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Abstract: Background: Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially
as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the
impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal
plants. Methods: Case–control study. A total of 61 men were included: 32 workers exposed to PAH
at a solar thermal plant and 29 unexposed people. Seminal quality was studied both at the cellular
level (quantity and quality of sperm) and at the biochemical level (magnitudes of oxidative stress in
seminal plasma). Results: In exposure to PAHs, a significantly higher seminal leukocyte infiltration
was observed, as well as lower activity in seminal plasma of superoxide dismutase (SOD) and a
reduced glutathione/oxidised glutathione (GSH/GSSG) ratio. The oxidative stress parameters of
seminal plasma did not show a relationship with sperm cellularity, neither in those exposed nor
in those not exposed to PAH. Conclusion: One year of exposure to PAH in a solar thermal plant
does not have a negative impact on the sperm cellularity of the worker, either quantitatively (sperm
count) or qualitatively (motility, vitality, morphology, or cellular DNA fragmentation). However,
PAH exposure is associated with lower antioxidant capacity and higher leukocyte infiltration in
seminal plasma.

Keywords: polycyclic aromatic hydrocarbons (PAHs); occupational health; solar thermal plant;
fertility; sterility; sperm quality; oxidative stress

1. Introduction

Infertility is a common health problem brought on by a disorder of the male or female
reproductive system. It is defined as the inability to achieve pregnancy after 12 months or
more of regular sexual intercourse in the absence of contraceptive measures. Worldwide, it
affects 1 in 6 couples (of which male factors account for almost half of the cases), involving
48 million couples and 186 million people. The prevalence of infertility has increased in
recent years due to several factors: (i) chronological delay of first pregnancy; (ii) alterations
in semen quality due to habits such as smoking and/or alcohol consumption, or exposure
to environmental toxic substances such as polycyclic aromatic hydrocarbons (PAHs), which
alter male reproductive function affecting seminal quality [1–3].

These PAHs are a large group of chemical compounds and are polymeric derivatives
of benzene. PAHs are ubiquitous and therefore represent a source of constant human
exposure to these compounds, which have toxic potential at different levels in the body.
Such exposure can come from natural sources (such as forest fires or volcanic eruptions), or
human-made sources (such as domestic heating, vehicle traffic, or even smoking, as well as
excessive consumption of smoked foods) [4–6].
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These chemicals are of great importance for human health because of their toxic
potential, especially as carcinogens, neurotoxicants, and endocrine disruptors. Furthermore,
they are promutagenic elements. One of the mechanisms of action of PAHs is by inducing
oxidative and nitrosative stress. Recent studies have shown that PAHs increase oxidative
stress in seminal plasma and are capable of causing extensive damage to sperm DNA. This
can lead to significant changes in the number, concentration, motility, and morphology of
spermatozoa, which are highly susceptible to oxidation due to the amount of membrane-
unsaturated fatty acids and the lack of cytoplasmic antioxidant enzymes [6–8]. The overall
consequence would be a decrease in sperm quality, with subsequent compromise to male
fertility [9].

PAHs are, basically, formed when organic matter in general, such as coal, wood,
tobacco, or vegetation, is subjected to high temperatures for a sufficient time [10]. A
proposed scheme for the carcinogenic potential of environmental exposure considers the
following stages: exposure, metabolic activation, formation of compounds between PAHs
and cellular DNA, mutations in critical genes such as p53 (tumour repressor gene), and a
succession of cascade mutations in other genes. The biotransformation of PAHs involves a
series of enzymes that catalyse oxidation, reduction and hydrolysis reactions (cytochrome
P-450-CYP enzymes), and enzymes that catalyse conjugation reactions (sulfotransferase,
epoxide hydrolase, glutathione-S-transferase, and UDP-glycosyltransferase). These enzyme
systems are distributed in all tissues of the body. The enzymes responsible for the metabolic
activation of PAHs, including benzopyrene, are CYP1A1, CYP1B1, and, to a lesser extent,
CYP1A2 in conjunction with epoxide hydrolase. These two enzymes are widely distributed
in the lungs, although they are also observed to a lesser extent in other tissues. Because
PAHs are ubiquitous, it would be desirable for legislation to impose maximum levels for the
presence of these carcinogens in various environments. The main routes of entry of these
substances into the body are inhalation and dermal routes. Although less frequent, another
possible route of contact is the digestive tract, because of ingestion of food containing these
molecules even at very low concentrations (less than 1%) [10–12].

