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Abstract: Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and
pathological processes within the human body. This review specifically examines the involvement
of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The
discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-
translational modifications of involved proteins, such as S-nitrosation and nitration. The review also
covers the dual nature of NO, highlighting both its protective and harmful effects, determined by
concentration, location, and timing. Additionally, potential therapies that modulate NO signaling,
including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of
cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is
paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis
and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular
balance and suggests areas for future research in developing new therapeutic strategies.
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1. Introduction

Nitric oxide (NO) is a small, highly reactive molecule that plays a crucial role in
numerous physiological processes in the cardiovascular and nervous systems as a versatile
signaling molecule. It its primarily synthesized endogenously by a family of enzymes
known as nitric oxide synthases (NOSs), which convert L-arginine and molecular oxygen
into NO and L-citrulline. In order to maintain their activity, they require several cofactors
such as NADPH, FAD, FMN, and tetrahydrobiopterin (BH4). The NOS enzyme family
exists in three isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS), each
with distinct roles and regulatory mechanisms [1]. It has long been believed that free NO
produced by NOS acts by permeating cell membranes due to its lipophilicity and then binds
to the heme moiety of soluble guanylyl cyclase (sGC) in target cells. Upon the activation
of sGC by NO, it initiates the conversion of guanosine triphosphate (GTP) into cyclic
guanosine monophosphate (cGMP). The increase in cGMP levels leads to the activation of
protein kinase G (PKG), which, in turn, induces smooth muscle relaxation, vasodilation, and
other downstream effects. This NO–sGC–cGMP pathway is fundamental to the regulation
of vascular tone and blood pressure. However, recent research by Kleschyov et al. has
challenged the conventional view of NO signaling. Kleschyov proposed a hypothesis
and later provided evidence that NO-ferroheme, rather than free NO, serves as a key
signaling entity within the vasculature [2,3]. Unlike free NO, which is rapidly scavenged
by hemoglobin and other reactive molecules, NO-ferroheme is a more stable and mobile
complex that can directly activate sGC without the need for free NO diffusion. This
paradigm shift suggests that NO-ferroheme can be transported between proteins, partition
into cellular membranes [3], and sustain bioactivity even in the presence of NO scavenger.

Antioxidants 2024, 13, 1213. https://doi.org/10.3390/antiox13101213 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox13101213
https://doi.org/10.3390/antiox13101213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-6973-3614
https://orcid.org/0000-0003-0462-6492
https://orcid.org/0000-0003-2690-0085
https://orcid.org/0000-0003-2321-9067
https://orcid.org/0000-0003-3791-1388
https://orcid.org/0000-0003-1927-9593
https://orcid.org/0009-0004-5605-2544
https://doi.org/10.3390/antiox13101213
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox13101213?type=check_update&version=2


Antioxidants 2024, 13, 1213 2 of 39

Due to the dual role of NO, its low physiological levels are involved in maintaining cell
proliferation, differentiation, and migration, while abnormally high NO concentrations lead
to an inflammatory response, growth arrest, and ultimately, cell death. Post-translational
modifications of proteins including S-nitrosation, nitrosylation, and nitrosation affect a
variety of cellular processes, from cGMP signaling to cell death, and tightly regulate or
disrupt overall cellular homeostasis. Discussing the role of NO according to its concen-
tration, localization, and time of occurrence will provide a better understanding of the
overall importance of NO signaling in the context of various disease states and will also
help in the development of new drugs that target specific diseases mediated by disrupted
NO signaling.

The aging process is a complex biological phenomenon that progressively reduces
tissue function and increases the risk of various age-related diseases, including heart
and lung disease, diabetes, cognitive decline, and cancer. Senescent cells secrete pro-
inflammatory cytokines, chemokines, and proteases, collectively known as the age-related
secretory phenotype (SASP), which promote inflammation and tissue damage [4]. NO is a
key regulator of many cellular activities, and its role in cellular aging and senescence has
become a significant focus of research. New evidence suggests that genetic variations in
nitric oxide synthases, such as nNOS and eNOS, are associated with aging and longevity,
affecting cognitive and physical abilities in seniors. Decreased NO production, often
caused by endothelial dysfunction, is a hallmark of aging, weakening cellular defences
against apoptosis and increasing cellular vulnerability [5]. In addition, the accumulation of
nitrosative and oxidative damage, particularly in mitochondrial proteins, disrupts energy
metabolism and contributes to neurodegenerative diseases such as Parkinson’s disease.
Understanding the complex interplay between NO signaling, cellular aging, and age-
related disorders may lead to novel therapeutic strategies that modulate NO pathways to
mitigate the effects of aging and improve health.

In this review, we provide a brief overview of nitric oxide signaling in various bio-
logical systems, highlighting its regulatory functions. We explore how imbalances in NO
signaling may lead to its second role as a precursor of nitrogen stress and a contributor
to many diseases. Additionally, we explore potential therapeutic approaches targeting
NO dysregulation and discuss the role of NO in aging. Furthermore, we review current
methodologies for NO detection in the NO-related pathologies, with a focus on diagnostic
techniques for age-related diseases.

2. Nitric Oxide Signaling across Systems
2.1. Nitric Oxide Signaling in Cardiovascular System

NO is involved in many significant biological functions in cardiovascular physiol-
ogy [6]. All existing structural forms of NOS are extensively involved in the signaling of
blood vessel and cardiac cells in both physiological and pathological processes. In the
vessel wall, NO is synthesized by eNOS. NO keeps vascular integrity, inhibits platelet
aggregation and thrombosis, and influences vascular smooth muscle cell (VSMC) relaxation
and proliferation, leukocyte–endothelial adhesion, and angiogenesis [7]. NO adjusts the
activity of the cardiovascular system via two different pathways. In the direct one, NO
activates sGC and causes the downstream stimulation of protein kinase G (PKG), while in
the indirect pathway, NO signaling occurs due to the S-nitrosation of proteins [7,8]. Red
blood cells (RBCs) are crucial in the adjustment of vascular haemostasis because they can
transport oxygen between respiratory surfaces. These cells also express functional NOS (re-
sembling an endothelial isoform) and can endogenously produce NO [9,10]. Additionally,
they influence the vascular biology of NO and serve as a converter of NO bioactivity [11].
The NO diffusing from the endothelium is absorbed and inactivated by the RBC as a
result of a rapid reaction with oxyhaemoglobin with the formation of methaemoglobin
and nitrate, reducing the amount of NO available for vasodilation [12]. Obtaining NO by
reducing nitrates and nitrites is an additional pathway to traditional vasodilation caused
by NOS. Dietary nitrates undergo reduction to nitrites primarily by the human commensal
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oral microbiome under the tongue or in the stomach, followed by the further conversion
of nitrite to NO [13]. This reduction of nitrite is enabled by proteins containing heme and
molybdenum cofactors [14]. The formation of NO from nitrite by enzymatic reduction
using deoxyhemoglobin could also be an optional way of NO bioactivity manufacturing
and exporting by RBCs [6,15,16]. Nitrites are able to generate NO via deoxyhaemoglobin or
xanthine oxidoreductase (XOR), as well as by spontaneous and carbonic anhydrase-assisted
disproportionation [12].

NO produced by NOSs is involved in protecting against the initiation of both vascular
and cardiac diseases in humans [7]. There are several, probably synergistic, mechanisms
by which NO protects the myocardium in the course of the ischemia-reperfusion (IR)
process: the reduction of Ca2+ overload by inhibition of L-type calcium channels (LTCC),
reduction of ROS generation by mitochondrial cytochrome-c oxidase [17], and reduction
of oxidative stress through the inhibition of XOR [7]. Other effects caused by NO may
also contribute to the protective effect, such as coronary vasodilation, peroxide scavenging,
and arginase inhibition. In recent years, the knowledge about the contribution of NOS
in controlling heart function by affecting Ca2+ homeostasis, the sensitivity of the Ca2+

sarcomeric protein, and mitochondrial respiration has been enhanced [7]. The cardiac
functions of eNOS and nNOS are highly dependent on their subcellular localization. In a
healthy myocardium, nitric oxide generated by eNOS activation improves the relaxation
of cardiomyocytes and ventricles. This is related to the lower level of intracellular Ca2+,
through the inhibition of LTCC and increased Ca2+ reuptake into the sarcoplasmic reticulum
(SR). The activation of the sGC–cGMP–PKG pathway leads to myosin-binding protein C
(MYBPC) and troponin I phosphorylation, and subsequent reduction in myofilament Ca2+

sensitivity [6,7]. The nNOS-dependent modification of Ca2+-handling proteins in the SR is
involved in reducing cytosolic Ca2+ concentration via phospholamban phosphorylation [7].
The involvement of NO in contractility and reaction to β-adrenergic stimulation is more
complicated and not fully understood. The in vivo studies demonstrated that NO located in
caveolae near the sarcolemmal LTCC blocks Ca2+ influx by the inhibition of β1-adrenergic
stimulation [6,7,18]. The increased translocation of nNOS into caveolae limits Ca2+ flow
via the plasmalemmal LTCC and can be seen as a compensatory adaptation [7]. The
individuality of S-nitrosation on jointly located target proteins is also determined by NOS
subcellular compartmentation. Cytosolic and sarcolemmal proteins such as LTCC and
dihydrofolate reductase (DHFR) in cardiac myocytes are prioritized for nitrosation by eNOS.
The transformation of dihydrobiopterin (BH2) to the cofactor tetrahydrobiopterin, catalyzed
by DHFR, modulates the bioavailability of NOS. SR proteins such as the ryanodine receptor
(RyR) are targets for nNOS located in the SR. nNOS stimulates the release of Ca2+ through
the RyR and increases contractility, perhaps by the S-nitrosation of the RyR thiol groups [6,7].
The reversible inhibition of mitochondrial respiration by competing with oxygen in the
heme iron of complex IV in the electron transport chain is another significant contribution
of eNOS-derived NO to cardiac function [19].

2.1.1. NOS–NO Signaling Dysfunction

The dysregulation of NOS–NO signaling occurs by two primarily important mecha-
nisms: nitrosative stress (mostly because of ONOO− generation) and the oxidative inactiva-
tion of the elements of NOS signaling [7,20]. In pathological situations, there is a decrease in
the activation of the sGC–cGMP–PKG pathway due to the oxidation of tetrahydrobiopterin
(BH4) to dihydrobiopterin (BH2) and sGC ferric heme, as well as NOS uncoupling [21]. The
oxidation of heme iron in sGC reduces NO binding and desensitizes this protein to NO.
This mechanism has been noticed in coronary heart disease, myocardial infarction, and
stroke [22,23]. The function of NADH-cytochrome b5 reductase 3 (CYB5R3) in the circula-
tory system is to regulate the sensitivity of sGC to NO by reducing Fe3+ to Fe2+. Studies in
rats have shown that CYB5R3 inhibition is associated with impaired vasodilatation and,
thus, increases blood pressure [24]. The desensitization of the sGC to NO may also occur
due to the S-nitrosation of the enzyme specifically at Cys122 [8]. Endothelial dysfunction,
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caused by oxidative stress, enhanced permeability, and leukocyte extravasation, contributes
the onset of atherosclerosis. Thrombosis, platelet aggregation, as well as vasoconstriction
are the result of the lower bioavailability of NO [8]. Dysregulated NOS activity is also
involved in the pathophysiology of heart failure (HF) [25].

