Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nα-Acetyl-S-(N-phenethylthiocarbamoyl)-glutathione
2.3. Processing and Storage of Plant Material
2.4. Extraction of Phenethyl Isothiocyanate-Enriched Fraction (PhEF)
2.5. Extraction of Polyphenols-Enriched Fraction (PoEF)
2.6. Determination of Nα-Acetyl-S-(N-phenethylthiocarbamoyl)-glutathione Accumulation
2.7. Liquid Chromatography (LC) and Tandem Mass Spectrometry (MS/MS) Conditions
2.8. Determination of Cell-Free Antioxidant Activity Levels
2.9. Cell Lines
2.10. Determination of Intracellular Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx) and Glutathione Reductase (GR) as Well as Glutathione S-Transferase (GST) Activity Levels
2.11. Determination of Total Glutathione (GSH) Content
2.12. Determination of Cell Viability
2.13. Determination of Lipid Peroxidation and Protein Carbonyl Contents
2.14. Statistical Analyses
3. Results
3.1. Synthesis of Phenethyl Isothiocyanate-N-Acetyl Cysteine Adduct
3.2. Standardization of UPLC and MS Conditions
3.3. Method Validation, Linearity, Precision and Reproducibility of Methodology
3.4. Evaluation of Cell-Free Antioxidant Activity
3.5. Evaluation of Intracellular Antioxidant Capacity
3.6. The Effect of PhEF in Lipid and Protein Oxidation
3.7. Kinetic Determination of PEITC-NAC Conjugate Formation
3.8. The Effect of Mercapturic Acid Inhibition on Cell Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, N.; Khan, J.; Ullah, R.; Ali, K.; Jones, D.A.; Khan, M.E.H. Heavy metals contaminants in watercress (Nasturtium officinale R. BR.): Toxicity and risk assessment for humans along the swat river basin, Khyber Pakhtunkhwa, Pakistan. Sustainability 2022, 14, 4690. [Google Scholar] [CrossRef]
- Kyriakou, S.; Tragkola, V.; Alghol, H.; Anestopoulos, I.; Amery, T.; Stewart, K.; Winyard, P.G.; Trafalis, D.T.; Franco, R.; Pappa, A.; et al. Evaluation of bioactive properties of lipophilic fractions of edible and non-edible parts of Nasturtium officinale (Watercress) in a model of human malignant melanoma cells. Pharmaceuticals 2022, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, S.; Michailidou, K.; Amery, T.; Stewart, K.; Winyard, P.G.; Trafalis, D.T.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Polyphenolics, glucosinolates and isothiocyanates profiling of aerial parts of Nasturtium officinale (Watercress). Front. Plant Sci. 2022, 13, 998755. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.S.; Sams, C.E. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Am. Soc. Hortic. Sci. 2004, 129, 321–330. [Google Scholar] [CrossRef]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.; Wang, C.; Crocoll, C.; Halkier, B.A. Biotechnological approaches in glucosinolate production. J. Integr. Plant Biol. 2018, 60, 1231–1248. [Google Scholar] [CrossRef] [PubMed]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Nakatsuji, Y.; Maeda, A.; Ota, H.; Kamikubo, R.; Miyoshi, N.; Nakamura, Y.; Akagawa, M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS ONE 2018, 13, e0206748. [Google Scholar] [CrossRef]
- Chiba, M.; Ito, Y.; Nagasawa, T. Phenethyl isothiocyanate stimulates glucose uptake through the Akt pathway in C2C12 myotubes. Food Sci. Nutr. 2019, 83, 1319. [Google Scholar] [CrossRef]
- Gupta, P.; Wright, S.E.; Kim, S.-H.; Srivastava, S.K. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim. Biophys. Acta 2014, 1846, 405–424. [Google Scholar] [CrossRef]