Today, the main sources of PAHs are exhaust from cars, aircraft, ships, electric power
generation plants, waste incinerators, sheating of buildings, forest fires, and tobacco smoke,
as well as smoked, grilled, or barbecued food [2,3]. Occupational sources of PAHs, besides
coal, tar, and asphalt, are soot, creosote, and mineral oils (lubricating oils). A special
mention should be made of electricity generation plants, in particular solar thermal power
plants. The presence of PAHs in solar thermal platforms is because of the thermal fluid
used to transfer heat from the solar plate to the power block, which suffers progressive
degradation with time and use. The leakage and degradation of these oils form certain
toxic species, including different types of PAHs [2,3,7,8]. Subsequently, other consequences
of PAHs have been described, such as neurotoxicity and the impact on male and female
reproductive health (subfertility/infertility) [4,6,13]. Regarding the latter consequence, var-
ious types of PAHs are considered toxic agents at the gonadotropic level, whose pathogenic
mechanisms can manifest themselves on three levels: (i) gonadal dysfunction (by direct
toxicity to the gonad); (ii) gamete disruption; and (iii) endocrine disruption (with potential
multifaceted effects: libido disorders, sexual behaviour disorders, and alterations of the
hypothalamic–pituitary–gonadal axis, even compromising gametogenesis) [4,9,10].

Continuous contact with PAHs results in increased oxidative stress in seminal plasma,
due to an excess of free radicals and a lack of antioxidants to counteract them. This damages
the spermatozoa once they are ejaculated, due to the generation of large amounts of reactive
oxygen species (ROS). These ROS cause damage to the sperm membrane, decrease motility,
and cause alterations to vital structures such as cytoplasmic components, mainly to the
genetic material (DNA) [14,15].

However, small amounts of ROS are necessary to maintain normal sperm function
without overwhelming the sperm’s antioxidant system [16]. Therefore, the determination
of oxidative stress or the presence of ROS in ejaculated spermatozoa can be a diagnostic
tool to consider in the identification of the aetiology of male infertility [14,15,17,18].
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Antioxidants are present in both seminal plasma and sperm that protect gonadal cells
and mature sperm from oxidative damage. Free radicals can directly damage sperm DNA.
Under physiological conditions, sperm DNA is packaged by protamines that protect it
from free radical attack. These free radicals can initiate programmed cell death (apoptosis)
within the spermatozoon, leading to enzymatic degradation of DNA [19,20]. In short, we
may classify antioxidation mechanisms into three types: (i) primary defences (prevent free
radicals from forming); (ii) secondary defences (inactivate free radicals already formed);
and (iii) tertiary defences (repair oxidative damage to DNA) [4–6,13,21].

Some molecules are involved in oxidative stress, both pro-oxidant and antioxidant
mechanisms. Within the latter, we distinguish between enzymatic and non-enzymatic
antioxidants. Among the enzymatic antioxidants, we can highlight superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPX), and glutathione-s-transferase (GST). Non-
enzymatic antioxidants include glutathione, vitamin A, vitamin C, vitamin E, and coenzyme
Q10 [7,14,22]. The role of catalase (belonging to the oxidoreductase family) is worth
mentioning. Also, special mention should be made of SOD, which produces the dismutation
of superoxide anion into oxygen and hydrogen peroxide. Because of this, it is an important
antioxidant defence in most cells [16,19,23].

Therefore, in work environments with repeated and/or abundant exposure to PAHs,
primary prevention of worker exposure by means of PPE (personal protective equipment)
and regular monitoring of work facilities is essential. In addition, early diagnosis of diseases
related to PAHs is necessary. However, knowing that the nature of the metabolites resulting
from the degradation (due to temperature and/or age) of thermal fluids is not chemically
well characterised, it is very difficult to consider monitoring environmental exposure at a
collective level by determining toxinss in the installations [4,6–8]. For these reasons, close
monitoring of a broad spectrum of symptoms and signs (clinical, analytical, and imaging)
related to the toxicities mentioned above would be desirable in order to allow for the
earliest possible diagnosis. The present study aims to determine the impact of PAHs on
male reproductive health in workers operating in solar thermal power plants.