2.1.2. Therapeutic Strategies to Restore NO Disfunction

The restoration of physiological NO signaling is possible by either re-establishing NO
production and bioavailability or attacking components of the NO generation pathway [8].
Therapeutic strategies aimed at restoring NO bioavailability include increasing signaling
by using β3-adrenergic receptor agonists, which would be able to avert cardiac remod-
eling, persist myocardial perfusion, and upgrade systolic and diastolic function [26,27].
A second type of compounds that stop endogenous inhibitory pathways and increase
NO bioavailability is NADPH oxidase (NOX) inhibitors, which lessen the generation of
superoxides (O2

−•), thus restricting the uptake of NO and the production of peroxynitrite
(ONOO−) [28]. Another strategy to increase the activity of NOS is based on the usage of
an compounds like L-arginine and L-citrulline [29,30], arginase inhibitor [31], hydrogen
sulfide [32], BH4 [33], and folate [34]. Folate improves DHFR activity and promotes the
reductive recycling of BH4 [35]. NOS–NO signaling can be improved as a consequence of
enhanced sGC activity. The use of vericiguat, a novel oral sGC stimulator, resulted in a
reduction in cardiovascular death and hospitalisation for high-risk HF patients [36]. The
elevation of cGMP levels can also be obtained through phosphodiesterase type 5 (PDE5)
inhibition [37]. Those developments in therapeutic strategies to modulate NO signaling
proved to be successful in preliminary and model studies, and some of them regarding
to β3-adrenergic receptor agonists, hydrogen sulfide, improved sGC activity, and PDE5
inhibition advanced to clinical trials, which were carefully reviewed by Farah et al. [7].

Additionally, NO may be directly breathed in [38] and supplied from organic nitrates
and inorganic nitrites [39]. One example is research in a murine model of a myocardial
infarction, which revealed that NO inhalation reduces infraction and improves left ventric-
ular function after ischemia and reperfusion [38]. The effect of inhaled nitric oxide has also
been studied in the context of improving microcirculation in patients with severe sepsis;
however, in this case, no positive effect of breathable NO on the microcirculation of blood
and organ dysfunction has been found [40]. The generation of NO from nitrite is enhanced
during IR; therefore, the manipulation of the NO amount in the vessels by supplementation
with nitrites and nitrates is recognized as a therapeutic strategy in various pathological
conditions. This reducing pathway is not dependent on NOS, and its activity increases
during hypoxia and ischemia, in both physiological and pathological cases [14,41,42]. Many
studies suggest that beetroot juice, with its significant nitrate content, may effectively lower
blood pressure in healthy and hypertensive individuals via the nitrate/nitrite/nitric oxide
pathway, making it a cost-effective strategy to reduce cardiovascular risk [43]. However, a
2022 clinical trial found no significant effect of beetroot juice on blood pressure, indicating
the results may depend on dosage and treatment protocols [44]. Using animal models,
nitrates have been shown to be protective in IR injuries and some other cardiovascular
diseases [6,41]. Furthermore, the delivery of nitrates in clinical trials had an advantageous
impact on blood pressure and general vascular condition [41]. The primary goal and the
main difficulty are finding the optimal space and time distribution of potential therapeutics
to obtain the intended effects while not inducing undesirable disruptions in physiological
NO signaling. Moreover, the use of organic nitrates as therapeutics is restricted by unfavor-
able pharmacokinetics and the development of tolerance [45]. The therapeutic strategies
targeting NO signaling and dysfunction across various diseases are summarized in Table 1.
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Table 1. Therapeutic strategies targeting NO signaling and dysfunction in various diseases.

Problem Goal/Application Target/Therapeutic Strategy Examples of Compounds/Drugs

NO signaling disfunction in
cardiovascular

Restoration of NO production
and bioavailability

β3-adrenergic receptor agonists Isoproterenol [27]

NOX inhibition GKT137831, ML171, and VAS2870 [28]

Increased NOS activity
L-arginine, L-citrulline [29,30], arginase

inhibitors [31], hydrogen sulfide [32],
BH4 [33], folate [34]

sGC stimulation Vericiguat [36]

PDE5 inhibition Sildenafil [37]

Inhalation of NO Inhaled NO [38]

nitrate/nitrite supplementation organic nitrates and inorganic nitrites [39]
beetroot juice [43]

Neuronal degeneration

Reducing RNS production Selective inhibition of nNOS nNOS inhibitors [46]

Regulation of protein
S-nitrosation in

neurodegenerative diseases

S-nitrosation of GluN1 subunit of
NMDAR Nitromemantine [47]

Prevent apoptosis GAPDH nitrosation CGP3466B [48]

Overproduction of NO in
immune system Block NO production Targeting iNOS with specific and

non-specific inhibitors iNOS inhibitors [6,49]

COVID-19 respiratory
complications Improve oxygenation Inhalation of NO Inhaled NO [50,51]

Inflammation, autoimmune
diseases, stroke

Reduce inflammation and
modulate immune responses

Use of NO donors to achieve
anti-inflammatory effects GSNO, SNAP, SNP [52–54]

Atopic dermatitis induced NO production UV-induced NO production NO produced by UV irradiation [55,56]

Regulation of NO level in
cancer

Inhibit cancer cell
proliferation iNOS inhibition

L-nil [57]
L-NMMA in combination with taxene [58]

or pembrolizumab [59]

Promoting cell death by
ensuring high concentrations

of NO

Upregulation of p53 pathway,
mitochondrial cytochrome c
release, ONOO− generation

Organic nitrates
Diazeniumdiolates

Metal-NO complexes
Furozans

S-nitrosothiols
Syndonimines [60]

Inhibition of NF-κB pathway due
to the S-nitrosation of p50 Diazeniumdiolate [61]

Cancer cell resistance to
chemotherapy and

radiotherapy

Enhance therapeutic efficacy
of anticancer agents

Combine NO donors with
chemotherapy or radiotherapy to

sensitize cancer cells

NO donors combined with cisplatin,
docetaxel, carboplatin [60,62]

2.2. Nitric Oxide Signaling in Central Nervous System

Nitric oxide is a significant signaling molecule that has a crucial role in physiological
neuronal and synaptic function [63]. The effects triggered by NO depend on its concentra-
tion (Figure 1B). Although a physiological level of NO is essential for signal transmission
and neuroprotection, the overproduction of NO mediated by oxidative stress results in neu-
roinflammation and neurodegenerative disorders [64]. In the central nervous system (CNS),
NO production is mediated by nNOS, which requires the calcium (Ca2+)/calmodulin (CaM)
complex for its activation (Figure 1A). The Ca2+ flow occurs through N-methyl-D-aspartate
receptors (NMDAr) [65]. nNOS is the predominant isoform of nitric synthases in the CNS,
occurring in almost all brain areas, however, with a certain advantage in the olfactory bulb,
the cerebellar cortex, the striatum, the hippocampus, and the hypothalamus. Additionally,
nNOS occurs mainly in glutaminergic and GABAergic neurons [6].
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Figure 1. (A) General nitric oxide signaling pathways in physiology and pathology. (B) NO neuro-
protective or neurotoxic effects depending on its concentration and the cellular environment. A low
and transient NO level has neuroprotective effects. A high level of intercellular NO in the presence of
oxidative stress leads to neurotoxic and proapoptotic effects.

NO can cause neuroprotective or neurotoxic effects depending on its concentration
and cellular environment. At a low level of NO, its main impact is directed at iron-heme
proteins. NO can influence neuronal activity and excitability by activating the canonical
sGC/cGMP-dependent pathway [66]. The sGC/cGMP pathway has a key role in con-
trolling cerebral blood flow, by modulating smooth muscle relaxation, and mediating the
modulation of synaptic neurotransmission and plasticity. The cGMP-triggered activation
of the cAMP response element binding protein (CREB) or protein kinase G (PKG) may
have a neuroprotective effect. This effect can also occur due to the S-nitrosation of specific
target proteins, resulting in either the inhibition of proteins (NMDA receptor [NMDAR]
and caspase 3) or their activation (hypoxia-induced factor 1 [HIF-1]), heme oxygenase 1
[HO-1], and histone deacetylase 2 [HDAC2]) [63,67]. Excessive NO production, particularly
in the setting of oxidative stress, which causes the production of ONOO−, triggers the
S-nitrosation or nitration of critical proteins in the cytosol and mitochondria, promoting
cell injury via protein misfolding, mitochondrial dysfunction, synaptic injury, and apop-
tosis [63]. The various functions of NO in neuronal communication can be explained by
the expression of nNOS in both excitatory and inhibitory neurones, as shown by several
in vivo studies using mice with a defective nNOS gene [6].

Neurovascular coupling (NVC) is a mechanism that supports the coupling among
cerebral blood flow (CBF) and neuronal activity. Nitric oxide is considered as the most
significant molecule in this process, among other vasoactive molecules released by glu-
tamatergic activation, and is necessary for the neurovascular response to occur [66]. An
association has been found between NVC malfunction and neurodegeneration, and cerebral
vascular hypoperfusion is involved in the pathogenesis of many neurodegenerative disor-
ders. NVC involves a biphasic enhance in CBF to meet the metabolic demand. A recent
analysis of preclinical studies showed that up to two-thirds of NVC responses are related
to nitric oxide signaling mechanisms [68]. Oxidative stress reduces NO-mediated CBF and
tends to reduce NO bioavailability. Peroxynitrite production is also one of the reasons NVC
does not work properly [67]. Hoiland et al. investigated the pathways through which NO
signaling participates in NVC in humans. A competitive non-selective inhibitor of NOS
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L-NMMA was found to reduce NVC response by 30%, which confirms the crucial role of
NO in human NVC [66].

2.2.1. Nitric Oxide Dependent Post-Translational Modifications—Role in
Neurodegenerative Diseases

The high level of intercellular NO in the presence of oxidative stress leads to neurotoxic
and pro-apoptotic effects, leading to the development of neurodegenerative disorders [63].
Abnormal NO production may be an effect of the activation of nNOS through NMDA recep-
tors or the induction of iNOS activity by pro-inflammatory cytokines [63]. This contributes
to the development of pathological conditions like stroke, epilepsy, and neurodegenerative
disorders by protein S-nitrosation or the nitration of tyrosine residues [6,66]. The regulation
of NMDAR activity is of paramount important for the correct operation of the brain and
the avoidance of brain damage.

The rapid reaction of NO with O2
−• leading to the formation of ONOO− is the main

pathway of the deleterious action of NO [67]. The formed ONOO− causes the nitration
of protein tyrosine residues (nitrotyrosylation); this produces 3-nitrotyrosine (3-NT), a
chemical determinant of both nitrosative and oxidative stress [63]. Protein tyrosine residue
nitration is considered as a crucial element in the etiology of neurodegenerative disease [64].
The pathogenesis of neurodegenerative disorders is related to neuroinflammation, as well
as the aggregation of misfolded proteins such as α-synuclein in Parkinson (PD) patients
and amyloid β peptide (Aβ) and tau in Alzheimer (AD) patients. Abnormal protein
aggregates were found in the neuronal bodies of the limbic and cortical areas of the brain
in PD [69,70]. These effects are often assigned to anomalous RNS/ROS production [71].
Extensively nitrated tyrosine in α-synuclein promotes its oligomerization, and hence, the
formation of Lewy bodies. This is also related to the autophagic reaction of blood cells in
patients with idiopathic PD [72] and activated neuroinflammation, which subsequently
results in excessive RNS production [73]. AD, the most commonly occurring dementia,
is also associated with tyrosine nitration [71]. Studies indicate the tau protein is nitrated,
which causes its greater aggregation [67]. The nitration and oxidation of other important
proteins such as the mitochondrial isoform of superoxide dismutase (SOD) has been
confirmed [74,75]. A large amount of inactivated by nitration glyceralaldehyde-3-phosphate
dehydrogenase (GAPDH) was found in the hippocampus of AD patients. It can cause the
consumption of adenosine triphosphate. Improper GAPDH encourages the aggregation
of insoluble proteins causing cell death [70]. Furthermore, peroxynitrite is an important
mediator of lipid peroxidation and mitochondrial dysfunction, leading to DNA damage,
which finally leads to apoptosis and necrosis [76,77].

