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Abstract: Plants have evolved complicated defense and adaptive systems to grow in various abiotic
stress environments such as drought, cold, and salinity. Anthocyanins belong to the secondary
metabolites of flavonoids with strong antioxidant activity in response to various abiotic stress and
enhance stress tolerance. Anthocyanin accumulation often accompanies the resistance to abiotic
stress in plants to scavenge reactive oxygen species (ROS). Recent research evidence showed that
many regulatory pathways such as osmoregulation, antioxidant response, plant hormone response,
photosynthesis, and respiration regulation are involved in plant adaption to stress. However, the
molecular regulatory mechanisms involved in controlling anthocyanin biosynthesis in relation to
abiotic stress response have remained obscure. Here, we summarize the current research progress
of specific regulators including small RNAs, and lncRNAs involved in the molecular regulation of
abiotic stress-induced anthocyanin biosynthesis. In addition, an integrated regulatory network of
anthocyanin biosynthesis controlled by microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
transcription factors, and stress response factors is also discussed. Understanding molecular mecha-
nisms of anthocyanin biosynthesis for ROS scavenging in various abiotic stress responses will benefit
us for resistance breeding in crop plants.

Keywords: anthocyanin biosynthesis; ncRNA; environmental regulation; abiotic stress; regulatory
network

1. Introduction

With population growth and environmental deterioration, plants face more and more
abiotic stresses. As sessile organisms, they are exposed to various abiotic stresses during
their growth and development process, and they have also evolved sophisticated tolerance,
resistance, or avoidance mechanisms to overcome stress such as low and high temperature,
drought, and salinity [1,2]. Under abiotic stress, the stress stimuli are perceived by receptors
or signal factors and transduced to downstream transcription factors through messengers
like calcium (Ca2+), nitric oxide (NO), sugars, abscisic acid (ABA), brassinosteroids (BRs),
ethylene, jasmonates (JA), salicylic acid (SA), and auxins in plants [3]. Under abiotic stresses,
plants usually generate and accumulate secondary metabolites including anthocyanins,
flavones, flavonols, lignin, alkaloids, and terpenoids to protect cells from damage [4,5].
Studies have shown that anthocyanins accumulate in plants under drought, cold, and
salinity stress and the higher anthocyanin content increases the tolerance of plants to adapt
to harmful environmental stress [6–8].

Anthocyanins are a class of water-soluble flavonoids present in fruits, flowers, and
vegetative organs of plants which have antioxidant activities in protecting plants under abi-
otic stress. Anthocyanidins are synthesized on the cytoplasmic surface of the endoplasmic
reticulum and further undergo various modifications such as methylation, glycosylation,
hydroxylation, and acylation in the endoplasmic reticulum. Afterward, anthocyanins (the
forms of anthocyanidin glycosides and acylated anthocyanins) enter the vacuoles to store
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and accumulate with the assistance of transporters and transport vesicles [9]. Anthocyanins
not only determine the blue, red, and purple pigments of plants for attracting pollinators
but also play roles in various biotic and abiotic stresses. In addition to physiological roles
for plants, anthocyanins also have potential benefits for human health, such as decreasing
the risk of heart disease, diabetes, cardiovascular disease, and metabolic diseases [10–13].
The anthocyanin biosynthetic pathway has been elucidated and most of the regulatory
genes involved in anthocyanin biosynthesis have been identified [14–16]. The enzymes
involved in anthocyanin biosynthesis include CHS (chalcone synthase), CHI (chalcone iso-
merase), F3H (flavanone 3-hydroxylase), F3′H (flavonoid 3′-hydroxylase), F3′5′H (flavonoid
3′,5′-hydroxylase) which correspond to early biosynthetic genes (EBGs), and DFR (dihy-
droflavonol 4-reductase), ANS (anthocyanin synthase), OMT (O-methyltransferase) and
UFGT (UDP flavonoid glucosyltransferase) which correspond to late biosynthetic genes
(LBGs) [17]. Moreover, the anthocyanin biosynthesis is regulated by the MYB–bHLH–WD40
(MBW) protein complex, which is composed of MYB, bHLH transcription factors, and a
WD40 protein [18,19]. In addition to the MBW complex, PybHLH3-PyMYB114-PyERF3 [20]
transcription complex in pear and WRKY [21,22], NAC [23], MADS [24], HY5 [25], BBX [26],
bZIP [27], SPL [28] regulatory factors in various fruit crops are also involved in the reg-
ulation of anthocyanin biosynthesis (Figure 1). Recently, a great number of studies have
revealed that anthocyanins increasingly accumulate when plants are under environmental
stress. In Arabidopsis, the low nitrogen (N)-induced anthocyanin accumulation plays a sub-
stantial role in plant tolerance to low N stress [29]. In addition, the flavonoid biosynthesis
and accumulation in Arabidopsis improves salt resistance under salt stress [30]. In Cymbid-
ium hybrid flowers, anthocyanin pigmentation has been demonstrated to be organ-specific
and temperature-dependent synthesized [31]. Moreover, anthocyanin accumulation is
related to salt stress response in MdZAT5-overexpressing apple Calli and Arabidopsis [32].
Furthermore, the anthocyanin accumulation in AN1-overexpressing tobacco plants has a
higher drought tolerance compared to the wild-type plants [33]. Also, the overexpression
of UGTs enhanced plant tolerance to low temperatures, drought, and salt stresses by modu-
lating the anthocyanin accumulation [34]. Under abiotic stresses, a reduction in electron
transport in the Calvin cycle and a higher electron leakage during photosynthesis in the
Mehler reaction of cells lead to the plants producing extensive reactive oxygen species
(ROS) including O2−, H2O2, OH-, and 1O2 [35], which cause oxidative damage to plants
and can be used as signaling molecules to activate stress-tolerance mechanisms. Antho-
cyanin can directly scavenge active oxygen species, such as singlet oxygen, superoxide,
hydrogen peroxide, hydroxyl, and peroxyl radicals [36]. Consequently, the anthocyanins
accumulate in plants after ROS signals induce the transcription of anthocyanin biosynthesis
pathway genes to scavenge excess ROS and avoid oxidative damage [37,38]. Therefore,
ROS as signal factors in the response to plant abiotic stresses activate the transcription of
anthocyanin biosynthetic genes to produce anthocyanins for stress tolerance.