2. Materials and Methods

A cross-sectional, comparative study between subjects exposed and not exposed to
PAHs was carried out. The exposed group was workers at a solar thermal platform who
had been in their jobs for just one year. At their workstations, there were two areas of
exposure, high and low. The areas of high exposure were the areas with the solar panels
and the areas of low exposure were the hangars where the control rooms were located. The
workers had a shift schedule, had a rotating workstation, and changed their workplace
every three months. This way, the workers had the same number of hours of exposure over
time. The high-exposure areas were considered as such by the company itself, depending
on the amount of combustion vapours from the heating of the heat transfer fluid (HTF),
which was a molten-salt-based compound. The non-exposed group included volunteers
with similar characteristics in terms of age and anthropometric profile, all of whom were
male. They had other jobs not related to exposure to fuels or pollutants and lived in towns
in the region far from the solar thermal plant. We asked all of them (both groups) about
tobacco use and found 3 smokers in the exposed group and 5 in the unexposed group; we
considered the number to be insignificant to draw inferences. None of the participants
were accepted if they had previously been vasectomised or had previous reproductive
health problems.

Sperm samples were collected in the laboratory by masturbation after 3–4 days of
sexual abstinence. Sperm analyses were carried out after complete liquefaction at 37 ◦C. A
spermiogram was performed in the andrology laboratory of Reina Sofía University Hospital
(Córdoba, Spain) and evaluated in accordance with the 2010 World Health Organization
guidelines [24]. After centrifugation (2500× g) for 10 min in a centrifuge cooled to 4 ◦C,
seminal plasma was separated carefully. During the assay period, samples were stored
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at −80 ◦C until analysis in trace element-free tubes (less than 30 days). Seminal plasma
samples were analysed in duplicate.

Sperm quality was studied at three levels: (i) Biochemical analysis of pro-oxidant–
antioxidant balance parameters in seminal plasma: superoxide dismutase (SOD), lipoperox-
ides (LPO), reduced glutathione (GSH), oxidised glutathione (GSSG), GSH/GSSG ratio, and
nitrite (NO); all of them were analysed using Bioxytech S.A. kits (Oxis International®, Port-
land, OR, USA) and by following the manufacturer’s recommendations. (ii) Spermiogram:
ejaculate volume, viscosity, sperm concentration, motility, sperm progression, morphol-
ogy, and vitality. The latter two parameters were examined by means of eosin–nigrosin
staining after spreading 20 µL of sperm sample onto a slide. An Olympus phase-contrast
microscope CX41 (Olympus®, Tokyo, Japan) was used. (iii) Sperm DNA fragmentation
test (Halosperm®, HalotechDNA®, Madrid, Spain): indicates what percentage of sperma-
tozoa have damaged genetic material and complements the information provided by the
spermiogram. The research was based on sperm chromatin dispersion (SCD) and used
25 20 µL semen samples (Figure 1). To measure the dynamic parameters of spermatozoa
(motility and progression) and DNA fragmentation, a CEROS II computer-aided sperm
analysis system (Hamilton Thorne®, Beverly, MA, USA) was used. This system was cou-
pled to an Olympus phase-contrast BHS-microscope BH2 (Olympus®, Tokyo, Japan). It
used 20 µL aliquots of semen onto the ‘Makler Counting Chamber’.
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Various clinical variables were also considered: age, weight, height, body mass index
(BMI), tobacco or alcohol consumption, presence of any health problems (hypertension,
dyslipidaemia, diabetes, depression), and possible treatments.

2.1. Statistical Analysis

A Shapiro–Wilk test was performed to observe normality for each of the study vari-
ables. For variables that followed a normal distribution, in the inter-group study, the para-
metric Student’s t-test was used for the comparison of continuous quantitative variables
between PAH-exposed and non-exposed groups, or the non-parametric Mann–Whitney
U-test in case of non-normality. The chi-square test was used to compare the frequencies
of qualitative variables. Prior to the comparison of inter-group variables, the homogene-
ity of variances was checked using Snedecor’s F-test. In the intra-group study, Pearson
correlations were performed to determine the potential influence of each seminal plasma
oxidative stress variable on each fertilisation capacity variable (i.e., the different sperm
characteristics). Data analysis was conducted with the SPSS application (SPSS INC. Version
25 for Windows). A statistically significant difference was considered to exist if a value of
p < 0.05 was obtained.
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2.2. Ethical Concerns