- Huang, H.; He, Y.; Zhang, L.; Xiang, H.; Li, D.; Liu, W.; Xu, X.-T.; Goodin, S.; Zhang, K.; Zheng, X. Phenethyl isothiocyanate in combination with dibenzoylmethane inhibits the androgen-independent growth of prostate cancer cells. Food Funct. 2018, 9, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, S.; Wang, J.; Fang, Q.; Chai, Q. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases. Mol. Med. Rep. 2014, 10, 543–549. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, M.; Cao, L.; Ren, Y.; Guo, X.; Wu, X.; Xu, K. Phenethyl isothiocyanate synergistically induces apoptosis with Gefitinib in non–small cell lung cancer cells via endoplasmic reticulum stress-mediated degradation of Mcl-1. Mol. Carcinog. 2020, 59, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, E.; Sengupta, D.; Kumar, R.; Dehury, B.; Das, S.; Roy, M.; Mukherjee, S. Phenethylisothiocyanate potentiates platinum therapy by reversing cisplatin resistance in cervical cancer. Front. Pharmacol. 2022, 13, 803114. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, S.; Potamiti, L.; Demosthenous, N.; Amery, T.; Stewart, K.; Winyard, P.G.; Franco, R.; Pappa, A.; Panayiotidis, M.I. A naturally derived watercress flower-based phenethyl isothiocyanate-enriched extract induces the activation of intrinsic apoptosis via subcellular ultrastructural and Ca2+ efflux alterations in an in vitro model of human malignant melanoma. Nutrients 2023, 15, 4044. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Chapter 6—The pharmacology of moringa stenopetala: Toxicology aspects. In African Arab. Moringa Species; Habtemariam, A.M.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–97. [Google Scholar] [CrossRef]
- Kaschula, C.H.; Hunter, R. Chapter 1—Synthesis and structure-activity relations in allylsulfide and isothiocyanate compounds From garlic and broccoli against in vitro cancer cell growth. Stud. Nat. Prod. Chem. 2016, 50, 1–43. [Google Scholar] [CrossRef]
- Yoo, D.; Jung, E.; Noh, J.; Hyun, H.; Seon, S.; Hong, S.; Kim, D.; Lee, D. Glutathione-depleting pro-oxidant as a selective anticancer therapeutic agent. ACS Omega 2019, 4, 10070–10077. [Google Scholar] [CrossRef]
- Li, X.; Ni, M.; Xu, X.; Chen, W. Characterisation of naturally occurring isothiocyanates as glutathione reductase inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1773–1780. [Google Scholar] [CrossRef]
- Kumari, V.; Dyba, M.A.; Holland, R.J.; Liang, Y.-H.; Singh, S.V.; Ji, X. Irreversible Inhibition of glutathione S-transferase by phenethyl isothiocyanate (PEITC), a dietary cancer chemopreventive phytochemical. PLoS ONE 2016, 11, e0163821. [Google Scholar] [CrossRef]
- Xu, K.; Thornalley, P.J. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem. Pharmacol. 2001, 61, 165–177. [Google Scholar] [CrossRef]
- Zhang, Y. Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 2000, 21, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; van Rooijen, H.J.M.; Vaes, W.H.J. Analysis of isothiocyanate mercapturic acids in urine: A biomarker for cruciferous vegetable intake. J. Agric. Food Chem. 2003, 51, 3554–3559. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; Zwanenburg, B.; Chittenden, G.J.; Verhagen, H. Synthesis of isothiocyanate-derived mercapturic acids. Eur. J. Med. Chem. 2003, 38, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Sontowski, R.; Guyomar, C.; Poeschl, Y.; Weinhold, A.; van Dam, N.M.; Vassão, D.G. Mechanisms of isothiocyanate detoxification in larvae of two belowground herbivores, D. radicum and D. floralis (Diptera: Anthomyiidae). Front. Physiol. 2022, 13, 874527. [Google Scholar] [CrossRef] [PubMed]