NO can combine with oxidant molecules to form RNS that elicit post-translational
modifications such as S-nitrosation (RSNO) [63]. Under a basal level of nitrosative stress,
a subgroup of proteins is S-nitrosated, supporting cell signaling cascades to protect the
nervous system. When RNS levels are increased, the S-nitrosation of additional protein
can bring misfolding, neuronal and synaptic injuring, the deregulation of mitochondrial
function, and apoptotic cell death [66]. Studies of S-nitrosated proteins in the brain tissues
of patients with AD, PD, and other disorders provide powerful arguments that this modi-
fication is associated with the pathogenesis of the disease [63,78]. An example is Hsp90:
Its S-nitrosation causes loss of its chaperone functions and promotes the accumulation of
β-amyloid and tau aggregates [79]. In the course of AD, the S-nitrosation of proteins affects
mitochondrial homeostasis and metabolism. One of the proteins that is abnormally S-
nitrosated in AD is a neuronal cyclin-dependent kinase (CDK5). The S-nitrosationed CDK5
transnitrosylates mitochondrial-fission protein DRP1, triggering the loss of dendritic spines
and neuronal injury [78]. The S-nitrosation of voltage-dependent anion-selective channel
protein 2 (VDAC2) inhibits its function, similar to the effect observed with VDAC1, leading
to impaired calcium ion influx into the mitochondria. Additionally, the S-nitrosation of
VDAC2 disrupts microtubule architecture, resulting in neuronal injury [78,80]. Pro2 is
another mitochondrial protein that is recognized as abnormally S-nitrosated in the AD. The
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modification of this protein impairs its detoxifying activity [81]. In PD, one of the identified
S-nitrosated proteins is parkin, the S-nitrosation of which markedly diminishes its E3 ligase
activity and protective function [78,82]. The S-nitrosation of parkin also suppresses its
inhibitory effect on mitochondrial fission protein DRP1 activation, resulting in increased
mitophagy and neuronal damage. Furthermore, it undermines its interaction with PTEN
induced kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase that preserves
cells from ROS-induced apoptotic cell death, preventing damaged mitochondrial clearance.
Mitochondrial proteins that are S-nitrosated in PD are prohibitin and peroxiredoxin 2.
Modifications of these proteins inhibit their antioxidant activities [78].

The homeostasis of divalent redox metal is of great importance in cell redox status
determination. Numerous studies have shown that metals are misregulated in neurode-
generative disorders [66,83,84]. In the brain, iron plays a key role in some physiological
functions, such as DNA synthesis, neurotransmitter metabolism, oxygen transport, and
mitochondrial respiration. Iron homeostasis is closely related to the neurodegenerative
process through NO overproduction and related to its ONOO− production. Aβ plaques,
similarly to tau tangles, contain significantly more iron in people with AD [76,85], as well
as the substantia nigra of PD patients [86]. NO can interact with proteins that contain [Fe-S]
clusters, for example, iron regulatory protein (IRP), and by this, influence their enzyme
activity [76]. The interaction with NO influences the binding of IRP to iron responsive
element (IRE), leading to modifications in the transcription of iron-metabolism-related
proteins. The inhibition of ferritin, protein, and amyloid-β precursor protein (APP), as well
as the activation of transferrin receptor proteins (TfR) and divalent metal transporter 1
(DMT1), causes an increase in intercellular iron levels. NO also influences iron homeostasis
not only by the regulation of IRP-IRE binding, but also by the S-nitrosation of divalent metal
transporter 1 (DMT1). The S-nitrosation of DMT1 enhances its activity, further contributing
to an increase in intracellular iron levels [76]. The homeostasis of metals is also associated
with neurodegenerative diseases. Both very high and low levels of zinc are linked with
the greater production of ROS and RNS. A decreased zinc level has been observed in the
serum of AD patients and has been connected to the greater deposition of Aβ in the brain.

2.2.2. Therapeutic Targets in Neurodegenerative Disease

The significant role of NO in the nervous system can result in the incorrect regulation
of NO, leading to various pathologies. Since the excessive activation of nNOS causes
high intracellular levels of nitrites and superoxides, which ultimately generate RNS, in-
cluding peroxynitrates, nNOS inhibitors are potential drug candidates for patients with
neurodegenerative disorders. The early tested inhibitors of NOS were arginine analogues.
Unfortunately, these types of compounds have shown poor selectivity, which is important
due to the significant role of eNOS in vascular regulation. Since the inhibition of the wrong
isoform of NOSs can cause undesirable side effects, many attempts have been made to
target nNOS selectively among the remaining isoforms. The identification of the nNOS
crystal structure was the driving force behind this [87]. Selective inhibition has been at-
tempted using various approaches, such as competitive inhibition (inhibition by mimicking
a substrate or cofactor), dimer inhibition, and CaM antagonism (preventing the reaction
between the enzyme and regulatory proteins). Specific examples of nNOS inhibitors are
discussed in detail by Mukherjee et al. [46]. Another perspective therapeutic approach
for many neurodegenerative disorders is the regulation of protein S-nitrosation. An ex-
ample is nitromemantine, a low-affinity voltage-dependent noncompetitive antagonist
in glutamatergic NMDA receptors. Nitromemantine causes a significant increase in the
S-nitrosation of the GluN1 subunit of the NMDAR [47]. Another potential drug named
CGP3466b blocks GAPDH nitrosation with no effect on enzyme activity, producing an
antiapoptotic effect. Recent studies indicate that SNO-GAPDH is involved in neuro-axonal
damage in neuroinflammation and recognize CGP3466B as a potential neuroprotective
agent in the treatment of multiple sclerosis [48]. For both nitromemantine and CGP3466B,
some desirable effects were observed due to the direct and specific changes in the formation
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of SNO-NMDAR and SNO-GAPDH, respectively. Nevertheless, more research is needed
to prove that their use can be safe and effective [88].

2.3. Nitric Oxide Role in Immunity

Nitric oxide plays an essential role within the human immune system [89]. Macrophages,
T cells, natural killer cells, and other cells of the immune system produce NO thought
the expression of iNOS, utilizing it as a toxic agent against infectious particles as a part
of the human immune system [90]. In response to appropriate stimuli such as bacterial
lipopolysaccharides and proinflammatory cytokines, other types of cells can also express
iNOS [91]. The cellular pathways leading to iNOS induction exhibit cell line-specificity.
Nevertheless, in the majority of cells, the activation of transcription factors NF-κB and
STAT-1a plays a pivotal role. These factors translocate to the nucleus and bind to the
promoter region of the iNOS gene, which triggers the protein expression [6].

The functions of NO produced by iNOS differ from NO generated by other NO syn-
thases (eNOS and nNOS). To be an effective anti-infectious agent, NO needs to be generated
for a prolonged period at high micromolar concentrations. Calcium-independent iNOS
can meet these requirements. The reactivity of NO is determined by its concentration,
duration of time, and surrounding environment. Within an inflamed setting, the simultane-
ous presence of elevated NO levels and superoxide results in the production of a highly
hazardous ONOO−. Produced RNS directly react with iron or thiol groups of crucial
enzymes responsible for DNA replication, repair, cellular metabolism, and mitochondrial
respiration [6,92]. The nitration of essential proteins, including cytochrome c, fibrinogen,
and MnSOD, has been reported both in vitro and in vivo [93]. Other examples of relevant
reactions include the inhibition of DNA synthesis due to Zn release via the S-nitrosation of
Zn-containing metalloproteins [94] or the inhibition of respiration due to the S-nitrosation
of critical thiols in mitochondrial complex I or GAPDH [95,96]. By interfering with such
diverse signaling pathways, produced RNS can successfully suppress pathogen replica-
tion [97]. The antimicrobial activity of NO has been reported against bacteria, fungi, and
even viruses, including the recent medical challenge of the SARS-CoV-2 virus [98,99]. High
NO levels have been utilized in anticancer therapy to exert antitumor effects [100,101]. The
protective role of NO is visible in the reports regarding the constitutive expression of iNOS
in human lung and paranasal epithelial cells [102,103]. The expression of iNOS in the upper
airways is integral to innate immunity, playing a vital role in preserving barrier integrity
and safeguarding against pathogen infiltration.

Although most studies focus on the immunological role of iNOS, the activity of eNOS
has also been implicated in immune regulation [104,105]. NO from eNOS is involved in T
cell activation via the S-nitrosation of Cys374 in β-actin [106]. In T cells, the activation of
eNOS further modulates the production of inflammatory cytokines [105]. When present in
low concentrations, NO selectively triggers the activation of sGC, leading to the induction
of interferon γ (IFN-γ) expression, but the reduction of the production of interleukin 2
(IL-2) [105,107]. IFN-γ strongly stimulates macrophages to produce high concentrations of
NO via the activation of iNOS [107]. This indicates that eNOS might have a crucial function
during the initial stage of immune responses before the involvement of iNOS-expressing
cells. However, the overall impact of eNOS in immunoregulation has not yet been fully
clarified, as various studies regarding the protective vs. disease-exacerbating functions of
eNOS have been reported [108–110].

The overall role of NO in immunity is not only anti-inflammatory [6,92]. A high con-
centration of NO is also linked to its immunosuppressive activity [111]. At high levels, NO
causes increased p53 molecule activity due to its phosphorylation and stabilization [112].
In the immune system, p53 blocks lymphocyte proliferation and causes macrophage apop-
tosis [111]. Additionally, at high dosages, NO blocks interleukin 12 (IL-12) signaling by
activated macrophages, which suppresses T cell functions [113,114]. This feedback mech-
anism illustrates the fine-tuning of the immune system by NO. At the early stage of the
infection, low levels of NO increase the development of T cells, which help to control



Antioxidants 2024, 13, 1213 10 of 39

infection development [107]. As a result of macrophage activation by IFN-γ, T cells would
subsequently enhance the levels of NO, resulting in the production of substantial amounts
of NO that possess cytotoxic activity. However, the excessive activation of T cells is associ-
ated with different immunopathologies. The selective inhibition of T cell development and
differentiation occurs in the presence of elevated levels of NO, while established T cells
remain unaffected by its effects [113]. The generation of NO by iNOS in activated T cells
further impairs interleukin-17 (IL-17)-producing T cells through the tyrosine nitration of
the transcription factor RORyt [115]. This way, NO elegantly regulates the intensity of the
immune response.

