Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Procedure for the Synthesis of Coumarin Imidazylate Intermediate 2a
2.3. Synthesis of Products 4 from Phenols
- 7-(4-(1H-pyrazol-1-yl)phenyl)-4-methyl-2H-chromen-2-one (4aa)
- 4-Methyl-7-(o-tolyl)-2H-chromen-2-one (4ab)
- 7-(2-Ethoxyphenyl)-4-methyl-2H-chromen-2-one (4ac)
- 7-(3-Fluorophenyl)-4-methyl-2H-chromen-2-one (4ad)
- 4-Methyl-7-(3-(trifluoromethoxy)phenyl)-2H-chromen-2-one (4ae)
- 7-(3-Methoxyphenyl)-4-methyl-2H-chromen-2-one (4af)
- 7-(4-Diethylaminophenyl)-4-methyl-2H-chromen-2-one (4ag)
- 7-(4-Methoxyphenyl)-4-methyl-2H-chromen-2-one (4ah)
- 7-(4-Methoxyphenyl)-2H-chromen-2-one (4bh)
- 7-(4-Methoxyphenyl)-4-(trifluoromethyl)-2H-chromen-2-one (4ch)
- Ethyl-2-(7-(4-methoxyphenyl)-2-oxo-2H-chromen-4-yl)acetate (4dh)
- 9-(4-Methoxyphenyl)-1-methyl-3H-benzo[f]chromen-3-one (4eh)
- 6-Acetyl-7-(4-methoxyphenyl)-4-methyl-2H-chromen-2-one (4fh)
- 7-Methoxy-3-(4′-methoxy [1,1′-biphenyl]-4-yl)chroman (4gh)
- 3,7-Bis(4-methoxyphenyl)chromane (4hh)
- 2-(4-Methoxyphenyl)naphthalene (4ih)
2.4. Procedure for Determining Antioxidant Potential of the Synthesized Compounds
3. Results
3.1. Chemistry and Pharmacological Studies
3.1.1. Synthesis of Coumarin Derivatives by One-Pot Suzuki Coupling
3.1.2. Antioxidant Activity of Coumarin Derivatives 4aa–4ah
3.1.3. Synthesis of Coumarin- and Equol-Based Compounds
3.1.4. Antioxidant Activity of 4bh–4ih by DPPH Assay
4. Discussion
4.1. Antioxidant Activity of Phenolic Compounds 1a–i by DPPH Assay
4.2. SAR Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sugamura, K.; Keaney, J.F. Reactive oxygen species in cardiovascular disease. Free Radical Biol. Med. 2011, 51, 978–992. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Q.W.; Shi, Y.; Song, Z.G.; Jin, Y.H.; Liu, Z.Q. Design and synthesis of coumarin-3-acylamino derivatives to scavenge radicals and to protect DNA. Eur. J. Med. Chem. 2014, 84, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mena, S.; Ortega, A.; Estrela, J.M. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. 2009, 674, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: Role of (−)-epicatechin and related procyanidins in cell signaling. Free Radical Biol. Med. 2011, 51, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Lonn, M.E.; Dennis, J.M.; Stocker, R. Actions of “antioxidants” in the protection against atherosclerosis. Free Radical Biol. Med. 2012, 53, 863–884. [Google Scholar] [CrossRef]
- Riganti, C.; Gazzano, E.; Polimeni, M.; Aldieri, E.; Ghigo, D. The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radical Biol. Med. 2012, 53, 421–436. [Google Scholar] [CrossRef]
- Rahman, I. Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim. Biophys. Acta. 2012, 1822, 714–728. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Saad, A.M.; Alkafaas, S.S.; Elkafas, S.S.; Eldeeb, G.S.; Mohammed, D.M.; Salem, H.M.; Korma, S.A.; Loutfy, S.A.; et al. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int. J. Biol. Macromol. 2024, 277, 134223. [Google Scholar] [CrossRef]
- Fatima, A.; Khan, M.S.; Ahmad, M.W. Therapeutic potential of equol: A comprehensive review. Curr. Pharm. Des. 2020, 26, 5837–5843. [Google Scholar] [CrossRef]
- Fernandez-Pena, L.; Matos, M.J.; Lopez, E. Recent advances in biologically active coumarins from marine sources: Synthesis and evaluation. Mar. Drugs. 2023, 21, 37. [Google Scholar] [CrossRef]
- Zou, Y.; Teng, Y.; Li, J.; Yan, Y. Recent advances in the biosynthesis of coumarin and its derivatives. Green. Chem. Eng. 2024, 5, 150–154. [Google Scholar] [CrossRef]