- Mi, L.; Di Pasqua, A.J.; Chung, F.-L. Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 2011, 32, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 2012, 33, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Jhanwar-Uniyal, M.; Schwartz, J.; Conaway, C.C.; Halicka, H.D.; Traganos, F.; Chung, F.-L. N-acetylcysteine conjugate of phenethyl isothiocyanate enhances apoptosis in growth-stimulated human lung cells. Cancer Res. 2005, 65, 8538–8547. [Google Scholar] [CrossRef]
- Chiao, J.W.; Wu, H.; Ramaswamy, G.; Conaway, C.C.; Chung, F.-L.; Wang, L.; Liu, D. Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis 2004, 25, 1403–1408. [Google Scholar] [CrossRef]
- Lee, S.E.; Ju, E.M.; Kim, J.H. Free radical scavenging and antioxidant enzyme fortifying activities of extracts from Smilax china root. Exp. Mol. Med. 2001, 33, 263–268. [Google Scholar] [CrossRef]
- Poli, Y.; Nallamothu, V.; Balakrishnan, D.; Ramesh, P.; Desiraju, S.; Mangrauthia, S.K.; Voleti, S.R.; Neelamraju, S. Increased catalase activity and maintenance of photosystem II distinguishes high-yield mutants from low-yield mutants of rice var. Nagina22 under low-phosphorus stress. Front. Plant Sci. 2018, 9, 1543. [Google Scholar] [CrossRef]
- Martins, D.; English, A.M. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol. 2014, 2, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Vega, M.d.R.V.d.l.; Saucedo, P.E.; Morelos-Castro, R.M.; Hernández, R.; Cáceres-Martínez, C.J.; Mazón-Suástegui, J.M.; Cortés-Jacinto, E.; Campa-Córdova, Á.I. Reducing stress by improving performance of hatchery-reared Catarina scallop (Argopecten ventricosus) spat with different genera of beneficial microorganisms: A biochemical and molecular analysis. Aquac. Rep. 2020, 17, 100298. [Google Scholar] [CrossRef]
- Esteve, M. Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: A focus on metabolic syndrome. Front. Nutr. 2020, 7, 111. [Google Scholar] [CrossRef]
- Yang, X.; Ong, H.W.; Dickmander, R.J.; Smith, J.L.; Brown, J.W.; Tao, W.; Chang, E.; Moorman, N.J.; Axtman, A.D.; Willson, T.M. Optimization of 3-Cyano-7-cyclopropylamino-pyrazolo[1,5-a] pyrimidines toward the development of an in vivo chemical probe for CSNK2A. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Potęga, A.; Kosno, M.; Mazerska, Z. Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. J. Pharm. Anal. 2021, 11, 791–798. [Google Scholar] [CrossRef]
- van Iersel, M.L.; Ploemen, J.-P.H.; Struik, I.; van Amersfoort, C.; Keyzer, A.E.; Schefferlie, J.G.; van Bladeren, P.J. Inhibition of glutathione S-transferase activity in human melanoma cells by α,β-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem. Biol. Interact. 1996, 102, 117–132. [Google Scholar] [CrossRef]
- Guray, T.; Guvenc, T. Sheep tissue acetyl coenzyme A-dependent arylamine N-acetyltransferases. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1997, 118, 305–310. [Google Scholar] [CrossRef]
- Weber, W.W. Acetylation of drugs. In Metabolic Conjugation and Metabolic Hydrolysis; Fishman, W.H., Ed.; Academic Press: Cambridge, MA, USA, 1973; pp. 249–296. [Google Scholar] [CrossRef]
- Edwards, R.L.; Luis, P.B.; Nakashima, F.; Kunihiro, A.G.; Presley, S.-H.; Funk, J.L.; Schneider, C. Mechanistic differences in the inhibition of NF-κB by turmeric and its curcuminoid constituents. J. Agric. Food Chem. 2020, 68, 6154–6160. [Google Scholar] [CrossRef]