Several studies have implicated the involvement of NO in acute and chronic inflam-
mation. NO is associated with several known immunopathologies, including rheumatoid
arthritis, septic shock, and systemic lupus erythematosus [107]. Excessive NO levels are
reported in some viral diseases, including H5N1, the 1918 influenza viruses [116], and
HIV [117,118]. Reduced morbidity and mortality and a beneficial survival effect were
observed during in vivo studies of highly pathological influenza viruses after the systemic
use of NOS inhibitors in the groups of knock-out mice iNOS−/− [116,119]. NO produced
from iNOS is associated with the severity of ulcerative colitis in dogs [120] and plays a
role in the onset and persistence of inflammatory bowel disease [121]. Even cancer-related
pain is associated with the upregulation of iNOS and nNOS [122]. Various theories exist
about the role of iNOS during sepsis [123]. There is evidence suggesting the involvement
of iNOS in the pathogenesis of septic shock [124]. Its mechanism of action rests on vascular
collapse due to the massive amounts of NO and substantial overwhelming sGC activation.
Nevertheless, contrary findings from other in vivo studies have emerged, indicating no
significant influence of iNOS on the survival rate of mice in the septic shock model [125].

Given the numerous reports on the pathological role of NO overproduction in the
immune system, blocking NO production or signaling could have considerable therapeutic
benefits. Some in vivo studies have indicated that autoimmune diseases are delayed or
suppressed by the iNOS inhibitors’ administration [49,89]. Others report no improvement
in allergic encephalitis, autoimmune encephalomyelitis, or multiple sclerosis [55]. A variety
of specific and non-specific inhibitors targeting iNOS have been created and effectively
evaluated in preclinical models concentrating on systemic inflammation and pain [49,126].
Some of them even reached clinical trials, but failed. As of now, there are no approved
clinical iNOS inhibitors available [6,49]. The reason for that is probably an ambiguous
role of NO in the inflammatory process that is too complicated to simply “inhibit NO
production.” Several clinical trials have explored the use of inhaled NO as a treatment
strategy in COVID-19 patients, aiming to lower the frequency of mechanical ventilation
and intubation, improve oxygenation, and achieve other therapeutic benefits [50,51]. The
therapeutic potential of NO donors (GSNO, SNAP, SNP, and others) in the treatment of
autoimmune disease, inflammation, and stroke has also been evaluated. Some experiments
revealed that the administration of GSNO provided an anti-inflammatory effect by reducing
proinflammatory cytokine synthesis and endothelial–leukocyte interactions through the
inhibition of the NF-κB pathway due to its S-nitrosation [52–54]. The beneficial effect of
NO produced by UV irradiation was reported in human atopic dermatitis [55,56]. While
no NO-based immunotherapies have been introduced yet to treat inflammation or immune
diseases, the possibility of their introduction in the future is promising.

2.4. The Dual Role of NO in Cancer

The dual nature of NO, with both pro- and anticancer properties, presents challenges
in developing NO-based therapies and unraveling NO-dependent signaling pathways.
The biological impact of NO on cancer greatly relies on factors such as its concentration,
localization, and duration of exposure. Considering the involvement of NO in various
cancer-related processes, including tumor growth, invasion, migration, metastasis, and
angiogenesis, even slight alterations in its temporal and spatial concentration can have
important consequences. At low concentrations, NO is involved in protumorigenic mech-
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anisms, while high levels result in cancer cell death. The elevated expression of NOSs
has been observed in diverse epithelial tumors, including breast, lung, ovarian, prostate,
colorectal, and other cancer types, indicating the participation of NOSs in cancer cell sig-
naling pathways. Furthermore, iNOS has been reported as a negative prognostic factor in
various cancers [127,128]. Inflammation, which often coexists with cancer, can lead to high
levels of activated macrophages that produce NO. This alteration of signaling pathways
plays a pivotal role in the accelerated progression of cancer compared to healthy tissue.
To investigate the intricate biology of NO, exogenous NO donors known as amine-based
diazeniumdiolates, commonly referred to as NONOates, serve as valuable tools for study-
ing the chemical and molecular mechanisms involved. These compounds spontaneously
generate NO and mimic NO fluxes produced by NOS. Depending on the concentration of
NO, four different mechanisms of NO action in cancer have been recognized (Figure 2).
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When NO levels are low (<100 nM), NO-induced actions are mediated through direct
interaction via the nitrosylation of the heme group of sGC, which subsequently triggers the
synthesis of cGMP. Normal physiological levels of NO may be dysregulated by different
cancer-related processes. cGMP is involved in numerous biological processes, such as
angiogenesis and neovascularization, which are important in terms of cancer initiation
and progression. Kinetics studies revealed that in hypoxic solid tumors, NO is most likely
generated by constitutive eNOS [129,130]. K.-H. Lim et al. showed that eNOS can directly
activate the oncogenic Ras family of proteins via S-nitrosation at cysteine 118 [131]. This
process of nitrosation is correlated with an elevation in enzyme activity and is essential in
tumorigenic mechanisms [131–133].

The second level of NO (100–500 nM) is often referred to as nitrosative signaling.
At this NO level, the activation of specific cellular signaling leads to an increase in the
genomic instability, angiogenesis, proliferation, metastasis, as well as chemoresistance and
immunosuppression in aggressive tumors [134]. Signaling within this NO level occurs
though direct interactions, although with slow kinetics, involving nonheme iron and the
nitrosation of essential thiol groups in membrane proteins [135]. Due to the higher NO
and O2 solubility in lipids, the signaling events occur preferentially in membranes and
do not influence the downstream signaling reactions [134]. At this concentration, NO acts
as a hypoxia mimicking agent by stabilizing hypoxia-inducible factor HIF1α [136]. This
stabilization occurs through the inhibition of prolyl hydroxylases (PHD), which are Fe2+-
dependent enzymes responsible for HIF1α degradation [137,138]. Consequently, hypoxia
responsive elements (HREs) are activated [139], leading to the activation of various proteins
involved in metabolic signaling. Thus, NO induces a hypoxia-like state even when there is
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an adequate oxygen level present [134]. PHD-like enzymes not only are involved in the
inhibition of HIF1α activity, but also are capable of influencing the NF-κB pathway that is
important in the promotion and progression of tumor [140]. Iron metabolism at this NO
level is also regulated by the reaction of NO with other nonheme iron proteins, like iron
regulatory protein 1 (IRP1). NO stimulates the activity of IRP1 by directly targeting its
[4Fe-4S] cluster, promoting the cluster’s gradual disassembly and complete removal, which
increases iron uptake and decreases its secretion [141–143]. Ras and epidermal growth fac-
tor receptor (EGFR) might also be activated though RNS-mediated nitrosation though the
ligand-independent pathway in contrast with a lower level of NO. Such nitrosation leads to
the activation of the RAF/MEK/ERK pathway, which transports a signal of cellular surface
to the DNA in the nucleus. Ras activity can further be modulated by S-glutathionylation
at this NO level [134]. The S-nitrosation of another important group of enzymes matrix
metalloproteinases (MMPs) also greatly affects their function. The nitrosation of cysteine
residues in MMP9 releases Zn2+ ion, which is present in the enzyme active site, activating
MMP zymogen and, thus, promoting tumor growth and angiogenesis [144,145]. Nitrative
and oxidative modifications may also take part in the signaling at this NO level. Tissue
inhibitor of matrix metalloproteinases 1 (TIMP1) is the protein responsible for the prote-
olytic activity of matrix metalloproteinases (MMPs). At nitrosative signaling, the nitration
of TIMP1 is observed, which not only decreases its ability to inhibit MMPs’ activity, but
also activates pro-survival PI3k/Akt/BAD signaling [146]. Generally, at this NO level, the
activation of Akt, one of the critical proteins in many protumorigenic pathways, is observed
even in the absence of growth factors and associated ligands.

The next NO level is called nitrosative stress signaling and is defined by sustained
NO fluxes between 500 and 1000 nM. At this level, more indiscriminate nitrosation occurs.
This concentration of NO is involved in both antitumor (pro-apoptotic and cytotoxic) and
protumor (anti-apoptotic and pro-survival) effects [134,147]. One of the most important
events that occurs at this level is the activation of p53 [148,149]. The significance of p53 in
cancer becomes apparent due to the fact that it is highly mutated (>18,000 mutations) in
many different types of cancer and is often deactivated by several diverse mechanisms [150].
High concentrations of NO phosphorylate and stabilize p53 [90], illustrating the NO-
protective action against cellular damage due to the p53 activation of cell cycle checkpoints.
This signaling pattern is indicative of the wild-type form of p53, whereas mutated p53
may be unresponsive to the growth-arresting effects induced by elevated concentrations of
NO [136]. A similar tumor-suppressor effect is observed due to the S-nitrosation of another
enzyme, tissue transglutaminase (TG2) [144]. The protumorigenic effect of NO is evident
in various processes. The S-nitrosation of key DNA repair enzymes can modulate their
activity by disrupting the zinc finger motif, thereby decreasing the protective effect of p53
activation [151]. The interaction with NO causes the loss of the zinc ion and inhibits the
catalytic activity of human 8-oxoguanine glycosylase (hOGG1), which is responsible for
repairing 8-oxoguanine through base excision [152]. Additionally, NO inhibits caspase
activation and displays anti-apoptotic activity by reversibly S-nitrosating the cysteine
residue at the caspases’ active site [149]. Finally, at this NO level, the inhibition of NF-κB
signaling occurs due to the S-nitrosation of the cysteine 62 residue [153].

The fourth NO level is characterized by fluxes of NO with concentrations greater than
1 µM. These high locally generated concentrations of NO and ROS produce different forms
of RNS, which induce various modifications of DNA and proteins, leading to chemical
stress conditions [135]. The nitrosylation or oxidation of respiratory complex proteins
is induced by high levels of NO, causing the removal of iron from the [Fe-S] clusters
and resulting in mitochondrial depolarization [154]. The production of peroxynitrite due
to the reaction of NO with superoxide can irreversibly inhibit the enzymatic activity of
cytochrome c oxidase, inducing permanent damage to the mitochondrial respiration system
and leading to pro-apoptotic changes in cellular metabolism [155]. At this level of NO,
p53 does not orchestrate apoptotic cell death, but rather, activates necrotic processes. This
occurs due to the accumulation of p53 in the mitochondrial matrix, which triggers the
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opening of the mitochondrial permeability transition pore (PTP). Through direct interaction
between p53 and the PTP regulator cyclophilin D, necrotic cell death is activated [156].
Such high levels of NO occur physiologically within the macrophage microenvironment
and lead to apoptosis and mitochondrial dysfunctions that are relevant in fighting different
pathogens [134]. In the case of anticancer therapy, these chemical stress levels of NO play a
significant role in the patient’s response to diverse immunotherapy protocols.

NO-Based Therapeutic Approaches for the Treatment and Prevention of Cancer

The diverse roles that NO plays in cancer biology provide unique opportunities for
cancer treatment and prevention, ranging from regulating tumor growth and angiogenesis
to modulating the immune system’s response to cancer cells. Sustained low levels of NO
can create a favorable “zone” for the growth and promotion of cancer cells. Even a slight
shift in NO levels, whether higher or lower, can disrupt the conditions necessary for cancer
cell proliferation. Therefore, therapeutic anticancer strategies can include inhibiting NO
biosynthesis, as well as administering exogenous NO donors, depending on the stage of
cancer. Due to its involvement in various signaling processes, it is crucial to take precautions
to avoid any potential adverse systemic effects when utilizing NO-based therapies.