In general, non-coding RNAs (ncRNAs) have been classified into housekeeping ncR-
NAs (constitutive expression) such as ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNAs (snRNA), small nucleolar RNAs (snoRNAs), TR (telomerase RNA) and
regulatory RNAs such as microRNAs (miRNA), endogenous-small-interfering RNA (endo-
siRNA), repeat-derived RNA (rasiRNA), Piwi-interacting RNA (piRNA), enhancer-derived
RNA (eRNA), promoter-associated RNAs (PATs), long non-coding RNA (lncRNA) [39].
The biogenesis, targeting action, and function of these classes of ncRNAs have been ex-
plored and reviewed in plant development [40–44], whereas the regulatory RNAs (miRNAs
and lncRNAs) in the regulatory pathway of anthocyanin biosynthesis in abiotic stress
response still need to be explored. miRNAs and lncRNAs originate in intergenic or intronic
regions of chromosomal DNA and regulate the expression of growth and development,
biotic and abiotic stress response-related genes [43]. They are involved in chromatin mod-
ification, epigenetic regulation, genomic imprinting, transcriptional control, and pre- or
post-translational mRNA processing in diverse biological processes in plants [45,46]. In sea
buckthorn, two lncRNAs LNC1 and LNC2 can act as endogenous target mimics of miR156a
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and miR828a to regulate the abundance of SPL9 and MYB114, respectively, which affect
the anthocyanin biosynthesis in fruit [47]. Additionally, in apples, lncRNA MdLNC610
upregulates the expression of the ethylene biosynthesis gene MdACO1 and participates
in the regulation of high-light-induced anthocyanin production [48]. Another lncRNA
MdLNC499 which is regulated by MdWRKY1 induces the expression of MdERF109 and
participates in regulating the accumulation of anthocyanins in light-induced apple fruit
coloration [49]. Moreover, the anthocyanin-rich tomato genotype LA1996 displays superior
tolerance to salinity and drought stress [7]. Drought, salinity, and temperature (heat, cold,
chilling, and freezing) are major abiotic stresses affecting the growth and development
of plants. Many signal transduction regulators and key transcription factors involved
in the complicated regulatory network of abiotic stresses have been identified. Recent
studies have revealed more and more miRNAs and lncRNAs related to the regulatory
pathway of anthocyanin biosynthesis under various abiotic stress environments in plants.
In this review, we focus on the current advances of miRNAs and lncRNAs involved in the
regulation of anthocyanin biosynthesis induced by abiotic stress and their roles in abiotic
stress tolerance.
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Figure 1. The regulatory pathway of anthocyanin biosynthesis.

2. Environmental Stress-Induced Anthocyanin Accumulation in Plants
2.1. The Pathway of Transcription Factors and ncRNAs Involved in Low Temperature
Stress Response

Low temperature is one of the major abiotic stresses that greatly reduces crop yield.
The ability of plants to tolerate adverse environments is known to affect plant survival
and geographical distribution, for example, plants growing in temperate zones are less
sensitive to cold than those from tropical/subtropical regions, such as rice, maize, cotton,
and tomatoes, which cannot adapt to cold environments [50]. Cold stress can be classified
into chilling stress (0–15 ◦C) and freezing stress (<0 ◦C), which can cause injuries to the
plant. However, some plants such as winter wheat (Triticum aestivum), rye (Secale cereale L.),
barley (Hordeum vulgare), and oat (Avena sativa) have evolved sophisticated cold acclimation
mechanisms to encounter low temperatures that improve plant freezing tolerance [51].