- Sander, C.; Hamm, F.; Elsner, P.; Thiele, J. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br. J. Dermatol. 2003, 148, 913–922. [Google Scholar] [CrossRef]
- Meierjohann, S. Oxidative stress in melanocyte senescence and melanoma transformation. Eur. J. Cell Biol. 2014, 93, 36–41. [Google Scholar] [CrossRef]
- Pizzimenti, S.; Ribero, S.; Cucci, M.A.; Grattarola, M.; Monge, C.; Dianzani, C.; Barrera, G.; Muzio, G. Oxidative stress-related mechanisms in melanoma and in the acquired resistance to targeted therapies. Antioxidants 2021, 10, 1942. [Google Scholar] [CrossRef] [PubMed]
- Xian, D.; Lai, R.; Song, J.; Xiong, X.; Zhong, J. Emerging Perspective: Role of increased ROS and redox imbalance in skin carcinogenesis. Oxidative Med. Cell. Longev. 2019, 2019, 8127362. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.C.; Liu, T.; Cassidy, P.; Leachman, S.A.; Boucher, K.M.; Goodson, A.G.; Samadashwily, G.; Grossman, D. The p16INK4A tumor suppressor regulates cellular oxidative stress. Oncogene 2011, 30, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Liu, C.; Yuan, X. Role of ROS-mediated autophagy in melanoma (Review). Mol. Med. Rep. 2022, 26, 303. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Jin, L.; Yan, X.G.; Sherwin, S.; Farrelly, M.; Zhang, Y.Y.; Liu, F.; Wang, C.Y.; Guo, S.T.; Yari, H.; et al. Reactive oxygen species dictate the apoptotic response of melanoma cells to TH588. J. Investig. Dermatol. 2016, 136, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Basit, F.; Van Oppen, L.M.P.E.; Schöckel, L.; Bossenbroek, H.M.; Van Emst-de Vries, S.E.; Hermeling, J.C.W.; Grefte, S.; Kopitz, C.; Heroult, M.; Willems, P.H.; et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017, 8, e2716. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Saverio, V.; Monzani, R.; Ferrari, E.; Piacentini, M.; Corazzari, M. Ferroptosis: A new unexpected chance to treat metastatic melanoma? Cell Cycle 2020, 19, 2411–2425. [Google Scholar] [CrossRef]
- Naidu, S.D.; Suzuki, T.; Yamamoto, M.; Fahey, J.W.; Dinkova-Kostova, A.T. Phenethyl isothiocyanate, a dual activator of transcription factors NRF2 and HSF1. Mol. Nutr. Food Res. 2018, 62, e1700908. [Google Scholar] [CrossRef]
- Ernst, I.M.; Wagner, A.E.; Schuemann, C.; Storm, N.; Höppner, W.; Döring, F.; Stocker, A.; Rimbach, G. Rimbach, Allyl-, butyl- and phenylethyl-isothiocyanates activate Nrf2 in cultured fibroblasts. Pharmacol. Res. 2011, 63, 233–240. [Google Scholar] [CrossRef]
- Keum, Y.; Owuor, E.D.; Kim, B.; Hu, R.; Kong, A.T. Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm. Res. 2003, 20, 1351–1356. [Google Scholar] [CrossRef]
- Trawczyńska, I. New method of determining kinetic parameters for decomposition of hydrogen peroxide by catalase. Catalysts 2020, 10, 323. [Google Scholar] [CrossRef]
- Xiao, D.; Powolny, A.A.; Moura, M.B.; Kelley, E.E.; Bommareddy, A.; Kim, S.-H.; Hahm, E.-R.; Normolle, D.; Van Houten, B.; Singh, S.V. Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J. Biol. Chem. 2010, 285, 26558–26569. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wan, F.; Dutta, S.; Welsh, S.; Liu, Z.; Freundt, E.; Baehrecke, E.H.; Lenardo, M. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 2006, 103, 4952–4957. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhen, C.; Liu, J.; Shang, P. β-phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway. Oxidative Med. Cell. Longev. 2020, 2020, 5021983. [Google Scholar] [CrossRef] [PubMed]