- Sharma, M.; Vyas, V.K.; Bhatt, S.; Ghate, M.D. Therapeutic potential of 4-substituted coumarins: A conspectus. Eur. J. Med. Chem. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, A.; Rajanan, A.; Suresh, A.J.; Raut, P.S.; Kundu, S.; Sahu, B.D. Natural coumarins: Preclinical evidence-based potential candidates to alleviate diabetic nephropathy. Phytomed. Plus. 2022, 2, 100379. [Google Scholar] [CrossRef]
- Nasab, N.H.; Azimian, F.; Kruger, H.G.; Kim, S.J. Acetylcoumarin in cyclic and heterocyclic-containing coumarins: Synthesis and biological applications. Tetrahedron 2022, 129, 133158. [Google Scholar] [CrossRef]
- Hinman, J.W.; Hoeksema, H.; Caron, E.L.; Jackson, W.G. The partial structure of novobiocin (streptonivicin). J. Am. Chem. Soc. 1956, 78, 1072–1074. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Tsukiura, H.; Okanishi, M.; Miyaki, T.; Ohmori, T.; Fujisawa, K.; Koshiyama, H. Studies on coumermycin, a new antibiotic. Production, isolation and characterization of coumermycin A1. J. Antibiot. Ser. A 1965, 18, 1–10. [Google Scholar]
- Salvador, J.; Tassies, T.; Reverter, L.; Marco, M. Enzyme-linked immunosorbent assays for therapeutic drug monitoring coumarin oral anticoagulants in plasma. Anal. Chim. Acta. 2018, 1028, 59–65. [Google Scholar] [CrossRef]
- Dabhi, R.C.; Sharma, V.S.; Arya, P.S.; Patel, U.P.; Shrivastav, P.S.; Maru, J.J. Coumarin functionalized dimeric mesogens for promising anticoagulant activity: Tuning of liquid crystalline property. J. Mol. Struct. 2023, 1283, 135336. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 2002, 132, 3577–3584. [Google Scholar] [CrossRef]
- Atkinson, C.; Frankenfeld, C.L.; Lampe, J.W. Gut bacterial metabolism of the soy isoflavone daidzein: Exploring the relevance to human health. Exp. Biol. Med. 2005, 30, 155–170. [Google Scholar] [CrossRef]
- Innocenti, M.D.; Schreiner, T.; Breinbauer, R. Recent advances in Pd-catalyzed Suzuki-Miyaura cross-coupling reactions with triflates or nonaflates. Adv. Synth. Catal. 2023, 365, 4086–4120. [Google Scholar] [CrossRef]
- Farhang, M.; Akbarzadeh, A.R.; Rabbani, M.; Ghadiri, A.M. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022, 227, 116124. [Google Scholar] [CrossRef]
- Baviskar, B.A.; Ajmire, P.V.; Chumbhale, D.S.; Khan, M.S.; Kuchake, V.G.; Singupuram, M.; Laddha, P.R. Recent advances in nickel catalyzed Suzuki-Miyaura cross coupling reaction via C-O & C-N bond activation. Sustain. Chem. Pharm. 2023, 32, 100953. [Google Scholar] [CrossRef]
- Joy, M.N.; Sajith, A.M.; Santra, S.; Bhattacherjee, D.; Beliaev, N.; Zyryanov, G.V.; Eltsov, O.S.; Haridas, K.R.; Alshammari, M.B. Suzuki–Miyaura coupling of aryl fluorosulfates in water: A modified approach for the synthesis of novel coumarin derivatives under mild conditions. J. Taibah Univ. Sci. 2024, 18, 2347679. [Google Scholar] [CrossRef]
- Joy, M.N.; Bodke, Y.D.; Telkar, S.; Bakulev, V.A. Synthesis of coumarins linked with 1,2,3-triazoles under microwave irradiation and evaluation of their antimicrobial and antioxidant activity. J. Mex. Chem. Soc. 2020, 64, 53–73. [Google Scholar] [CrossRef]
- Joy, M.N.; Guda, M.R.; Zyryanov, G.V. Evaluation of anti-inflammatory and anti-tubercular activity of 4-methyl-7-substituted coumarin hybrids and their structure activity relationships. Pharmaceuticals 2023, 16, 1326. [Google Scholar] [CrossRef]