Currently, the cold signal has been reported to be perceived by cellular membranes,
calcium (Ca2+) channels, and COLD1 (CHILLING TOLERANCE DIVERGENCE 1), which
encodes a G-protein signaling regulator in Oryza sativa [52]. Afterwards, the cold signal is
transduced to the C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1)-
dependent regulatory pathway for plant responses to cold stress. Additionally, the circa-
dian clock, photoperiod, and light signaling are involved in regulating the network [52].
CBF proteins recognize the conserved CCGAC sequence of CRT/DRE cis-element in the
promoters of a subset of cold-regulated (COR) genes [53]. The cold-regulated genes in-



Antioxidants 2024, 13, 55 4 of 18

cluding the COR, low-temperature induced (LTI), responsive to desiccation (RD), and
early dehydration-inducible (ERD) genes can be activated to increase freezing tolerance
through the regulation of the CBF/DREB1 transcription factors in the cold acclimation of
plants [51]. During the cold signal transduction, ICE1 (INDUCER OF CBF EXPRESSION 1)
and its homolog ICE2 positively regulate CBF expression, and the modifications of post-
translation in ICE1 such as ubiquitination, sumoylation, and phosphorylation attenuate the
activity and stability of ICE1 to affect the expression abundance of CBF [51,52] (Figure 2).
Moreover, overexpression of HY5 or MYB15 increases the expression of CBF and cold
tolerance in tomatoes, and loss-of-function mutations hy5 or myb15 decrease the levels of
CBF transcripts [54].
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Furthermore, CBF can interact with PHYTOCHROME-INTERACTING FACTOR 3
(PIF3) under cold stress attenuating the mutually assured destruction of PIF3-phyB to
stabilize PHYTOCHROME B (phyB) and positively regulate freezing tolerance by modu-
lating the expression of stress-responsive genes in Arabidopsis [55]. In addition, PIF3 can
be ubiquitinated by LRBs (LIGHT-RESPONSE BRIC-A-BRACK/TRAMTRACK/BROAD)
for degradation after interacting with PhyB to be phosphorylated [56–59]. Nevertheless,
PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors
directly binding anthocyanin biosynthetic gene promoters [60]. In addition, CBF1 in Ara-
bidopsis can also control the expression of the two glycosyltransferase genes (UGT79B2 and
UGT79B3) involved in modulating anthocyanin metabolic pathways to improve cold stress
tolerance [61].

Moreover, CBFs in eggplants interact with SmMYB113, a key regulator of anthocyanin
biosynthesis, to upregulate the expression of CHS and DFR with a SmMYB113-dependent
pathway to improve the contents of anthocyanin. Overexpression of SmCBF2 and SmCBF3
in Arabidopsis also enhances the anthocyanin accumulation under cold conditions [62]. Ad-
ditionally, MdMYB23 directly activates the expression of MdCBF1 and MdCBF2 to enhance
the cold tolerance of apple plants (Malus domestica) at low temperatures. MdMYB23 also
regulates the transcription of MdANR and promotes the biosynthesis of proanthocyanidins
to scavenge ROS for cold stress tolerance [63]. Conversely, the MdMYB15L repressor binds
to the promoter of MdCBF2 and inhibits the expression of MdCBF2, which also competi-
tively binds with MdbHLH33 and reduces MdbHLH33-induced anthocyanin accumulation,
thus decreasing the cold tolerance of apple at low temperatures [64].

Moreover, the NAC (NAM, ATAF1/2, and CUC2) transcription factor MdNAC104 in
apples also promotes the expression of MdCBF1 and MdCBF3, the anthocyanin synthesis-
related genes such as MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b and the antioxidant
enzyme-encoding genes MdFSD2 and MdPRXR1.1 under cold stress [65]. Furthermore,
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MdMYB308L, overexpression of which improved cold tolerance and increased anthocyanin
accumulation, interacts with MdbHLH33 to regulate the expression of MdCBF2 and MdDFR.
However, an apple RING E3 ubiquitin ligase MdMIEL1 promotes the degradation of
MdMYB308L and negatively regulates cold tolerance and anthocyanin accumulation [8]
(Figure 2). As a result, both CBFs and PIF3 take dual regulation roles in cold stress response
and anthocyanin accumulation in plants.

Apart from the CBF-dependent regulatory pathway, a number of genes have been
identified to regulate plant cold responses independently of the CBF pathway (Figure 3).
In Arabidopsis, cold stress induces the expression of HY5 (ELONGATED HYPOCOTYL
5) and positively regulates the expression of COR genes and cold acclimation via a CBF-
independent pathway [66]. Moreover, HY5 has been determined to regulate anthocyanin
biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription
factor in Arabidopsis [67] and regulating the expression of anthocyanin biosynthetic genes
(CHS, CHI, and F3H) in tomato under cold stress [68]. Additionally, ROS1 (REPRESSOR
OF SILENCING 1), one of the DNA glycosylase DEMETER (DME) family members pro-
motes low temperature-induced anthocyanin accumulation in apple (Malus domestica) by
demethylating the promoters of anthocyanin-associated genes (MdCHS, MdCHI, MdF3’H,
MdANS, MdUFGT, and MdMYB10) [69].
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Low temperature is a serious abiotic stressor that induces ROS (reactive oxygen
species), which participate in stress signaling as signaling molecules through the protein
kinases pathway to activate anthocyanin regulatory transcription factors such as MYB,
bHLH, and WD40 [70,71]. The accumulation of anthocyanins in plant leaves at low tem-
peratures can decrease the level of oxidative damage and increase the photosynthetic
rate [72]. In Mikania micrantha, the accumulation of anthocyanins in leaves and stems could
effectively eliminate ROS under low-temperature stress and improve its adaptability to
low-temperature environments during winter [73]. The anthocyanins scavenging ROS
and maintaining osmotic balance to increase abiotic stress tolerance has also been proved
using anthocyanin-containing leaves compared with anthocyanin-deficient leaves in sweet
basil (Ocimum basilicum) and Arabidopsis [71,74]. Also, cold-induced transcription and
phosphorylation of bHLH activate the expression of MdDFR, MdUFGT, and MdMYB1
to regulate anthocyanin accumulation and fruit coloration in apples [75]. Additionally,
low temperature induces MdMYB2 and further activates the expression of MdSIZ1 (SAP
AND MIZ1 DOMAIN-CONTAINING LIGASE1), which is SUMO E3 ligase that mediates
the sumoylation of MdMYB1 and promotes anthocyanin accumulation [76,77] (Figure 3).
Furthermore, BrMYB2 and BrTT8 play important roles in co-activating the anthocyanin
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structural genes in purple-head Chinese cabbage after low-temperature induction [78]. In
Chinese cabbage, low temperature also induces the expression levels of MYB12, MYB75,
MYB111, MYB113, and MYB114 leading to the increased expression of structural genes
for anthocyanin accumulation [79]. On the contrary, in strawberry fruit, low temperature
inhibits anthocyanin accumulation by activating FvMAPK3-induced phosphorylation of
FvMYB10 and degradation of chalcone synthase 1 [80]. The negative regulatory pathway of
anthocyanin biosynthesis might maintain the balance of anthocyanin accumulation under
cold stress. Therefore, the CBFs-independent pathway is also involved in the regulation of
cold stress response and anthocyanin accumulation in plants.