Given the significant role of iNOS in cancer, utilizing NOS inhibitors to regulate NO
levels and localization represents a promising therapeutic approach. Non-cancer human
studies have already evaluated the efficacy of small molecule iNOS inhibitors, showcasing
their potential for advancement into clinical trials targeting solid tumors. In preclinical
human melanoma models, the iNOS inhibitor N6-(1-iminoethyl)-L-lysine dihydrochloride
(L-nil) effectively suppressed melanoma growth by inhibiting NO generation both in vitro
and in vivo [57]. The suppression of cancer growth is linked to a reduction in the formation
of tumor microvessels, the inhibition of the antiapoptotic protein Bcl-2, and a synergistic
effect with conventional cisplatin treatment. Numerous other NOS inhibitors have un-
dergone comprehensive testing in various preclinical studies as potential therapeutics for
cancer treatment [157]. The results of phase 1/2 clinical trials of another pan-NOS inhibitor
L-NMMA (NG-monomethyl-L-arginine), in triple-negative breast cancer (TNBC) have
recently been published [58]. Chung et al. reported enhanced chemotherapeutic response
in patients with locally advanced breast cancer and metastatic TNBC when L-NMMA was
combined with taxane. Additionally, L-NMMA is being evaluated in phase 1b clinical trials,
in combination with the anti-PD1 humanized antibody pembrolizumab, for the treatment
of melanoma, non-small lung cancer, and several other types of solid cancers [59].

The second strategy is based on providing tumor cells with elevated levels of NO.
High dosage of NO can exert an anticancer effect by several different pathways, which can
be broadly classified into two categories: direct cell lysis and the reversal of multidrug resis-
tance [158]. A high concentration of NO may directly inhibit cancer cell growth through the
following mechanisms: (1) upregulation of the pro-apoptotic p53 pathway; (2) permeability
of mitochondria and release of cytochrome c; and (3) generation of ONOO−, which induces
cell cycle arrest, angiogenesis inhibition, cytotoxicity, and cell necrosis [60]. When high
fluxes of NO occur, a variety of RNS can be generated, which, in turn, cause the oxidation
and deamination of DNA bases, stand breaks, or cross-linking. Extensive research is cur-
rently being conducted to explore the anticancer potential of various major categories of
NO donors, such as organic nitrates, diazeniumdiolates, metal-NO complexes, furozans,
S-nitrosothiols, and syndonimines [60]. It is important to note that compounds that are
traditionally referred as NO donors vary vastly in their pharmokinetic and signaling prop-
erties, allowing for different types of anticancer treatments [158]. Preclinical and clinical
data on anticancer properties of several NO donors showed a beneficial therapeutic ef-
fect [62,158]. The drugs are able to enhance antitumor immunity and act as antihypoxic
agents, modulating cellular mechanisms that promote treatment resistance and enhance
survival. The immunosensitizing ability of NO donors has also been reported. The diazeni-
umdiolate DETANONOate sensitisized cancer cells to apoptosis though the inhibition of
NF-κB pathway due to the S-nitrosation of p50 [61].
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Another promising strategy in the battle against cancer is the combination of NO
donors with other anticancer therapies. Numerous preclinical and clinical studies have
demonstrated that NO donors have the potential to enhance the therapeutic efficacy of
various anticancer agents, including cisplatin, docetaxel, and carboplatin [60,62]. NO
donors usually sensitize chemo- and radioresistant cancer cells by stabilizing HIF1α, im-
proving blood flow and oxygenation. The pretreatment of cancer cells with NO donors
has the potential to enhance the activity of transcription factors like activator protein-1
(AP-1) and facilitate the translocation of NF-κB into the nucleus, leading to the increase
of the transcription of iNOS [159]. This, in turn, can generate even higher levels of NO,
resulting in the generation of cytotoxic levels of RNS. A synergetic effect between NO and
photodynamic therapy (PDT) sensitizers has also been reported [160,161].

Given the variety of roles NO plays in human physiology, every aspect of its delivery
(concentration, place, and time) should be precisely controlled. Currently, various nan-
odelivery systems for precise NO delivery are under development [60,158]. NO-based
anticancer therapy still has some severe unsolved issues. The biological mechanism of
action of NO donors and inhibitors needs additional study to fully evaluate the potential
and consequences of such treatment. Taking into account recent findings regarding the
involvement of NO in numerous diseases, it is crucial to thoroughly assess the risk–benefit
balance of such therapies. There is also an unresolved need for efficient delivery systems
that allow for full control of the release of NO. However, the treatment of cancers with
NO-based drugs alone or in combination with other types of therapies has a promising
future and deserves additional investigation.

2.5. Nitric Oxide in Clinical Studies

Several therapeutic strategies to restore NO disfunction are currently being tested in
clinical trials.

The role of NO in cancer and anticancer therapeutics was summarized in a recent
review by Mintz et al. [100]. The majority of strategies are based on the cytotoxic activity of
NO at high concentration. Several NO donors are being tested alone or in combination with
different anticancer drugs. The benefits of nitroglycerin, a known NO donor, are shown
in lung, prostate, liver, colon, and brain cancers [162]. The administration of arginine, a
NO precursor, is proven to enhance the effect of radiation in patients with solid tumors
and brain metastasis [163]. To improve the NO-based therapy of cancer, several strategies
such as the selection of a highly specific delivery system, the encapsulation of drugs, and
the on/off delivery technique can be used [164]. Another reported NO-based strategy to
treat cancer relied on the use of NOS inhibitors. An example is NG-monomethyl-l-arginine
(L-NMMA), a known NOS inhibitor, which, when combined with taxane, showed enhanced
survival in patients with triple-negative breast cancer and locally advanced breast cancer
(NCT02834403, [58]). Another combination of L-NMMA with pembrolizumab is supposed
to increase the response of the immune system in patients with a variety of different types
of cancer (NCT03236935).

NO donors are also good candidates for acute stroke treatment [165]. The treat-
ment with nitroglycerin in cases of acute stroke was associated with improved func-
tional outcomes, activities of daily living, cognition, and quality of life, and fewer deaths
(NCT00989716, [165]). NO administration in cases of cardiopulmonary bypass circuit during
cardiac surgery was associated with fewer incidents of acute kidney injury (NCT03527381,
NCT01802619, [166,167]). Several competitive inhibitors of iNOS were proven to be potent
pharmacological tools in cases of stroke, hyperalgesia, renal ischemia, and reperfusion
injury [168]. However, none of these compounds progressed into advanced clinical trials,
mainly due to severe preclinical toxicity or few therapeutic benefits.

Inhaled NO is well documented to improve oxygenation in a variety of pathological
conditions [169,170]. The use of inhaled NO has been popular during pediatric and adult
cardiac surgeries and lung and heart transplantations [171]. Unfortunately, numerous
clinical trials showed that the reproducible physiological benefits of inhaled NO do not
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translate into meaningful and prolonged clinical outcomes on morbidity and mortality.
The use of inhaled NO was left as a practice-based recommendation for the perioperative
management of difficulties in high-risk cardiac surgery [171].

The beneficial effects of NO inhalation during the treatment of patients with COVID-
19 infection was studied in a variety of clinical trials (e.g., NCT04306393, NCT04397692,
NCT04606407, NCT05430503, NCT05599919, and NCT05721144). Different NO-releasers
(R-107 and COViNOX) are currently being studied in clinical trials (NCT04421508, [172]).
A rapid effect on greater RNA reduction was shown with the use of nitric oxide nasal
spray (NONS) in non-hospitalized adult Asian patients, where patients reached negative
RT-PCR status four days earlier than the placebo group [173]. However, no randomized
controlled data regarding the use of inhaled NO in COVID-19 are currently available, and
published data are largely derived from retrospective and cohort studies [174]. Observed
improvements in oxygenation did not always translate into significant clinical outcomes.
Therefore, current clinical guidelines do not routinely recommend NO use in COVID-19
patients. The use of NO should be considered on an individual basis.

Increased interest in the scientific community is attached to the dietary supplemen-
tation of nitrate. Recently, numerous clinical studies demonstrated the benefits of beet-
root juice supplementation for enhancing exercise tolerance, reducing blood pressure,
decreasing inflammation (NCT04584372, [175]), protecting against cold symptoms, and
reducing negative indicators of stress (NCT03159273, [176]). A single dose of microen-
capsulated watermelon ring rich in L-citrulline improved vascular function in young
adults (NCT04781595, [177]). The supplementation of inorganic nitrate (KNO3) in pa-
tients with acute coronary symptoms decreased the rate of contrast-induced nephropathy
(NCT03627130, [178]).

The majority of clinical trials regarding NO modulation in pathological conditions
failed to show significant therapeutic benefits despite undisputable physiological benefits.
Many of these trials have only been conducted with a low number of patients or failed due
to inadequate study design. The efficiency of NO modulators in vivo may be insufficient to
achieve therapeutic benefits in clinical trials, probably due to inappropriate safety, NOS
polymorphism, or lack of tissue specificity. Another reason for the lack of success in clinical
trials may be differences in disease pathomechanisms in different species, which may
explain why preclinical animal models are not sufficiently predictive. Better mechanistic
understanding of the role of NO is needed, as well as suitable delivery systems coupled
with appropriate trial designs.

3. NO Signaling in Aging

Aging is a fundamental biological process that negatively affects tissue functions and
increases the risk of numerous age-related conditions, including heart diseases, ischemic
stroke, diabetes, dementia, and cancer. Given the involvement of NO as a signaling
molecule in nearly all cellular processes, extensive research is dedicated to understanding
its role in cellular senescence and the aging process. Strong evidence of NO’s involvement
in the aging process has been reported. Montesanto et al. reported that gene variations
in nitric oxide synthases are associated with age-related phenotypes and longevity [179].
Gene variations of nNOS and iNOS are associated with declined cognitive and physical
performance. Single-nucleotide polymorphisms in nNOS and eNOS genes are also linked to
quality of life among older individuals, such as occurrences of depression and disabilities.

The endothelial dysfunction that is often observed during aging is caused by the
diminished availability of NO, particularly in pathological states like atherosclerosis, hy-
pertension, and hypercholesterolemia [5]. Studies show that NO production declines with
age not only in pathological states, but also in healthy aging [179,180]. Decreased activity
or abundance of eNOS, reduced supply of Arg, increased concentrations of NOS inhibitors,
and/or facilitated processes of NO scavenging or degradation could explain this decline.
The endothelial NO production has a protective function against apoptosis by inhibiting
the vital family of proteins caspases via the S-nitrosation of their critical cysteine [181,182].
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Therefore, decreased NO generation in older individuals leads to reduced overall SNO
protein signaling and age-dependent increased vulnerability to apoptosis.

The “free radical theory of aging” proposes that aging occurs due to the progressive
buildup of harmful and irreversible DNA, protein, and lipid damage caused by ROS and
RNS [183]. The levels of nitrated proteins, which serve as markers of nitrosative stress
damage, tend to increase with age [184]. The specific 3-nitrotyrosine nitration of proteins
involved in energy metabolism, calcium homeostasis, and signal transduction in aging
skeletal muscle has been reported [183,185]. This specific modification deactivates such im-
portant enzymes as tyrosine hydroxylase, copper/zinc superoxide dismutase (Cu/ZnSOD),
and manganese superoxide dismutase (MnSOD) [183]. Another study showed a notable
escalation in protein oxidative and glycoxidative damage throughout the aging process of
the human brain, reaching a critical point at the age of 60 [186]. S-nitrosation is a more spe-
cific oxidative modification of proteins. Unlike other oxidative proteins’ modifications, its
level may depend not only on the activity of nitrosylases and denitrosylases, enzymes that
specifically add or remove NO groups, but also on the whole homeostasis of S-nitrosated
proteins in the cells [183,187].

