Animal 2013, 7, 555–561. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, W.P.; Biasoto, A.C.T.; Marques, V.F.; dos Santos, I.M.; Magalhães, K.; Correa, L.C.; Negro-Dellacqua, M.; Miranda, M.S.; de Camargo, A.C.; Shahidi, F. Phenolics from Winemaking By-Products Better Decrease VLDL-Cholesterol and Triacylglycerol Levels than Those of Red Wine in Wistar Rats. J. Food Sci. 2017, 82, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Balea, Ş.S.; Pârvu, A.E.; Pop, N.; Marín, F.Z.; Pârvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxid. Med. Cell. Longev. 2018, 2018, 8194721. [Google Scholar] [CrossRef]
- Kundu, J.K.; Surh, Y.-J. Cancer Chemopreventive and Therapeutic Potential of Resveratrol: Mechanistic Perspectives. Cancer Lett. 2008, 269, 243–261. [Google Scholar] [CrossRef]
- Pérez-Ortiz, J.M.; Alguacil, L.F.; Salas, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; González-Martín, C. Antiproliferative and Cytotoxic Effects of Grape Pomace and Grape Seed Extracts on Colorectal Cancer Cell Lines. Food Sci. Nutr. 2019, 7, 2948–2957. [Google Scholar] [CrossRef]
- Hamza, A.A.; Heeba, G.H.; Elwy, H.M.; Murali, C.; El-Awady, R.; Amin, A. Molecular Characterization of the Grape Seeds Extract’s Effect against Chemically Induced Liver Cancer: In Vivo and in Vitro Analyses. Sci. Rep. 2018, 8, 1270. [Google Scholar] [CrossRef]
- Tsiviki, M.; Goula, A.M. Chapter 16—Valorization of Grape Seeds. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 331–346. ISBN 978-0-12-824044-1. [Google Scholar]
- Adisakwattana, S.; Moonrat, J.; Srichairat, S.; Chanasit, C.; Tirapongporn, H.; Chanathong, B.; Ngamukote, S.; Mauml, K.; kynen; Sapwarobol, S. Lipid-Lowering Mechanisms of Grape Seed Extract (Vitis vinifera L.) and Its Antihyperlidemic Activity. J. Med. Plants Res. 2010, 4, 2113–2120. [Google Scholar]
- Ishimoto, E.Y.; Vicente, S.J.V.; Cruz, R.J.; Torres, E.A.F. da S. Hypolipidemic and Antioxidant Effects of Grape Processing By-Products in High-Fat/Cholesterol Diet-Induced Hyperlipidemic Hamsters. Food Sci. Technol. 2020, 40, 558–567. [Google Scholar] [CrossRef]
- Rivera, K.; Salas-Pérez, F.; Echeverría, G.; Urquiaga, I.; Dicenta, S.; Pérez, D.; de la Cerda, P.; González, L.; Andia, M.E.; Uribe, S.; et al. Red Wine Grape Pomace Attenuates Atherosclerosis and Myocardial Damage and Increases Survival in Association with Improved Plasma Antioxidant Activity in a Murine Model of Lethal Ischemic Heart Disease. Nutrients 2019, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Lanzi, C.; Perdicaro, D.J.; Antoniolli, A.; Fontana, A.R.; Miatello, R.M.; Bottini, R.; Vazquez Prieto, M.A. Grape Pomace and Grape Pomace Extract Improve Insulin Signaling in High-Fat-Fructose Fed Rat-Induced Metabolic Syndrome. Food Funct. 2016, 7, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Chacar, S.; Itani, T.; Hajal, J.; Saliba, Y.; Louka, N.; Faivre, J.-F.; Maroun, R.; Fares, N. The Impact of Long-Term Intake of Phenolic Compounds-Rich Grape Pomace on Rat Gut Microbiota. J. Food Sci. 2018, 83, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape Pomace Improves Performance, Antioxidant Status, Fecal Microbiota and Meat Quality of Piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Sun, S.; Canning, C.; Zhou, K. Antioxidant Rich Grape Pomace Extract Suppresses Postprandial Hyperglycemia in Diabetic Mice by Specifically Inhibiting Alpha-Glucosidase. Nutr. Metab. 2010, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Costabile, G.; Vitale, M.; Luongo, D.; Naviglio, D.; Vetrani, C.; Ciciola, P.; Tura, A.; Castello, F.; Mena, P.; Del Rio, D.; et al. Grape Pomace Polyphenols Improve Insulin Response to a Standard Meal in Healthy Individuals: A Pilot Study. Clin. Nutr. 2019, 38, 2727–2734. [Google Scholar] [CrossRef]
- Kouidhi, B.; Al Qurashi, Y.M.A.; Chaieb, K. Drug Resistance of Bacterial Dental Biofilm and the Potential Use of Natural Compounds as Alternative for Prevention and Treatment. Microb. Pathog. 2015, 80, 39–49. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Roriz, C.L.; Heleno, S.A.; Calhelha, R.; Dias, M.I.; Pinela, J.; Rosales-Conrado, N.; León-González, M.E.; Ferreira, I.C.F.R.; Barros, L. Valorisation of Black Mulberry and Grape Seeds: Chemical Characterization and Bioactive Potential. Food Chem. 2021, 337, 127998. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Thurnheer, T.; Bartolomé, B.; Moreno-Arribas, M.V. Red Wine and Oenological Extracts Display Antimicrobial Effects in an Oral Bacteria Biofilm Model. J. Agric. Food Chem. 2014, 62, 4731–4737. [Google Scholar] [CrossRef]
- Bogdan, C.; Pop, A.; Iurian, S.M.; Benedec, D.; Moldovan, M.L. Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, O.E.; Stoica, F.; Rațu, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants 2024, 13, 100. https://doi.org/10.3390/antiox13010100
Constantin OE, Stoica F, Rațu RN, Stănciuc N, Bahrim GE, Râpeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants. 2024; 13(1):100. https://doi.org/10.3390/antiox13010100
Chicago/Turabian StyleConstantin, Oana Emilia, Florina Stoica, Roxana Nicoleta Rațu, Nicoleta Stănciuc, Gabriela Elena Bahrim, and Gabriela Râpeanu. 2024. "Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review" Antioxidants 13, no. 1: 100. https://doi.org/10.3390/antiox13010100
APA StyleConstantin, O. E., Stoica, F., Rațu, R. N., Stănciuc, N., Bahrim, G. E., & Râpeanu, G. (2024). Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants, 13(1), 100. https://doi.org/10.3390/antiox13010100