Non-coding RNAs also play crucial roles in the plant’s response to cold stress. An
overexpression of MIR156 in tobacco leaves for transient expression assay showed higher
anthocyanin levels and an enhanced cold stress tolerance than that in the control. Addition-
ally, the lower extent of H2O2 accumulation and the higher expression of early responsive
dehydration (ERD) gene family, ERD10B, ERD10C, and ERD10D, which are downstream
genes in the ICE-CBF-COR pathway, were detected under cold stress [81]. SPL9, one of
the miR156 targets, has been reported to inhibit the expression of anthocyanin synthesis
genes by competitively interacting with PAP1 (production of the anthocyanin pigments1),
the component of the MYB–BHLH–WD40 complex, resulting in the interference with the
regulation of anthocyanin accumulation [82]. The negative regulation of SPL9 targeted by
miR156 caused the accumulation of anthocyanins in the MIR156-overexpressing tobacco
leaves preventing the overproduction and accumulation of ROS in tobacco leaves. The
miR828/858-MYBs factors are also related to regulating needle discoloration of C. fortunei
in cold winters [83]. Another miRNA, miR319, has highly conserved sequences in rice
(Oryza sativa L.) and Arabidopsis. OsmiR319 positively regulates cold tolerance by target-
ing OsPCF6 and OsTCP21 (TEOSINTE BRANCHED/CYCLOIDEA/PCF) in rice [84] and
AtmiR319 negatively regulates anthocyanin biosynthesis by targeting AtTCP3 which can
interact with R2R3-MYB in Arabidopsis [85]. In sugarcane plants, miR319 is induced by
cold (4 ◦C) stress, whereas the expression of PCF5 and PCF6 targeted by miR319 is down-
regulated under cold treatment [86]. Apparently, the miR319-TCP mediated a complex gene
expression regulatory network to exhibit multi-functions in cold tolerance and anthocyanin
biosynthesis with species-specific. features.

Furthermore, miR397 overexpression in Arabidopsis improves tolerance to cold stress
by inducing high levels of CBF and COR by targeting LACs (Laccase) and CKB3 (Casein
Kinase II Subunit Beta 3) in the cold signaling pathway [87]. Whereas the lncRNA, FRILAIR
(FRUIT RIPENING-RELATED LONG INTERGENIC RNA) acts as a noncanonical target
mimic of miR397 to modulate the expression of LAC11a (encoding a putative laccase-11-like
protein), which promotes expressions of anthocyanin biosynthetic genes in the strawberry
fruit ripening process [88]. Similar to miR397, miR408 is highly conserved among different
species, which can also target Laccase (LAC12 and LAC13) involved in light and copper
signaling in Arabidopsis and amiR408 (artificial miRNA silences MIR408) seedlings display
reduced anthocyanin content [89]. In Oryza sativa, OsmiR408 is induced by cold stress, and
the tolerance to cold stress is also improved in OsmiR408 overexpressing seedlings [90].
Another ncRNA, miR398, which can interact with lncR9A, lncR117, and lncR616 in winter
wheat, targets and regulates CSD1 (Cu-Zn-type superoxide dismutase 1) expression to
improve cold resistance [91]. In peanuts, the AhmiR398 also regulates AhCHS to be involved
in the anthocyanin biosynthesis [92].