Among other significant biological changes, aging is characterized by impaired en-
ergy metabolism [188]. In cells, mitochondria have several critical functions, including
energy generation through oxidative phosphorylation, calcium homeostasis, the synthe-
sis of lipid and iron–sulfur [Fe-S] clusters, the production of ROS, and the induction of
apoptosis [189]. According to the “mitochondrial theory of aging,” the gradual decline in
mitochondrial functions triggers a series of detrimental reactions that adversely affect all
cellular organelles [183]. Mitochondria, being a source of superoxide anions within cells,
provide a plausible foundation for the generation of peroxynitrite through its reaction with
NO [181]. The decomposition of protonated peroxynitrite can cause an extensive amount
of tyrosine nitration in mitochondrial proteins. This critical post-translational modification
has been recognized in a variety of mitochondrial proteins, affecting their structure and
function, and the metabolic destination of the proteins (Figure 3) [5,190]. NO has a strong
affinity to Fe2+ and, even at remarkably low concentrations, binds to heme-containing
cytochrome a3, forming a nitrosyl-heme center, which significantly inhibits mitochondrial
respiration [190]. The direct reaction of NO with iron in the [Fe–S] centers in complexes I
and II can damage them by removing iron, oxidizing the iron–sulfur bonds, or both [190].
Another way that NO can decrease the activity of complex IV is through noncompetitive
binding to the dinuclear copper center found in cytochrome c oxidase [190]. The abnor-
mal S-nitrosation of proteins in mitochondrial complexes could cause severe dysfunction
in these organelles [182]. Dynamin-related protein 1 (Drp1) is one of the proteins that
regulates mitochondrial fission. Its functionalization regulates several post-translational
modifications like phosphorylation, ubiquitination, and S-nitrosation. The overproduction
of NO triggers the S-nitrosation of another mitochondrial protein, parkin, leading to the
upregulation of Drp1 [191]. Additionally, the influx of NO causes the phosphorylation of
Drp1 Ser616 and an increase in mitochondrial fission [191]. These processes are linked to
the development of Parkinson’s disease, a common neurodegenerative disease in elderly
people [189]. The elevated level of S-nitrosated Drp1, often upregulated in aged cells,
leads to mitochondrial fragmentation, impairs energy metabolism, and induces synaptic
damage [189]. The S-nitrosation of the essential mitochondrial chaperone TRAP1 causes
its subsequent degradation, changing mitochondrial homeostasis and causing metabolic
reprogramming [192].

Another theory that attempts to explain the cause of aging focuses on the importance of
cellular signaling responses in reaction to stress and damage. The dysregulation of signaling
due to the formation of S-nitroproteins could serve as an example. S-nitrosoglutathione
reductase (GSNOR) regulates intracellular levels of S-nitrosoglutathione and influences
the extent of proteins’ S-nitrosation by denitrosylating target proteins [193,194]. Proteomic
analysis revealed increased amounts of S-nitrosated proteins associated with neuronal
and synaptic processes within the adult cortex and striatum [195]. These proteins play
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significant roles in the development of neurological and neurodegenerative disorders that
often occur with age. For example, neutral cell adhesion molecule 1 (NCAM1), endocytic
protein dynamin 1 (DNM1), soluble N-ethylmaleimide-sensitive-factor attachment protein
receptors (SNARE proteins—SYB and SNAP25), and SNARE-associated proteins (CPLX1,
SYN1, and MUNC18) can be mentioned. Additionally, the same study revealed a large
number of S-nitrosated phosphatases and kinases [195]. These enzymes participate in a
large number of signal transduction cascades. The S-nitrosation of these proteins induces
an inhibitory effect on their activity, therefore modulating signaling in diverse cellular
processes. Other modifications of the proteins, such as nitration and carbonylation, have
been identified in the brains of aging rodents and humans [183,186,196].
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Interestingly, GSNOR expression and activity are also affected by S-nitrosation since
it is a cysteine-rich protein [194]. The decreased expression of GSNOR has been found
in senescent cells during the aging process in both rodents and humans [197,198]. The
elevated levels of S-nitrosated proteins involved in mitochondrial dynamics and mitophagy,
such as parkin and Drp1, can be attributed to the decreased activity of GSNOR [197,198].
Unfortunately, conflicting reports regarding changes in GSNOR expression with age exist
in the literature [199,200]. Zhang et al. reported the increased expression of GSNOR
in the hippocampus of aging humans and mice [201]. Their results further showed the
decreased S-nitrosation of hippocampal CaMKIIα protein, a key enzyme involved in
memory formation and synaptic plasticity. Further studies suggested that GSNOR, through
an S-nitrosation/denitrosation mechanism, may modulate other phenotype functions
strongly influenced by age, such as muscle fatigue resistance and regenerative activity
in the adult heart and liver. Y. Moon et al. revealed that GSNOR-deficient muscles were
stronger and more fatigue-resistant, possibly due to the hypernitrosation of RyR1, a protein
that regulates Ca2+ release and force development [202]. Other findings revealed that
GSNOR-deleted cells exhibit a multifaceted cardioprotective response after post-myocardial
infarction [203] and enhanced tissue regeneration after injury [204]. The up- or down-
dysregulation of GSNOR is reported in a few other diseases such as cancer, cardiovascular,
immune, asthma, and neurodegenerative diseases [194]. Due to such conflicting data, the
GSNOR level may be subject to tight physiological regulation, making it a challenging
therapeutic target [194,197].
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The sirtuins (SIRT) family of proteins has been fully recognized as the main genes/protein
machinery that regulates the mechanisms of aging and chronic diseases related to it, like
Alzheimer’s disease, Parkinson’s diseases, and diabetes [90]. Sirtuins, functioning as
NAD+-dependent histone deacetylases (HDACs), actively participate in various cellular
processes including cell cycle regulation, fatty acid metabolism, gene transcription, and
cellular stress response [90,205]. SIRT1 plays a crucial role in controlling cellular senescence
and exhibits an anti-aging effect through the mitigation of inflammation and oxidative
stress. The expression of SIRT is regulated by caloric restriction and physical activity.

Enhanced deacetylase activity in SIRT is linked to extended lifespan and improved
healthspan in eukaryotes, whereas reduced activity is associated with an elevated sus-
ceptibility to aging-related diseases [91]. Despite the variety of positive age-regulated
processes involved in SIRT, some conflicted data regarding their activity are present in the
literature [90]. Enhanced NO production induces the S-nitrosation of SIRT1, which impairs
the substrate binding and enzymatic activity of SIRT1. This post-translational modification
is linked to the release of Zn2+ from the conserved zinc-tetrathionate site in sirtuins, leading
to the disruption of the protein’s α-helical structure [206]. The S-nitrosation of SIRT1 can
cause an abnormal activation of p53 and NF-kB that can contribute to various age-related
disorders [207]. The denitrosation of SIRT1 can only occur in the presence of Zn2+ ions, and
this process can fully restore the SIRT1 activity.

Aging is a cumulative process wherein damage accumulates over time to a critical
point, leading to different age-related diseases and mortality. NO exerts regulatory effects
on multiple cellular processes during aging. Several natural and synthetic therapeutic
agents that affect NO signaling are tested as possible intervention strategies to decrease
aging [5]. Their activity is often based on the increase in the bioavailability of NO through
upregulating the expression of eNOS or nNOS, inhibiting the activity of iNOS, and sup-
pressing the production of ROS and pro-inflammatory cytokines. However, considering the
complicated involvement of NO in the aging process, a multitarget agent that can modulate
NO levels, reduce chronic inflammation, decrease oxidative stress damage, and improve
immune system functionality would have a beneficial effect on human health.

4. Sensing

The early detection and quantification of in vivo NO remain challenging due to NO’s
instability, rapid reactivity, and low concentration in biological systems. Existing methods
for detecting NO are often insufficient, demanding the development of innovative, non-
invasive diagnostic tools capable of identifying disease progression at its early stages. This
section focuses on the various techniques employed for detecting NO in these contexts,
emphasizing their application, relevance, and potential for evaluating disease progression.

4.1. Cardiovascular System

Identifying the progression of cardiovascular disease early on remains a significant
challenge in modern medicine, as current diagnostic methods typically detect the condition
only in its advanced stages. Detecting the disease at these later stages results in less
effective treatment outcomes. This fact underlines the need to develop and apply non-
invasive techniques capable of recognizing the initial phases of cardiovascular illness.
Existing diagnostic methods are not always reliable, and the precise etiology of the different
diseases remains poorly understood [208]. Designing an accurate nitric oxide sensor for
the human cardiovascular system is challenging due to several factors related to NO’s
properties, sensor characteristics, and imaging limitations. Reported NO concentrations
in tissues vary between studies and are influenced by the quantification methods used.
Due to the broad concentration range (pM–µM), there is no universal sensor for NO that
can be effectively used across different cells or tissues under various physiological and
pathological conditions [209].

One approach of evaluating NO levels in cardiovascular diseases is through analyzing
the patient’s exhaled breath. The ability to diagnose and treat various diseases using NO
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levels in exhaled breath has been significantly advanced by the development of accurate
measurement technologies. NO was initially identified in exhaled air in humans, rab-
bits, and guinea pigs in 1991 using the chemiluminescence method [210]. Studies have
investigated fractional exhaled NO as a potential biomarker for several diseases, including
pulmonary hypertension [211,212], atherosclerosis (in patients with stable ischemic heart
disease) [213], and adult congenital heart disease [214]. The chemiluminescence method
is considered a “gold standard” technique when it comes to the detection of gas phase
NO [215]. This technique involves the reaction of NO with ozone (O3) within a vacuum
chamber, resulting in the formation of electronically excited nitrogen dioxide (NO2*). As
NO2* molecules relax to their ground state, they emit photons that are detected by a photo-
multiplier tube, generating a signal that is linearly correlated with the NO concentration
in the sample when O3 is in excess. Chemiluminescence equipment offers several key
advantages, including a detection threshold of parts per billion, fast response times of 0.5
to 0.7 s, and the ability to analyze exhaled breath directly in situ. The chemiluminescence
analyzers currently on the market are Sievers NOA 280i (GE Analytical Instruments, Boul-
der, CO, USA), Logan model LR2149 (Logan Research, Rochester, UK), NIOX (Circassia,
Oxford, UK), and CLD 88 (Eco Medics, Duernten, Switzerland) [216]. Another method
of analyzing exhaled breath is electrochemical detection, which functions by converting
the concentration of a gas into an electrical signal. The breath sample is transferred to the
sensor, where the target gas undergoes a chemical reaction facilitated by an active catalytic
sensor, resulting in a measurable change within the electrical circuit. The signal is directly
proportional to the partial pressure of NO, and consequently, to the NO concentration
in the sample [215]. Achieving optimal NO selectivity and sensitivity in exhaled breath
samples requires careful consideration of catalyst and electrolyte composition, along with
a specialized chemical filtration system. Electrochemical methods often face difficulties
in terms of selectivity, stability, and operational lifespan. Several commercially available
electrochemical and infrared sensor devices include the NIOX VERO (Circassia), NObreath
(Bedfont Scientific, Maidstone, UK), and Vivatmo-PRO (Bosch Healthcare Solutions GmbH,
Waiblingen, Germany) [216].