- Giallourou, N.S.; Rowland, I.R.; Rothwell, S.D.; Packham, G.; Commane, D.M.; Swann, J.R. Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Eur. J. Nutr. 2019, 58, 2377–2391. [Google Scholar] [CrossRef] [PubMed]
- Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Chen, Z.; Pelicano, H.; Chiao, P.J.; Achanta, G.; Arlinghaus, R.B.; Liu, J.S.; et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 2006, 10, 241–252. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; et al. Targeting ferroptosis in breast cancer. Biomark. Res. 2020, 8, 58. [Google Scholar] [CrossRef]
- Boyanapalli, S.S.S.; Paredes-Gonzalez, X.; Fuentes, F.; Zhang, C.; Guo, Y.; Pung, D.; Saw, C.L.L.; Kong, A.-N.T. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem. Res. Toxicol. 2014, 27, 2036–2043. [Google Scholar] [CrossRef]
- Hwang, E.-S.; Jeffery, E. Evaluation of urinary N-acetyl cysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts. Food Chem. Toxicol. 2003, 41, 1817–1825. [Google Scholar] [CrossRef]
- Tusskorn, O.; Khunluck, T.; Prawan, A.; Senggunprai, L.; Kukongviriyapan, U.; Kukongviriyapan, V. Suppression of glutathione S-transferases potentiates the cytotoxic effect of phenethyl isothiocyanate in cholangiocarcinoma cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 657–667. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Conaway, C.C.; Chiao, J.W.; Wang, C.-X.; Amin, S.; Whysner, J.; Dai, W.; Reinhardt, J.; Chung, F.-L. Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res. 2002, 62, 2–7. [Google Scholar] [PubMed]
- Hwang, E.-S.; Lee, H.J. Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SK-Hep1 human hepatoma cells. J. Nutr. Biochem. 2006, 17, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Chiao, J.W.; Chung, F.; Krzeminski, J.; Amin, S.; Arshad, R.; Ahmed, T.; Conaway, C.C. Modulation of growth of human prostate cancer cells by the N-acetylcysteine conjugate of phenethyl isothiocyanate. Int. J. Oncol. 2000, 16, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Chiao, J.W.; Chung, F.-L.; Kancherla, R.; Ahmed, T.; Mittelman, A.; Conaway, C.C. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 2002, 20, 631–636. [Google Scholar] [CrossRef]
Sample | DPPH● | ABTS●+ | FRAP |
---|---|---|---|
IC50 (% v/v) | |||
PhEF | n.d. | n.d. | 1.84 ± 0.2 |
PoEF | 0.43 ± 0.03 *** | 0.27 ± 0.01 *** | 0.16 ± 0.01 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakou, S.; Demosthenous, N.; Amery, T.; Stewart, K.J.; Winyard, P.G.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma. Antioxidants 2024, 13, 82. https://doi.org/10.3390/antiox13010082
Kyriakou S, Demosthenous N, Amery T, Stewart KJ, Winyard PG, Franco R, Pappa A, Panayiotidis MI. Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma. Antioxidants. 2024; 13(1):82. https://doi.org/10.3390/antiox13010082
Chicago/Turabian StyleKyriakou, Sotiris, Nikoletta Demosthenous, Tom Amery, Kyle J. Stewart, Paul G. Winyard, Rodrigo Franco, Aglaia Pappa, and Mihalis I. Panayiotidis. 2024. "Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma" Antioxidants 13, no. 1: 82. https://doi.org/10.3390/antiox13010082
APA StyleKyriakou, S., Demosthenous, N., Amery, T., Stewart, K. J., Winyard, P. G., Franco, R., Pappa, A., & Panayiotidis, M. I. (2024). Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma. Antioxidants, 13(1), 82. https://doi.org/10.3390/antiox13010082