In addition, MdLNC499 can target MdERF109 to regulate light-induced anthocyanin
accumulation in apple fruit [49] and the ERF109 in trifoliate orange also contributes to
cold tolerance by regulating Prx1 involved in the antioxidative process [93]. Another
lncRNA, MdLNC610, upregulates the expression of MdACO1 and participates in high-
light-induced ethylene and anthocyanin biosynthesis [48]. Moreover, in apples, MdARF17
(AUXIN RESPONSE FACTOR 17) targeted by miR160 plays a positive role in apple freezing
tolerance by promoting the expression of MdWRKY33 which regulates the expression of the
cold-responsive genes and ROS-related genes in response to cold [94]. Furthermore, cold-
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induced lncRNA 1 (CIL1) in Arabidopsis enhances cold stress tolerance by regulating the
expression of multiple stress-related genes and activates the endogenous reactive oxygen
species (ROS) metabolism pathway [95] (Table 1). Overall, HY5 and transcription factors
respond to light and low temperature signals suggesting the coordinate pathway in the
regulation of anthocyanin pigmentation in plants.

Table 1. miRNAs and lncRNAs identified to take roles in anthocyanin accumulation and cold stress
tolerance in plants.

Species Non-Coding RNA Targets/Downstream Function Methods References

Sugarcane MiR156 ERD10B, ERD10C,
ERD10D and LEA

Cold tolerance and
anthocyanin accumulation

Transient expression
assay of OE-miR156 in
tobacco leaves

[81]

Chinese cedar miR828/858 MYBs Regulating needle
discoloration in cold
winters

Integrated transcriptome
and miRNA analysis

[83]

Oryza sativa MiR319b PCF6, TCP21 Positively regulating cold
tolerance

Overexpressing
Osa-miR319b

[84]

Arabidopsis miRJAW TCP3 Negatively regulating
anthocyanin biosynthesis

p35S::mTCP3 and
p35S::TCP3SRDX

[85]

Arabidopsis MiR397 LACs, CKB3 Improving tolerance to
cold stress

Overexpressing miR397 [87]

Strawberry lncRNA FRILAIR MiR397, LAC11a Promoting fruit
maturation and
anthocyanin accumulation

FRILAIR, LAC11a
overexpressing, miR397
knockdown

[88]

Arabidopsis MiR408 LAC12 and LAC13 Increasing anthocyanin
content

Artificial miRNA silences
MIR408

[89]

Oryza sativa MiR408 / Improving tolerance to
cold stress

Overexpressing miR408 [90]

Winter wheat MiR398 lncR9A, lncR117
and lncR616, CSD1

Improve cold resistance lncR9A transferred
Brachypodium
distachyom

[91]

Peanut miR398 CHS Regulating anthocyanin
biosynthesis

Transcriptome-
metabolome joint
analysis

[92]

Apple fruit LNC499 ERF109 Anthocyanin
accumulation

Transient MdLNC4999
expression and
MdERF109 stable
transformation

[49]

Trifoliate
orange

/ ERF109
Prx1

Cold tolerance Overexpression and
VIGS of PtrERF109

[93]

Apple plant LNC610 ACO1 Anthocyanin
accumulation

Overexpression of
MdACO1 and MdLNC610

[48]

Arabidopsis CIL1 / Positive response to cold
stress

Knockdown cil1 mutants [95]

2.2. High-Temperature Stress Response Factors

Floral pigmentation has been reported to respond differently to changes in tempera-
ture, and plants with exposed anthers increased in pigmentation with temperature increas-
ing whereas plants with concealed anthers declined in pigmentation [96]. Distinct from the
response of low temperature, plants generate flavones to eliminate excess ROS at short-term
high-temperature conditions in colorless plant organs. However, R2R3-MYB transcription
factor CmMYB012 was found to respond to long-time high-temperature stress and inhibit
flavonoid biosynthesis by directly regulating flavone synthase in the chrysanthemum [97].
In addition, CmMYB012 inhibited anthocyanin biosynthesis by inhibiting the expression of
CmCHS, CmDFR, CmANS, and CmUFGT [97]. Moreover, in potatoes, StMYB44 negatively
regulates anthocyanin biosynthesis at high temperatures in tuber flesh [98].
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High temperature also induces the degradation of the HY5 protein in a COP1 activity-
dependent manner and the degradation of HY5 derepresses the expression of MYBL2,
which partially mediates the high-temperature repression of anthocyanin biosynthesis
in Arabidopsis [99]. Furthermore, HY5 activates miR858a, which targets the anthocyanin
repressor MYBL2 and increases anthocyanin biosynthesis in Arabidopsis [100]. In apples,
MdHY5 promotes anthocyanin accumulation by regulating the expression of the MdMYB10
gene and downstream anthocyanin biosynthesis genes [25] and MdHY5 also inhibits the
transcription of mdm-miR858 which targets the transcription factor genes MdMYB9 and
MdMYBPA1 to upregulate anthocyanin accumulation [101]. Conversely, miR858 nega-
tively regulates anthocyanin biosynthesis in tomatoes by suppressing the expression of
SlMYB7-like [102]. Therefore, the degradation of HY5 under high temperatures decreases
anthocyanin biosynthesis through an opposite expression of miR858-MYB modules in dif-
ferent plants. Moreover, miR858 acts as a double-edged sword in anthocyanin regulation,
and the activation or repression function depends on the target MYB genes [103].