Furthermore, extractive electrospray ionization mass spectrometry has been investi-
gated as a potential method for analyzing breath samples [217]. The concentration of NO is
determined by measuring the response of the product formed from the reaction between
2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) and NO molecules using
electrospray ionization mass spectrometry. In this simple chemical reaction, PTIO oxidizes
NO, producing NO2 and 1-oxyl-2-phenyl-4,4,5,5-tetramethylimidazoline (PTI) (Figure 4).
While this method exhibits high selectivity and a low limit of detection (0.02 ppb), and is
less susceptible to matrix effects and ion source contamination, its practical application for
online measurement is limited by the extended sample collection process and the necessity
of using solvents.
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Another method of examining nitric oxide in breath samples is based on laser tech-
nology [218]. Laser spectroscopy has emerged as a leading choice for high-performance
sensing research and application, owing to its rapid response times, high sensitivity, and
specificity. Laser spectroscopy sensors typically consist of a laser source that emits light, a
gas cell containing the sample to be analyzed, and a detection system to measure the inter-
action between the light and the nitric oxide molecules. Laser-based techniques, including
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tunable diode laser absorption spectroscopy (TDLAS), the Faraday rotation spectroscopy
(FRS), quantum cascade laser (QCL) technology, cavity-enhanced absorption spectroscopy
(CEAS), and quartz-enhanced photoacoustic spectroscopy (QEPAS), offer high selectivity
and quick response times for detecting target compounds, but the requirement for laser
sources can lead to a substantial rise in instrument costs, along with challenges related to
spectral degradation [219]. Recent applications of laser-based techniques offer the detection
of nitric oxide isotopes and the simultaneous detection of different molecules such as
carbon dioxide [220,221]. In summary, due to its simplicity, speed, non-invasive nature, and
widespread availability, the procedure of analyzing NO in exhaled breath can serve as a
valuable diagnostic tool for clinicians, as well as a means of monitoring disease progression
and treatment response.

In both cultured cells and in vivo settings, several methods are commonly employed
for the detection of nitric oxide. Among these, electrochemical sensors are particularly
versatile, being suitable for both in vivo and in vitro applications. In an electrochemical
sensor, nitric oxide is detected through either electroreduction or electrooxidation processes.
Due to the presence of numerous potential interferents, such as endogenous nitrite, ascor-
bic acid, hydrogen peroxide, and glutathione, the selectivity of electrochemical sensors
depends heavily on the use of permselective membranes [222]. These membranes function
by allowing only low molecular weight gases to pass through, by employing electrostatic
charge repulsion to distinguish between positive and negative ions, or by using hydropho-
bic polymers that significantly enhance the selectivity for NO. The effectiveness of NO
detection is closely linked to the choice of electrode materials and surface modifications,
with recent advancements highlighting the use of graphene nanostructures to enhance
electrocatalytic activity [223]. One of the first examples of the direct application of electro-
chemical sensors for NO detection in cardiovascular condition occurred in 2010, when a NO
sensor mounted in a catheter was inserted into the great cardiac vein, allowing real-time
NO detection in the coronary circulation under the influence of acetylcholine. This study
confirmed the impairment of NO in patients with nonischemic dilated cardiomyopathy
and, therefore, demonstrated the potential clinical utility of NO sensors in assessing en-
dothelial function for people with heart disease [224]. In another instance, an NO sensor
demonstrated the ability to detect NO in a thin layer of human umbilical vein endothelial
cells (HUVECs) subjected to shear stress, which is one of the factors in the development of
atherosclerosis [225]. In 2020, Li et al. successfully designed a flexible, biodegradable NO
probe. This wirelessly operated electrochemical sensor was able to effectively measure NO
concentrations in cultured cells and organs. Furthermore, when injected into a rabbit, it
enabled the real-time monitoring of NO levels for several days [226].

Similarly, electrochemical nanosensors have been developed for the simultaneous,
real-time measurement of both NO and ONOO− at the single-cell level. These nanosensors,
with diameters ranging from 200 to 300 nm, have an exceptional detection limit of 10−9 M
and a response time below one millisecond. Their ability to assess the NO/ONOO−

balance in normal versus dysfunctional endothelial cells revealed significant imbalances
in hypertensive and diabetic rat models, where reduced NO and elevated ONOO− levels
indicated endothelial dysfunction. This application underscores the diagnostic potential of
these nanosensors in detecting early signs of cardiovascular diseases and guiding targeted
therapies [227]. In general, this development highlights the increasing versatility and
effectiveness of electrochemical sensors and nanosensors in accurately monitoring NO and
related molecules in a variety of biological environments, supporting both basic scientific
research and practical clinical applications in cardiovascular health.

Another approach for detecting NO involves the use of molecular fluorescent probes.
A number of organic and transition-metal complexes have been described in the literature
concerning fluorescent NO detection [228]. The most well-known compounds for NO
detection involve the utilization of o-diamino aromatics under aerobic conditions [229].
o-Diamino aromatics react with NO in the presence of oxygen to form fluorescent triazole
derivatives (in the absence of NO, the fluorescence of the fluorophore is quenched by
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photoinduced electron transfer). When it comes to fluorescence-based NO detection in vivo,
the imaging of NO is limited by an inability to specifically introduce the active sensor to
the tissue of interest, with quantification typically being performed postmortem. A recent
example of a fluorescent probe used in studies related to cardiovascular diseases could be a
two-photon fluorescent molecular probe that is able to detect NO in live cells [230]. DANPY-
NO is a 1,8-naphthalimide two-photon fluorophore conjugated to an o-phenylenediamine
unit and a carbonyl-piperazine fragment. It is characterized by good photostability, pH
insensitivity, and high quantum yield. The probe was effectively employed for the selective
detection of intracellular endogenous NO generated by iNOS and eNOS across various cell
types, including mouse macrophages, human leukemic cells, primary mouse macrophages,
and endothelial cells. Chen et al. [231] developed a BODIPY-based (boron-dipyrromethene)
fluorescent probe that enabled the study of the interplay between NO and glutathione. This
probe exhibited yellow fluorescence in the presence of NO, followed by a red shift upon
reaction with GSH, marking the first instance of a probe that could simultaneously detect
these two molecules. The authors successfully visualized NO-induced GSH upregulation
in pravastatin-treated HUVECs. In a related advancement, Liu et al. introduced an
anthracene carboxamide-based sensor, AC-SA, which represents the N-nitrosation-based
ratiometric sensor. Ratiometric probes offer an internal correction mechanism to minimize
experimental artifacts resulting from factors like instrumentation and photobleaching.
The AC-SA sensor was effectively utilized for endogenous NO fluorescence imaging in
RAW 264.7 macrophage cells [232]. In addition to analyzing exhaled breath samples,
mass spectrometry—specifically, membrane inlet mass spectrometry (MIMS)—enables the
real-time, continuous monitoring of dissolved nitric oxide (NO) [233]. MIMS employs
membranes that are selectively permeable to uncharged, low molecular weight molecules
such as NO. Polymer membrane acts as a barrier between the aqueous sample and the
vacuum chamber of the mass spectrometer. Volatile compounds dissolved in the sample
diffuse through the membrane into the vacuum system, where they are analyzed by the
mass spectrometer. A key advantage of MIMS lies in its stability, as it is minimally affected
by temperature fluctuations, while also facilitating the simultaneous detection of other
gases such as oxygen and carbon dioxide [234]. According to Tu et al., membrane inlet
techniques can be effectively used for physiological measurements in both in vitro and
in vivo settings, with the probe capable of being inserted into blood vessels [234].

4.2. Neurodegenerative Disease

Nitric oxide, due to its versatile role in the nervous system as a biological mediator,
modulator, and effector, holds significant potential as a biomarker for the progression
and diagnosis of neurodegenerative diseases. Some of the previously used methods in-
volve the detection of NO in cerebrospinal fluid (CSF) by electron paramagnetic resonance
(EPR) [235–237] or by measuring NO oxidation products like nitrite [238–240]. However,
recent developments focus on the in situ detection of NO. Among the methods for direct
detection, electrochemical sensors are highly effective. One example is the metallopor-
phyrin nanosensors constructed by Alsiraey et al. [241], which are suitable for the single-cell
detection of NO. The sensor is based on carbon fibers that provide a conductive base and is
coated with a layer of metalloporphyrin to enhance selectivity and sensitivity to NO. The
nanosensor works through an electrochemical reaction wherein NO, released by neurons
or other cells, is oxidized at the sensor’s tip. This reaction generates an electrical current
proportional to the concentration of NO. The current is measured using a three-electrode
system consisting of a working electrode (the NO sensor), a reference electrode (Ag/AgCl),
and a counter electrode (platinum). Numerous novel probes have been developed to
facilitate the in situ imaging of NO and ONOO− in both in vivo and in vitro models, with
the goal of advancing diagnostic tools for neurodegenerative diseases. One example of NO
in situ imaging, developed by Brandov et al., is a manganese-based probe MnL1F called
NORA (NO-responsive agent) (Figure 5) [242]. This probe enables specific NO detection
using MRI techniques due to NO-induced reduction in longitudinal relaxivity (r1) of the
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manganese (III) N,N′-(1,2-phenylene)bis(5-fluoro-2-hydroxybenzamide) complex. NORA
was tested in vivo in a lipopolysaccharide (LPS)-induced neuroinflammation model using
Sprague−Dawley rats. The probe was successfully applied as a contrast for NO detection
in the inflamed brain tissue.
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There is also great progress in the development of fluorescence-based probes. These
probes are frequently characterized by the use of two-photon excitation and spectrum shifts
into the NIR range, enabling deep tissue imaging—essential for in vivo studies [243–246],
e.g., a NIR fluorescent probe JQ-2 (Figure 6A) [243] that is suitable for imaging ONOO−

in PD models. Probe structure is based on dicyanoisophorone-derivative fluorophore,
which is quenched by a benzeneboronic acid pinacol ester moiety also responsible for a
specific reaction with ONOO−. It was applied for a ratiometric measurement of ONOO−

in human cervical cancer (HeLa) cells and zebrafish rotenone-induced PD, offering both
high sensitivity and selectivity with a low detection limit. Another example is the BT-NH
probe (Figure 6B), which targets NO by standard o-phenylenediamine N-nitrosation and is
characterized by deep-red fluorescence thanks to benzo-bis(1,2,5-thiadiazole) fluorophore,
enhanced by the formation of triazole. BT-NH shows promise in the diagnosis of PD, as it
was tested in human neuroblastoma cells (SH-SY5Y) and Parkin-Null Drosophila [245]. One
more example is the NIR-PN1 probe (Figure 6C) that demonstrated an excellent sensing
performance of ONOO− and the ability to penetrate the blood–brain barrier (BBB) in PD
in vivo models such as Drosophila, C. elegans, and the brains of C57BL/6 mice. NIR-PN1
utilizes dicyanoisophorone-based NIR fluorophore quenched through PET mechanism via
p-aminophenol moiety that is released after a reaction with ONOO−. This highlights its
significant potential not only to explain the biological roles of peroxynitrite in PD, but also
for the early diagnosis and treatment of the disease [246].