The standards of good clinical practice and the principles set out in the Declaration
of Helsinki were considered. Data were anonymised in accordance with Regulation (EU)
2016/679 of the European Parliament and Organic Law 3/2018 on the protection of personal
data and guarantee of digital rights. Law 14/2007 on biomedical research and Law 31/1995
on the prevention of occupational hazards and risks related to exposure to biological agents
were respected. All participants signed an informed consent form. The Research Ethics
Committee of our hospital approved the conduct of this study.

3. Results

A total of 61 male subjects, aged 25–53 years, were included. Of these, 32 belonged
to the group of workers exposed to PAHs in the solar thermal plant and 29 were people
not exposed to PAHs. A comparison of the values of the variables considered was made
between the two groups. The results of this inter-group study are shown in Tables 1 and 2.

Table 1. Inter-group study: spermiogram parameters.

Parameter Exposed to PAHs
(N = 32) x ± SD

Not exposed to PAHs
(N = 29) x ± SD p Value

Age (years) 37.23 ± 8.19 35.77 ± 8.50 0.499

Volume (mL) 3.96 ± 1.37 3.40 ± 1.34 0.113

pH 8.17 ± 0.29 8.16 ± 0.233 0.817

Density (106/mL) 165.74 ± 11.64 121.01 ± 131.08 0.167

Total sperm count (ml) 588.00 ± 376.44 598.53 ± 261.37 0.061

% Type A 28.22 ± 16.35 30.14 ± 20.52 0.686

% Type B 24.03 ± 15.78 12.66 ± 7.94 0.060

A and B 52.25 ± 20.71 42.79 ± 23.45 0.100

% immotile 45.38 ± 20.76 52.52 ± 27.88 0.258

% living 74.91 ± 11.93 74.14 ± 13.57 0.815

% dead 25.09 ± 11.93 25.86 ± 13.57 0.816

Normal morphology (%) 5.59 ± 4.18 7.41 ± 3.64 0.076

Abnormal morphology (%) 94.59 ± 4.20 92.59 ± 3.64 0.052

Fragmented + Degraded (mL) 330.66 ± 498.93 234, 86 ± 110.72 0.316

SDF% 0.52 ± 0.14 0.57 ± 0.18 0.253

leukocytes/20 fields 4.47 ± 4.79 1.45 ± 1.66 0.002 *
* p < 0.05; SDF: sperm DNA fragmentation.

Table 2. Inter-group study: oxidative stress in seminal plasma.

Parameter Exposed to PAHs
(N = 32) x ± SD

Not exposed to PAHs
(N = 29) x ± SD p Value

SOD (U/mL) 4.00 ± 0.85 4.47 ± 0.94 0.048 *

LPO (nmol/mg protein) 3.77 ± 0.66 3.95 ± 0.87 0.377

GSH/GSSG (nmol/mg protein) 0.66 ± 0.12 0.80 ± 0.06 0.000 *

NO (nmol/mg protein) 4.22 ± 0.84 4.13 ± 0.86 0.658
* p < 0.05; SOD: superoxide dismutase; LPO: lipid peroxide; GSH/GSSG: reduced/oxidised glutathione ratio;
NO: nitrite.

Significant differences were observed in total sperm count and seminal leukocyte
infiltration, as well as in SOD levels and GSH/GSSG ratios (Figure 2). The latter were lower
in the exposed group, while leukocyte infiltration was higher in the exposed group.
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Intra-group studies were also performed in both PAH-exposed and non-exposed
individuals. Within each group, associations were sought between the 15 parameters
assessed in the spermiogram and the 4 variables of seminal oxidative stress analysed.

Pearson correlations were performed between age and the different parameters of
seminal oxidative stress, between age and the percentage of sperm DNA fragmentation,
and between the total sperm count, the spermatozoa percentages according to qualitative
assessment (motility, vitality, and morphology), and the different magnitudes of oxidative
stress in seminal plasma. However, no relationship was observed between any of the
variables mentioned, neither in the exposed group nor in the non-exposed group.