Additionally, anthocyanin concentration depends on the counterbalance between
its synthesis and degradation in plum fruit at high temperatures. The high temperature
increased the concentration of hydrogen peroxide and the activity of class III peroxidase
in the fruit. The hydrogen peroxide degraded anthocyanin, while class III peroxidase
catalyzed hydrogen peroxide [104]. Moreover, ABA is an important positive regulator
of the ripening and coloring of non-climacteric fruits while CYP707A (cytochrome P450
707A) and AOG (ABA β-glucosyltransferase) encode key enzymes in the catabolism and
inactivation of ABA. High temperature delays the downregulation of CYP707A and AOG
expression and leads to higher ABA catabolism and ABA inactivation in sweet cherry peel
and leads to the reduction of anthocyanin accumulation [105].

Consequently, plants exposed to heat stress benefit from a decrease in anthocyanin
because of the activation of negative factors, the degradation of positive regulators in
anthocyanin biosynthesis, the high concentration of hydrogen peroxide, and the low level
of ABA to degrade and reduce anthocyanin accumulation. The decreased anthocyanin
accumulation under heat stress is caused by the transcriptional reduction of both early
and late anthocyanin biosynthetic genes which are regulated by positive and negative
regulators [100] and the acceleration of anthocyanin degradation [105].

However, during blueberry fruit maturation, VcmiRNA319 and ABA can target and
regulate VcMYBs to be involved in anthocyanin biosynthesis [106]. In Asiatic hybrid
lily flowers, high temperature suppressed miR828 accumulation and increased target
MYB12 transcription which enhanced anthocyanin pigmentation in flower tepals [107].
Therefore, high temperature usually negatively regulates anthocyanin accumulation and
enhances heat stress tolerance by mediating the expression of heat stress-responsive genes
(e.g., HSFs and HSPs) [108,109] rather than inducing the transcription of anthocyanin
biosynthetic genes.

2.3. The Regulation of ncRNAs Involved in Salt Stress-Induced Anthocyanin Biosynthesis

Salt stress includes ionic, osmotic, and oxidative stress that affect the growth and
development of plants. Excessive accumulation of Na+ and Cl- in plant cells under salt
stress breaks the osmotic balance, increases the concentration of ROS that are strongly
oxidative, damage membrane proteins and membrane lipids, disrupt cell structure and
function, damage biological macromolecules and enzyme systems [110]. However, ROS
also transmit signals once plants encounter stress hazards via inducing cellular antioxidant
mechanisms to remove excessive ROS. Through the MAPK pathway (mitogen-activated
protein kinases), ROS activate anthocyanin regulatory factors (MYB, bHLH, WDR, bZIP)
and regulate the expression of anthocyanin biosynthetic genes leading to anthocyanin
accumulation. Then anthocyanins enhance cellular homeostasis and plant adaption to
stress as antioxidants [111].

Plants have also evolved salt tolerance mechanisms through regulatory genes under
salt stress. In torenia “Kauai Rose”, overexpression of anthocyanin regulatory transcription
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factors (RsMYB1 or B-Peru + mPAP1) can alleviate salt stress-induced growth inhibition by
reducing the salt stress-induced ROS and MDA contents [112]. In Arabidopsis, MYB3 func-
tions as a transcriptional repressor for the regulation of lignin and anthocyanin biosynthesis
under high salt conditions [113]. The myb3 mutant plants exhibited high accumulation of
lignin and anthocyanin and longer root growth in high NaCl conditions than wild-type
plants and anthocyanin biosynthetic genes, such as phenylalanine ammonia-lyase 1 (PAL1), cin-
namate 4-hydroxylase (C4H), catechol-O-methyltransferase (COMT), 4-coumaric acid-CoA ligase
(4CL), dihydroflavonol reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX) were also
upregulated [113]. Moreover, the overexpression of VvMYBA6 in Arabidopsis, significantly
increased ABA and proline content, the activities of superoxide dismutase, peroxidase,
catalase, and the accumulation of anthocyanins, and decreased the levels of H2O2 and
malondialdehyde in response to salt stress [114]. Under salinity and high-light stress,
MYB112 also positively regulates the expression of PAP1, MYB114, MYB7, and MYB32 and
promotes anthocyanin accumulation in Arabidopsis [115]. However, MYB7 and MYB32 have
been reported to attenuate the transcriptional activity of the MBW complexes and repress
anthocyanin biosynthesis in Arabidopsis [116] (Figure 4). This suggests the sophisticated
regulation of environmental stress-induced anthocyanin biosynthesis.
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Many miRNA target modules such as miR156-SPL, miR160-ARF, miR171-SCL (SCARE
CROW-LIKE), miR172-AP2, miR319-TCP, miR390-TAS3-ARF, miR393-TIR1/AFB, miR394-
LCR, miR395-APS/SULTR2;1, miR396-GRF, miR397-LAC, miR398-CSD, miR399-PHO2,
miR408-LAC/PLANTACYANIN, miR414-FSD1, miR528-AAO/LAC, miR535-SPL, and miR-
NAs such as miR402, miR417, miR1861h, miRNVL5 participate in plant salt stress responses
by regulating hormonal signaling pathways and antioxidant system [117]. In Arabidopsis
and Oryza sativa, both 35S::miR156 and Ub::miR156 plants exhibited improved salt tolerance,
and the accumulation of anthocyanin in transgenic Arabidopsis is determined by the miR156-
SPLs-DFR pathway [118]. Anthocyanin can help plants respond to stressful environmental
conditions and protect plants from damage [119].

