Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential
Abstract
:1. Introduction
1.1. Epidemiology and Character of Triple-Negative Breast Cancer
1.2. Role of c-MYC in Biology and G-Quadruplex Structure of c-MYC
1.3. Challenges Encountered in the Development of c-MYC G4 Stabilizer
1.4. Characteristics of Acridone Derivatives and Their Potential Opponent in G4 Stabilizing
2. Materials and Methods
2.1. Fragment-Based Drug Design
2.2. General Procedures
2.3. Synthesis
2.4. Cell Lines and Cell Culture
2.5. ROS Detection Assay
2.6. Cell Viability Assay
2.7. Quantitative Real-Time PCR
2.8. Western Blotting Assay
2.9. Molecular Docking Study
2.10. Statistical Analysis
3. Results
3.1. Fragment-Based Drug Design
3.2. Chemical Synthesis
3.3. Acridone Derivatives Introduce ROS Production in MDA-MB-231 Cell Line
3.4. Inhibition of Acridone Derivatives to the Growth of MDA-MB-231 Cell Line
3.5. N8 Increases ROS Levels by Downregulating the Expression Levels of the c-MYC/SOD2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thurlimann, B.; Senn, H.J.; Panel, M. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of Triple-Negative Breast Cancer. Annu. Rev. Pathol. 2022, 17, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer—expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Bahls, B.; Aljnadi, I.M.; Emidio, R.; Mendes, E.; Paulo, A. G-Quadruplexes in c-MYC Promoter as Targets for Cancer Therapy. Biomedicines 2023, 11, 969. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V. MYC on the path to cancer. Cell 2012, 149, 22–35. [Google Scholar] [CrossRef]
- Wierstra, I.; Alves, J. The c-myc promoter: Still MysterY and challenge. Adv. Cancer Res. 2008, 99, 113–333. [Google Scholar]
- Dickerhoff, J.; Dai, J.; Yang, D. Structural recognition of the MYC promoter G-quadruplex by a quinoline derivative: Insights into molecular targeting of parallel G-quadruplexes. Nucleic Acids Res. 2021, 49, 5905–5915. [Google Scholar] [CrossRef]
- Mendes, E.; Aljnadi, I.M.; Bahls, B.; Victor, B.L.; Paulo, A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals 2022, 15, 300. [Google Scholar] [CrossRef]
- Platella, C.; Napolitano, E.; Riccardi, C.; Musumeci, D.; Montesarchio, D. Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs. J. Med. Chem. 2021, 64, 3578–3603. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.R.; Soucek, L. The long journey to bring a Myc inhibitor to the clinic. J. Cell Biol. 2021, 220, e202103090. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.; Bhattacharya, S.; Dash, J.; Bhattacharya, S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J. Med. Chem. 2021, 64, 42–70. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.V.; Danford, F.L.; Gokhale, V.; Hurley, L.H.; Brooks, T.A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 2011, 286, 41018–41027. [Google Scholar] [CrossRef] [PubMed]
- Asamitsu, S.; Obata, S.; Yu, Z.; Bando, T.; Sugiyama, H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands toward Cancer Therapy. Molecules 2019, 24, 429. [Google Scholar] [CrossRef]
- Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chen, X.C.; Tang, G.X.; Shao, W.; Li, Z.C.; Chen, S.B.; Huang, Z.S.; Tan, J.H. Development and Characterization of Benzoselenazole Derivatives as Potent and Selective c-MYC Transcription Inhibitors. J. Med. Chem. 2023, 66, 5484–5499. [Google Scholar] [CrossRef]
- Tian, W.; Yougnia, R.; Depauw, S.; Lansiaux, A.; David-Cordonnier, M.H.; Pfeiffer, B.; Kraus-Berthier, L.; Leonce, S.; Pierre, A.; Dufat, H.; et al. Synthesis, antitumor activity, and mechanism of action of benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one analogs of acronycine. J. Med. Chem. 2014, 57, 10329–10342. [Google Scholar] [CrossRef]
- Verones, V.; Flouquet, N.; Lecoeur, M.; Lemoine, A.; Farce, A.; Baldeyrou, B.; Mahieu, C.; Wattez, N.; Lansiaux, A.; Goossens, J.F.; et al. Synthesis, antiproliferative activity and tubulin targeting effect of acridinone and dioxophenothiazine derivatives. Eur. J. Med. Chem. 2013, 59, 39–47. [Google Scholar] [CrossRef]
- Akbari Javar, H.; Garkani-Nejad, Z.; Dehghannoudeh, G.; Mahmoudi-Moghaddam, H. Development of a new electrochemical DNA biosensor based on Eu3+-doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Anal Chim. Acta 2020, 1133, 48–57. [Google Scholar] [CrossRef]