4. Discussion

In relation to the results of the present study, it can be affirmed that one year of
occupational exposure to PAHs by workers at a solar thermal plant does not imply a
limitation in male fertility in terms of the parameters considered by a standard spermiogram.
Firstly, it should be noted that the total sperm count (count in mL per ejaculated sperm
volume) was not reduced in the group of exposed workers.

If we consider the qualitative variables (vitality, motility, morphology), as well as the
SFA variable (DNA fragmentation measured by means of Halosperm), we did not find
statistically significant differences between the exposed and unexposed groups. Although
our study also found no positive correlation between age and decreased sperm fertilisation
capacity, some authors argue that ageing is associated with the accumulation of reactive
oxygen species in seminal plasma and other body fluids [25–27]. We can justify the findings
of our study by considering that the subjects studied were not really old males, as the
mean age was 36 years. Thus, the consequences associated with ‘ageing’ would not yet be
denoted at the ages of the subjects examined here.

However, two antioxidant parameters, the activity of SOD and the GSH/GSSG ra-
tio, were found to be decreased in the exposed group. This could reflect that there is a
decrease in antioxidant substances in seminal plasma, which might translate into increased
oxidative stress in the sperm of PAH-exposed individuals [27–30]. Numerous studies have
also confirmed that oxidative stress is a factor in telomere shortening and dysfunction.
Interestingly, while the cellular and molecular characteristics of spermatozoa make them
more susceptible to oxidative damage than any other cell type, they are also the only cell
type in which telomere lengthening accompanies ageing [29]. It should be noted that in our
study no differences were observed in sperm DNA (in terms of sperm DNA fragmentation),
whether in relation to seminal oxidative stress parameters in either group or when com-
paring the percentage of fragmented DNA between the two groups considered. However,
a higher sperm leukocyte infiltration and abnormal sperm morphology were observed
in the exposed group, which may be related to the higher pro-oxidant status mentioned
above [31–34].
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None of the oxidative stress molecules studied here have been shown to have an
impact on the various parameters considered in a standard spermiogram, either in quanti-
tative or qualitative terms. Many studies confirm that abnormal spermatozoa often show
the typical features of oxidative stress, i.e., an excessive level of reactive oxygen species
(ROS) and a reduced fertilisation capacity [31,35,36]. The cause of sperm abnormality and
the presence of ROS may be because these molecules can promote oxidative changes in
membranes, including a loss of membrane integrity and fluidity [37]. The plasma mem-
brane of spermatozoa is highly susceptible to lipid peroxidation given its high levels of
polyunsaturated fatty acids. These circumstances, together with the capacity of these cells
to generate free radicals, make them particularly sensitive to oxidative damage [38,39].

In the present study, the biochemical parameters related to oxidative stress that were
studied in seminal plasma were not analysed in peripheral blood. Some authors suggest
the existence of a relationship between body oxidative status (analysing blood or urine) and
sperm status [7,40]. However, other studies do not observe such a relationship [28,35,36].

It should be considered that the changes observed correspond to one year of occupa-
tional exposure. Consequently, we cannot affirm that PAH exposure does not interfere in
any way with male fertility over a longer period of time [28,41,42].

If, despite the above, we consider the proposal that there is a link between oxidative
stress and male infertility, we should insist on the implementation of primary prevention
measures through personal protective equipment (PPE), as well as secondary prevention
measures. Among these, we could cite an accurate detection method to measure ROS
content that is easily implementable in an andrology laboratory, such as the use of fluores-
cent probes attachable to sperm cells, which are detected by flow cytometry or fluorescent
microscopy [34].

Regarding the weaknesses and strengths of this study, we can point out some study
limitations. Lifestyle aspects that may be related to sperm quality, such as dietary habits,
were not measured. A possible inconsistency may be that for the inter-subject variability
that exists in the general population in some spermiogram parameters (such as total cell
count), the overall samples studied are not large in size. Given that exposure time was
only one year, and the study involved a small group, this study should be considered
as preliminary. This group size may be the reason, for example, for the high standard
deviation of the fragmentation and degradation of the spermatozoa, so these results should
be interpreted with caution. However, it should be noted that the exposed group included
the entire workforce of the solar thermal plant; all workers had the same length of exposure
to PAHs because the company was inaugurated a year earlier, and all were new to their jobs.