However, in apple plants, MIR156a overexpression weakened salt resistance and Md-
SPL13 (target of miR156) overexpression enhanced salt tolerance. Moreover, overexpression
of MdWRKY100, the target of MdSPL13, also enhanced salt tolerance in apple [120]. Con-
sequently, the miR156/SPL module regulates salt stress tolerance in apples by activating
MdWRKY100. Thus, plants have developed various molecular mechanisms to adapt to
salt environment stress, and the tolerance to salt depends on the target genes of miR156 in
different plants.

Furthermore, in blueberry fruit coloration, the VcMIR156a-VcSPL12 module regu-
lates the anthocyanin accumulation by directly regulating the ethylene production path-
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way [121,122]. Ethylene has been reported to be a key regulator of salinity stress tolerance
in plants via maintaining the homeostasis of Na+/K+, nutrients, reactive oxygen species
(ROS), and cross-talk of ethylene signaling with other phytohormones [123]. Additionally,
in rice and wheat, miR172/IDS1 (INDETERMINATE SPIKELET1) regulatory module fine-
tunes the expression of ROS-scavenging genes and ROS homeostasis during salt stress [124].
MiR172-overexpressing (172a-OE) transgenic rice plants enhanced salt tolerance and the
“miR172/IDS1-APXs/GPXs/CATs-redox homeostasis” signaling pathway responded to the
stress [124]. However, in apple plants, overexpression of miR172 reduces anthocyanin
accumulation in various tissue types by suppressing the expression of an AP2 transcription
factor that positively regulates MdMYB10 [125] (Figure 4). As a result, overexpression
miR172 in different plants displays diverse functions through varying miR172 target
modules. Moreover, overexpression of lncERF024 in poplar enhances tolerance to salt
stress [126].

2.4. The Transcription Factors and ncRNAs Involved in Drought Stress-Induced
Anthocyanin Biosynthesis

Drought stress is one of the most common stresses in plants. When the water supply
to the roots is limited or the transpiration rate is too high, the limited water supply leads
to an imbalance between light capture and photosynthesis, allowing oxidative stress to
occur. Drought stress induces reactive oxygen species (ROS), such as hydroxyl radicals
(·OH), superoxide radicals (O2

•−), and hydrogen peroxide (H2O2), and anthocyanins
exhibit strong radical-scavenging activity avoiding excess ROS accumulation to cause cell
death [127].

Under drought conditions, overexpression of BoNAC019 from Brassica oleracea de-
creased the content of antioxidant enzymes and anthocyanin which conversely results
in the accumulation of more reactive oxygen species (ROS). Moreover, the expression of
antioxidant enzymatic genes, anthocyanin biosynthetic genes, and ABA signaling genes
were also downregulated [128]. Moreover, in Arabidopsis, the loss-of-function of miR159 en-
hanced drought tolerance and hypersensitivity of seed germination to ABA, while MYB33,
the target of miR159, acts upstream of ABI5 in the ABA signaling pathway to regulate
drought response and seed germination in plants [129]. Furthermore, the overexpression
of MYB65 and MYB101 in Arabidopsis, with a mutated recognition site in miR159, causes
hypersensitivity to ABA and a relatively high tolerance to drought conditions [130]. How-
ever, in cotton, GhMYB33 targeted by miR319c controls the transcription of GhDFR1 to
promote the accumulation of anthocyanin [131] (Figure 5). Therefore, in different plants,
the same target gene can be regulated by distinct miRNAs and participate in different
metabolic pathways.

The expression of Stu-miR159 decreased in response to drought treatment, while the
expression of StGAMyb-like target genes increased with drought stress in potatoes [132].
Similarly, in tomatoes, the expression of sly-miR159 decreases in response to drought
stress, and its target SlMYB33 correlates with the induction of SlP5CS gene expression and
accumulation of the osmoprotective compounds proline and putrescine [133]. Moreover,
in mulberry, mul-miR159a plays a negative regulatory role in the biosynthesis of antho-
cyanins by targeting the Mul-MYB33 gene [134]. Therefore, the decreasing expression of
miR159 under drought stress might be related to the accumulation of anthocyanin in plants.
Furthermore, in apple plants, MdMYB1 interacts with MdBT2, which plays a negative
regulator role in the anthocyanin biosynthesis mediated by ABA, wounding, drought stress,
and high light [135]. In addition, the interaction between MdERF38 and MdMYB1 enhances
the binding of MdMYB1 to its target gene MdDFR and MdUF3GT and promotes the ac-
cumulation of drought-mediated anthocyanins [136]. Moreover, MdMYB1 binds to the
MBS box of the miR7125 promoter and promotes the expression of miR7125 in apple fruit
to increase anthocyanin biosynthesis through the regulation of the MdMYB16/MdMYB1-
miR7125-MdCCR module [137]. Consequently, MdMYB1 might be the key factor involved
in drought stress response and anthocyanin biosynthesis.
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Additionally, in Arabidopsis, STTM165/166 promotes the expression of HD-ZIP IIIs,
which also activates the expression of ARFs (AUXIN RESPONSE FACTORS) targeted by
miR160 and shows tolerance to drought stress [138]. Moreover, miR160h-ARF18 was identi-
fied as potentially controlling the accumulation of anthocyanins in poplar [5]. Furthermore,
in apples, MdARF13 interacts with MdMYB10 and also binds to the promoter of MdDFR,
which acts as a negative regulator of the anthocyanin metabolic pathway [139]. Also,
overexpression of miR165 in Arabidopsis shows anthocyanin accumulation in the narrow
cotyledons [140]. Thus, the interaction between miR160 and miR165/166 might be involved
in the control of anthocyanin biosynthesis and drought tolerance of plants (Figure 5).