- Lauria, A.; La Monica, G.; Bono, A.; Martorana, A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur. J. Med. Chem. 2021, 220, 113555. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Li, X.; Lu, X.; Zhang, L.; Li, R.; Zhang, N.; Liu, S.; Yang, X.; Wang, Y.; Zhao, Y.; et al. A novel acridine derivative, LS-1-10 inhibits autophagic degradation and triggers apoptosis in colon cancer cells. Cell Death Dis. 2017, 8, e3086. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, W.; He, S.; Li, S.; Liu, F.; Jiang, Y. Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands. Bioorg. Chem. 2015, 60, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ladame, S.; Schouten, J.A.; Stuart, J.; Roldan, J.; Neidle, S.; Balasubramanian, S. Tetrapeptides induce selective recognition for G-quadruplexes when conjugated to a DNA-binding platform. Org. Biomol. Chem. 2004, 2, 2925–2931. [Google Scholar] [CrossRef]
- Bohn, M.A. Determination of the kinetic data of the thermal decomposition of energetic plasticizers and binders by adiabatic self heating. Thermochim. Acta 1999, 337, 121–139. [Google Scholar] [CrossRef]
- Krasnokutskaya, E.; Semenischeva, N.; Filimonov, V.; Knochel, P. A New, One-Step, Effective Protocol for the Iodination of Aromatic and Heterocyclic Compounds via Aprotic Diazotization of Amines. Synthesis 2007, 2007, 81–84. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Calabrese, D.R.; Chen, X.; Leon, E.C.; Gaikwad, S.M.; Phyo, Z.; Hewitt, W.M.; Alden, S.; Hilimire, T.A.; He, F.; Michalowski, A.M.; et al. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 2018, 9, 4229. [Google Scholar] [CrossRef]
- Liu, Z.; He, Q.; Ding, X.; Zhao, T.; Zhao, L.; Wang, A. SOD2 is a C-myc target gene that promotes the migration and invasion of tongue squamous cell carcinoma involving cancer stem-like cells. Int. J. Biochem. Cell Biol. 2015, 60, 139–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhou, L.; Yuan, X.; Wang, Y.; Deng, Q.; Deng, Z.; Xu, S.; Wang, Q.; Xie, H.; et al. Nav1.8 in keratinocytes contributes to ROS-mediated inflammation in inflammatory skin diseases. Redox Biol. 2022, 55, 102427. [Google Scholar] [CrossRef]
- Aoki, Y.; Han, Q.; Kubota, Y.; Masaki, N.; Obara, K.; Tome, Y.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Oncogenes and Methionine Addiction of Cancer: Role of c-MYC. Cancer Genom. Proteom. 2023, 20, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and cancer metabolism. Clin. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.V. The role of c-myc in cellular growth control. Oncogene 1999, 18, 2988–2996. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 2017, 17, 502–508. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.D.; Kim, H.J.; Lee, Z.H.; Kim, H.H. SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS. J. Bone Miner Res. 2017, 32, 397–406. [Google Scholar] [CrossRef]
- Bamodu, O.A.; Yang, C.K.; Cheng, W.H.; Tzeng, D.T.W.; Kuo, K.T.; Huang, C.C.; Deng, L.; Hsiao, M.; Lee, W.H.; Yeh, C.T. 4-Acetyl-Antroquinonol B Suppresses SOD2-Enhanced Cancer Stem Cell-Like Phenotypes and Chemoresistance of Colorectal Cancer Cells by Inducing hsa-miR-324 re-Expression. Cancers 2018, 10, 269. [Google Scholar] [CrossRef]
Compound | R | EC50 (95%CI) ROS | IC50 (95%CI) MTT | Compound | R | EC50 (95%CI) ROS | IC50 (95%CI) MTT |
---|---|---|---|---|---|---|---|
L1 | 43.0 μM (10.48–95.29) | 33.28 μM (16.46–66.36) | L16 | -- | \ | ||
L2 | 161.1 μM (54.01–523.5) | \ 2 | L17 | -- | \ | ||
L3 | 209.4 μM (95.68–425.7) | \ | L18 | -- | \ | ||
L4 | -- 1 | \ | L19 | -- | \ | ||
L5 | -- | \ | L20 | -- | 22.95 μM (5.758–87.58) | ||
L6 | -- | \ | L21 | -- | \ | ||
L7 | -- | \ | N1 | -- | 7.581 μM (4.268–13.32) | ||
L8 | -- | \ | N2 | -- | 6.017 μM (1.284–25.11) | ||
L9 | -- | 21.61 μM (11.95–31.96) | N3 | -- | 71.99 μM (10.02–911.1) | ||
L10 | -- | \ | N4 | -- | 1.003 μM (0.5610–1.698) | ||
L11 | 26.05 μM (12.36–57.80) | 2.377 μM (1.249–4.366) | N5 | -- | 42.86 μM (12.18–143.4) | ||
L12 | -- | 20.89 μM (10.98–39.64) | N6 | -- | 2.638 μM (0.7022–8.810) | ||
L13 | -- | \ | N7 | -- | 0.8802 μM (0.3418–1.916) | ||
L14 | -- | 12.76 μM (3.52–43.96) | N8 | 4.026 μM (1.299–13.46) | 0.7222 μM (0.003539–6.103) | ||
L15 | -- | 75.41 μM (23.41–238.1) | CX-3543 | 37.48 μM (13.8–104.2) | 1.934 μM (0.9373–3.924) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.-W.; Gao, Z.-C.; Yang, L.-L.; Zhang, W.; Chen, M.-Z.; Meng, F.-H. Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants 2024, 13, 11. https://doi.org/10.3390/antiox13010011
Liang J-W, Gao Z-C, Yang L-L, Zhang W, Chen M-Z, Meng F-H. Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants. 2024; 13(1):11. https://doi.org/10.3390/antiox13010011
Chicago/Turabian StyleLiang, Jing-Wei, Zhi-Chao Gao, Lu-Lu Yang, Wei Zhang, Ming-Zhe Chen, and Fan-Hao Meng. 2024. "Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential" Antioxidants 13, no. 1: 11. https://doi.org/10.3390/antiox13010011
APA StyleLiang, J. -W., Gao, Z. -C., Yang, L. -L., Zhang, W., Chen, M. -Z., & Meng, F. -H. (2024). Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants, 13(1), 11. https://doi.org/10.3390/antiox13010011