Future research should focus on the measurement of PAHs and other metabolites
related to the degradation of heat transfer fluids (HTFs) in order to measure them in
ambient air. Correlations between these environmental levels and possible changes in the
health of exposed individuals could then be studied. It could also be useful to identify the
presence of these pollutants in biological samples. For future research, we propose studies
with larger sample sizes, even if this implies multicentre approaches, as well as longer
follow-up periods.

5. Conclusions

After one year of exposure to PAHs in a solar thermal plant, no negative impact was
observed on the workers’ sperm cellularity, neither at a quantitative level (sperm count),
nor at a qualitative level (motility, vitality, morphology, or cellular DNA fragmentation).
However, PAH exposure is associated with lower antioxidant capacity and higher leukocyte
infiltration in seminal plasma.
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38. Pregl Breznik, B.; Kovačič, B.; Vlaisavljević, V. Are sperm DNA fragmentation, hyperactivation, and hyaluronan-binding ability

predictive for fertilization and embryo development in in vitro fertilization and intracytoplasmic sperm injection? Fertil. Steril.
2013, 99, 1233–1241. [CrossRef] [PubMed]

39. Kumar, N. Sperm Mitochondria, the Driving Force Behind Human Spermatozoa Activities: Its Functions and Dysfunctions—A
Narrative Review. Curr. Mol. Med. 2023, 23, 332–340. [CrossRef]

40. Dirandeh, E.; Sayyar, M.A.; Ansari-Pirsaraei, Z.; Deldar, H.; Thatcher, W.W. Peripheral leucocyte molecular indicators of
inflammation and oxidative stress are altered in dairy cows with embryonic loss. Sci. Rep. 2021, 11, 12771. [CrossRef]

41. Agarwal, A.; Rana, M.; Qiu, E.; AlBunni, H.; Bui, A.D.; Henkel, R. Role of oxidative stress, infection and inflammation in male
infertility. Andrologia 2018, 50, e13126. [CrossRef]

42. Beigi Harchegani, A.; Dahan, H.; Tahmasbpour, E.; Bakhtiari kaboutaraki, H.; Shahriary, A. Effects of zinc deficiency on impaired
spermatogenesis and male infertility: The role of oxidative stress, inflammation and apoptosis. Hum. Fertil. 2020, 23, 5–16.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/antiox12020479
https://doi.org/10.1080/10934529.2018.1528035
https://doi.org/10.5696/2156-9614-9.21.190309
https://doi.org/10.3390/antiox12081626
https://doi.org/10.18632/oncotarget.25075
https://www.ncbi.nlm.nih.gov/pubmed/29849956
https://doi.org/10.3390/cells11030552
https://doi.org/10.1007/s00404-024-07448-8
https://doi.org/10.1080/19396368.2022.2119181
https://doi.org/10.1007/s00018-019-03253-8
https://doi.org/10.1530/REP-22-0189
https://doi.org/10.1371/journal.pone.0068490
https://doi.org/10.3390/jpm12060857
https://doi.org/10.1016/j.redox.2021.102071
https://www.ncbi.nlm.nih.gov/pubmed/34340027
https://doi.org/10.1016/j.cryobiol.2020.11.007
https://www.ncbi.nlm.nih.gov/pubmed/33248047
https://doi.org/10.1007/978-1-0716-2675-7_4
https://www.ncbi.nlm.nih.gov/pubmed/36152241
https://doi.org/10.1016/j.freeradbiomed.2018.03.042
https://www.ncbi.nlm.nih.gov/pubmed/29601945
https://doi.org/10.3382/ps/pey407
https://www.ncbi.nlm.nih.gov/pubmed/30371893
https://doi.org/10.1016/j.fertnstert.2012.11.048
https://www.ncbi.nlm.nih.gov/pubmed/23290739
https://doi.org/10.2174/1566524022666220408104047
https://doi.org/10.1038/s41598-021-91535-2
https://doi.org/10.1111/and.13126
https://doi.org/10.1080/14647273.2018.1494390
https://www.ncbi.nlm.nih.gov/pubmed/30129823

	Introduction 
	Materials and Methods 
	Statistical Analysis 
	Ethical Concerns 

	Results 
	Discussion 
	Conclusions 
	References