However, overexpression of osa-MIR171 in rice exhibits a reduced tiller number and
an increased flag leaf length compared to NT plants, which enhances the tolerance of
drought stress through osa-miR171/SCL6 module regulating the expression of flavonoid
biosynthesis genes [127]. Conversely, overexpression of AtmiR858a in tobacco decreases
the expression of NtMYB12 and regulates the biosynthesis of flavonoids leading to plants’
sensitivity toward drought stress. Simultaneously, the expression of target mimic for miR858
(MIMIC858) in tobacco shows a short primary root length and enhances the expression of
NtMYB12 and flavonoids biosynthetic genes to confer drought tolerance [141]. Therefore,
different miRNAs play important roles in regulating anthocyanin biosynthesis by targeting
diverse transcription factor genes for drought stress resistance (Figure 5).

2.5. Long ncRNAs Related to Anthocyanin Synthesis

LncRNA can act as a regulator to affect the expression of genes involved in the antho-
cyanin biosynthetic pathway. For instance, MdLNC499, a long non-coding RNA regulated
by MdWRKY1, induces the expression of MdERF109, which is involved in the light-induced
anthocyanin synthesis pathway in apple fruit [49]. Moreover, MdLNC610, a positive regu-
lator of MdACO1 in ethylene biosynthesis, is also involved in the regulation of anthocyanin
production induced by the high-light intensity in apple (Malus domestica) [48]. Additionally,
LncRNAs also serve as precursors and endogenous target mimics (eTMs) of certain miRNAs
to regulate the genes targeted by miRNAs. For instance, MLNC3.2 and MLNC4.6 function
as eTMs for miR156a, and overexpression of the eTMs prevents cleavage of SPL2-like and
SPL33 by miR156a promoting light-induced anthocyanin accumulation in apple fruit [142].
Furthermore, LNC1 and LNC2 function as eTMs for miR156a and miR828a, which target
SPL9 and MYB114 separately to regulate anthocyanin biosynthesis during sea buckthorn
fruit ripening [47]. Moreover, FRILAIR acts as a noncanonical target mimic of miR397 to
regulate the expression of its target gene LAC11a which promotes expressions of genes
involved in the anthocyanin biosynthesis pathway during strawberry fruit ripening [88].
In addition, over-expressed miR397 delays fruit maturation, and the anthocyanin content
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also decreases [88]. Furthermore, in radish, overexpression of LINC15957 increases antho-
cyanin accumulation and the expression of anthocyanin biosynthetic genes in leaves [143].
Many lncRNAs have been identified to be involved in anthocyanin biosynthesis through
targeting miRNAs or directly affecting the expression of anthocyanin biosynthetic genes.
The accumulation of anthocyanins in plants regulated by these ncRNAs is possibly related
to the tolerance of plants to varied abiotic stresses.

3. Conclusions and Perspectives

Abiotic stress has extremely inhibited plant growth and crop productivity with the
ongoing deterioration of the global climate and environment. However, plants have also
evolved the defense mechanism to adapt to various stresses. Stresses induce the production
of reactive oxygen species (ROS) and over-accumulation of ROS causes oxidative damage
to plants. Simultaneously, anthocyanins are major bioactive compounds induced by abiotic
stress as potent antioxidants to scavenge ROS [38]. Under cold stress, CBFs-dependent
and -independent regulation of anthocyanin biosynthesis and COR/LTI/RD/ERD genes take
roles in plant cold tolerance. However, the high temperature usually decreases anthocyanin
accumulation and enhances tolerance to heat stress through regulating the expression of
HSFs and HSPs. Moreover, salt stress induces MYB transcription factors and miRNAs
involved in the regulation of anthocyanin and antioxidant enzymes for ROS clearance
to increase stress tolerance. Furthermore, drought stress activates the pathway of antho-
cyanin biosynthesis, ABA, and auxin signaling to regulate the drought tolerance response.
The species and roles of anthocyanins in ROS scavenging remain to be further studied.
Given the critical roles that plant ncRNAs also play in various biological processes, further
research is required to determine the relationship between ncRNA TF modules and antho-
cyanin synthesis-related structural genes and how they control anthocyanin biosynthesis
when plants are subjected to abiotic stresses. The induction of anthocyanin synthesis by
signaling factors associated with abiotic stresses also requires further study. Additionally,
the construction of the LncRNA–miRNA–mRNA network is also not comprehensive and
clear. In conclusion, with the progress of genetics and molecular biology, a clearer under-
standing of the biosynthesis and accumulation mechanisms of anthocyanins under abiotic
stress is being achieved, which may provide a theoretical and practical basis for future
crop breeding.
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