- Rishikesan, R.; Karuvalam, R.P.; Muthipeedika, N.J.; Sajith, A.M.; Eeda, K.R.; Pakkath, R.; Haridas, K.R.; Bhaskar, V.; Narasimhamurthy, K.H.; Muralidharan, A. Synthesis of some novel piperidine fused 5-thioxo-1H-1,2,4-triazoles as potential antimicrobial and antitubercular agents. J. Chem. Sci. 2021, 133, 3. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Niki, E. Antioxidants in relation to lipid peroxidation. Chem. Phys. Lipids 1987, 44, 227–253. [Google Scholar] [CrossRef]
- Matos, M.J.; Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L.; Borges, F.; Olea-Azar, C. Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorg Med. Chem. 2013, 21, 3900–3906. [Google Scholar] [CrossRef] [PubMed]
- Yamagami, C.; Akamatsu, M.; Motohashi, N.; Hamada, S.; Tanahashi, T. Quantitative structure–activity relationship studies for antioxidant hydroxybenzalacetones by quantum chemical and 3-D-QSAR(CoMFA) analyses. Bioorg Med. Chem. Lett. 2005, 15, 2845–2850. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.M.; Prabhakar, P.K.; Doble, M. Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med. Chem. Res. 2011, 20, 482–492. [Google Scholar] [CrossRef]
Entry | Catalyst | Ligand | Base | Solvent | Yield 2 4aa (%) |
---|---|---|---|---|---|
1 | PdCl2.(PPh3)2 | ---- | Na2CO3 | DMF | 85 |
2 | Pd(OAc)2 | ---- | Na2CO3 | DMF | trace |
3 | Pd(OAc)2 | Xantphos | Na2CO3 | DMF | 55 |
4 | Pd(dppf)Cl2 | ---- | Na2CO3 | DMF | 60 |
5 | Pd(OAc)2 | BINAP | Na2CO3 | DMF | 40 |
6 | PdCl2.(PPh3)2 | ---- | Cs2CO3 | DMF | 70 |
7 | PdCl2.(PPh3)2 | ---- | K3PO4 | DMF | 40 |
8 | PdCl2.(PPh3)2 | ---- | Et3N | DMF | 55 |
9 | PdCl2.(PPh3)2 | ---- | DBU | DMF | 60 |
10 | PdCl2.(PPh3)2 | ---- | Na2CO3 | THF | 68 |
11 | PdCl2.(PPh3)2 | ---- | Na2CO3 | 1,4-Dioxane | 25 |
12 | PdCl2.(PPh3)2 | ---- | Na2CO3 | H2O | 40 |
13 | PdCl2.(PPh3)2 | ---- | Na2CO3 | 1,4-Dioxane-H2O (1:1) | 60 |
14 3 | PdCl2.(PPh3)2 | ---- | Na2CO3 | DMF | 50 |
15 4 | PdCl2.(PPh3)2 | ---- | Na2CO3 | DMF | 80 |
Entry | Deviation from Standard Conditions | Yield 2 4aa (%) |
---|---|---|
1 | None | 82 |
2 | Cs2CO3 instead of Na2CO3 | 78 |
3 | Et3N instead of Na2CO3 | 60 |
4 | THF instead of DMF | 70 |
5 | Reaction at 80 °C | 70 |
6 | Reaction at 100 °C | 75 |
Entry | Compound | % Inhibition at 100 µg Concentration |
---|---|---|
1 | 4aa | 75.3 |
2 | 4ab | 60.5 |
3 | 4ac | 70.6 |
4 | 4ad | 42.1 |
5 | 4ae | 51.3 |
6 | 4af | 77.6 |
7 | 4ag | 76.0 |
8 | 4ah | 81.7 |
9 | Standard (BHT) | 90.4 |
Entry | Compound | % Inhibition at 100 µg Concentration |
---|---|---|
1 | 4bh | 70.1 |
2 | 4ch | 45.5 |
3 | 4dh | 58.6 |
4 | 4eh | 80.1 |
5 | 4fh | 54.3 |
6 | 4gh | 83.8 |
7 | 4hh | 81.6 |
8 | 4ih | 65.3 |
9 | Standard (BHT) | 90.6 |
Entry | Compound | % Inhibition at 100 µg Concentration |
---|---|---|
1 | 1a | 79.4 |
2 | 1b | 73.8 |
3 | 1c | 40.3 |
4 | 1d | 54.8 |
5 | 1e | 77.3 |
6 | 1f | 51.0 |
7 | 1g | 80.3 |
8 | 1h | 79.6 |
9 | 1i | 60.0 |
10 | Standard (BHT) | 90.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joy, M.N.; Kovalev, I.S.; Shabunina, O.V.; Santra, S.; Zyryanov, G.V. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants 2024, 13, 1198. https://doi.org/10.3390/antiox13101198
Joy MN, Kovalev IS, Shabunina OV, Santra S, Zyryanov GV. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants. 2024; 13(10):1198. https://doi.org/10.3390/antiox13101198
Chicago/Turabian StyleJoy, Muthipeedika Nibin, Igor S. Kovalev, Olga V. Shabunina, Sougata Santra, and Grigory V. Zyryanov. 2024. "Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants" Antioxidants 13, no. 10: 1198. https://doi.org/10.3390/antiox13101198
APA StyleJoy, M. N., Kovalev, I. S., Shabunina, O. V., Santra, S., & Zyryanov, G. V. (2024). Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants, 13(10), 1198. https://doi.org/10.3390/antiox13101198