Many of these probes address the issue of low NO concentration by specifically
targeting organelles such as lysosomes and mitochondria [247–249]. A proper example
is the ER-ONOO probe (Figure 6D) with a two-photon excitation mechanism, targeting
ONOO− generated in the endoplasmic reticulum (ER) [244]. For targeting ER, Yan et al.
used p-toluenesulfonamide linked to 1,8-naphthalimide fluorophore quenched by the
ONOO− sensing group—4-amino-2-methoxyphenol. It was studied in PD models of
rat clonal pheochromocytoma cells (PC12 cells) and C. elegans. Recently, Golgi-targeted
probes have emerged as powerful tools in diagnosing neurodegenerative diseases like
Alzheimer’s and Parkinson’s [250–252]. Unlike traditional probes that typically monitor
NO concentration changes in the cytoplasm or mitochondria, Golgi-targeted probes focus
on detecting dysfunctions within the Golgi apparatus. Given that the Golgi apparatus
is affected in neurodegenerative diseases and is rich in nitric oxide synthase [253,254], it
is recognized as a critical site of early pathological changes in these conditions. Probes
such as Gol-NO (Figure 7A) [251] and Golgi-NO (Figure 7B) [250] have been studied
in vitro and in vivo in neurodegenerative disease models. Gol-NO is a turn on/off probe,
activated by the reaction of NO with the thiosemicarbazide group that is also responsible for
quenching aminoquinoline-derivative fluorophore. Released thiosemicarbazide after the
reaction with NO ceases to quench the fluorescence of 4-phenyl-2-(trifluoromethyl)quinolin-
7-amine. Leftover aminoquinoline is characterized by a green fluorescence (maximum
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520 nm) and is responsible for targeting Golgi apparatus. The probe was tested in a
rotenone-induced PD model of PC12 cells and zebrafish, showing rapid response to NO.
In Golgi-NO probe, for the purpose of the specific targeting of the Golgi apparatus, 4-
sulfamoylphenylamide was used and linked to the 6-carboxyl group of 6-carboxyrhodamine
B moiety. O-diaminobenzene attached to the 2-carboxyl, after the reaction with NO, leads
to the opening of the spirolactam, activating the probe’s green fluorescence (max 589 nm).
Golgi-NO was tested in a cellular model of AD by the incubation of SH-SY5Y cells with
amyloid β (Aβ42), indicating an increase in NO concentration in the Golgi apparatus.
Although these probes demonstrate high specificity and sensitivity in NO detection, their
primary limitation is a low Stokes shift, which does not align with the typical optical
window required for imaging in deeper tissues. This limitation is addressed by the TJ730-
Golgi-NO probe (Figure 7C), which features a large Stokes shift of 158 nm, making it
more suitable for such applications [252]. Similar to Golgi-NO, TJ730-Golgi-NO utilizes a
thiosemicarbazide for Golgi targeting and spirolactam ring opening in rhodamine TJ730,
as well as oxadiazole formation after the reaction with NO, leading to the activation of
the probe.
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Recent developments in imaging technology have also introduced the use of pho-
toacoustic imaging (PAI), a novel method combining optical excitation with ultrasonic
detection [255]. The photoacoustic (PA) effect offers rich contrast, high resolution, and
deep tissue penetration, making it an improvement over traditional fluorescence imaging.
This advancement has gained significant interest in the detection and imaging of small
biomolecules such as NO, ONOO− and HNO [255]. Examples include a dual-modal probe
Ql-HNO (Figure 8A) [256], which integrates both photoacoustic and fluorescence imag-
ing due to a hemicyanine-based fluorophore turned on by the HNO-induced cleavage
of triarylphosphine moiety. This probe allows for the tracking of HNO in vivo through
complementary imaging techniques, offering high spatial resolution and sensitivity. The
PANO2 probe (Figure 8B), developed by Jiang et al. [257], marks a significant breakthrough
in brain imaging due to its ability to cross the blood–brain barrier. The PANO2 CF3-BODIPY
core of the probe exhibits a highly selective ratiometric response to NO, enabling the high-
resolution imaging and quantification of NO levels and minimizing the interference from
the background signal throughout the entire brain in PD models of living mice. The probe’s
ability to image NO at depths of up to 8 mm in the brain facilitates detailed visualization
of NO distribution. The probe also has great physicochemical properties, such as water
solubility and low molecular weight, making it a highly promising tool for visualizing NO
dynamics in neurodegenerative diseases.
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Rather than in situ imaging, change in the levels of these metabolites can be measured
in biological samples, like CSF and blood serum with chromatography or immunoassay
methods [258–260]. For instance, 3-NT, a marker of nitrative stress, was controlled in
CSF to assess its role in diseases like AD. In a study by Ryberg et al. [259], 3-NT levels in
CSF were measured by gas chromatography with mass spectrometer detection (GC-MS).
However, this study revealed that most patients with AD did not exhibit elevated 3-NT
levels in their CSF, indicating that free 3-NT in CSF may not be a reliable biomarker for
this specific disease, which contrasts with the situation in PD, where significantly higher
concentrations of 3-NT in both CSF and serum were present [258,261]. In the case of
these studies, 3-NT levels were measured using a commercially available 3-NT ELISA kit.
Although the differences between 3-NT in AD patients were not significant, studies of the
proteome of S-nitrosylated proteins by mass spectrometry in AD have demonstrated a
correlation between the S-nitrosation of proteins critical for synaptic function and amyloid
formation and the progression of the disease [262,263]. One notable technique, described
by Seneviratne et al. [262], is the SNOTRAP method, which enables the detection of all
S-nitrosylated proteins by specific reaction with the triphenylphosphine thioester probe
linked with biotin, offering a comprehensive view of the SNO-proteome in brain tissues.
Although this method has not yet been applied to biological samples like blood serum, it
suggests that profiling the SNO-proteome could serve as a diagnostic tool and potentially
identify therapeutic targets for early intervention in AD.
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4.3. Sensing in Cancer

Determining NO concentration is vital in cancer diagnosis because it is involved in
various biological processes that influence cancer development and progression. Different
methods exist for detecting NO, including UV-visible spectroscopy, EPR, chemilumines-
cence, fluorescence, imaging, and electrochemical techniques [264,265]. Among these,
fluorescent probes, photoacoustic techniques, and electrochemical methods are the most
widely used due to their sensitivity, selectivity, and ability to provide the real-time monitor-
ing of NO levels in biological systems.

A survey of the literature focused on cancer diagnosis indicates that the most used
approach for NO determination is the employment of fluorescent probes [266–272]. These
probes allow for the accurate and sensitive detection of this biomarker in cancer cells.
Fluorescence imaging offers numerous advantages, including high sensitivity, selectiv-
ity, and resolution. Most organic probes developed for detecting NO are based on o-
phenylenediamine and dihydropyridine units. Fluorescent probes are highly used because
they can be customized to exploit NO’s properties under physiological conditions, making
them highly valuable for NO detection both in vitro and in vivo.

One notable example is a near-infrared (NIR) fluorescent probe containing two diben-
zoxanthenium derivatives bearing a 3,4-diaminophenyl group developed by Liu et al.
(Figure 9A) [228]. The enhanced fluorescence results from the suppression of PET between
the diaminophenyl and benzoxanthene groups [265,267,273]. The probe’s effectiveness was
demonstrated in HeLa cells. The experiment involved comparing the fluorescence intensity
of cells incubated with the probe to those treated with the probe and subsequently exposed
to 1-hydroxy-2-oxo-3-(3-aminopropyl)-3-methyl-1-triazene (NOC13)—an NO donor. The
emergence of red fluorescence signified the conversion of the probe to a triazole derivative
after reacting with NO. These findings underscore the probe’s efficiency in monitoring
and imaging NO in living cells. Preliminary results indicate that such probes based on the
dibenzoxanthenium scaffold hold considerable potential for further development in the
cancer research. They could be instrumental in elucidating NO’s role in tumor biology and
designing NO-targeted therapies.
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Further research by Yu et al. (Figure 9B) introduced another important fluorescent
probe, Lyso-NINO-T, that employs two-photon activation for imaging NO in the lysosomes
of living cells. This probe is particularly useful for deep tissue imaging due to its modified
naphthalimide fluorophore, allowing for reduced photodamage and enhanced targeting
accuracy within lysosomes. The o-phenylenediamine component functions both as an
electron donor, suppressing the probe’s fluorescence through PET, and as an NO trap,
oxidizing the o-phenylenediamine fragment to the corresponding triazole derivative. The
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(aminoethyl)morpholine moiety specifically directs the probe to lysosomes within cells,
ensuring that fluorescence activation occurs precisely where NO is located. The probe was
utilized to monitor both exogenous and endogenous NO in living cells, specifically within
the lysosomes of MCF-7 (breast cancer cell line) and RAW 264.7 (mouse macrophage cell
line) cells. Its efficacy for detecting endogenous NO was tested in macrophages, where
RAW 264.7 cells incubated with the probe for 12 h exhibited weak fluorescence, indicating
the successful capture of endogenous NO in the macrophage lysosomes [272].

In addition, Parisi et al. developed a fluorescent probe BDT-NO (Figure 9C) meticu-
lously engineered for the selective detection of NO in melanoma cell lines. It features a
BODIPY fluorogenic unit that significantly increases in fluorescence upon reacting with
NO, making it a powerful tool for live-cell imaging, particularly in melanoma cell lines.
This design facilitates the efficient nitrosation of the active amine site by NO, aided by the
intermediate formation of N2O3. Upon reacting with NO, the fluorescence quantum yield
of the BODIPY unit markedly increases from 0.06 to 0.55. This significant enhancement
in fluorescence is attributed to the suppression of PET, which would otherwise quench
the fluorescence in the absence of NO. The probe can maintain a consistent fluorescence
response across a broad pH range (4–11) and is highly reactive towards NO, although it
also responds to ONOO−, another important oxidation product of NO. Additionally, it
demonstrates minimal interference from other physiological substances such as glutathione.
The probe’s efficacy was validated in B16 cells (melanoma cell lines), where it successfully
detected NO in real time when used with a light-activated NO releaser. This experimental
setup confirmed the probe’s rapid response and high sensitivity within a biological context,
highlighting its potential for applications in live-cell imaging [269].

In addition to fluorescent probes, photoacoustic probes are also a promising group
of sensors tested in the context of NO detection in cancer diagnosis. These types of
probes operate based on the photoacoustic effect, which converts light energy into sound
waves. One notable example is a photoacoustic probe for NO detection, which utilizes
the boron-azadipyrromethene dye platform (aza-BODIPY) through steric relaxation. The
mechanism underlying the detection of NO in tissues hinges on enhancing the planarization
of the aza-BODIPY dye, thereby improving its light absorption efficiency. The enhanced
sensitivity and accuracy in NO detection are achieved by exploiting the differential light
absorption properties of the probe before and after its reaction with NO, enabling the precise
quantification of NO concentrations within tissues. Among several dyes based on the aza-
BODIPY, a promising compound for photoacoustic NO detection in cancer is SR-APNO-3
(Figure 10A) [274]. The sensor exhibits a maximum light absorption wavelength of 790 nm
before undergoing nitrosation (reaction with NO), whereas after nitrosation, this absorption
peak shifts to 704 nm. This shift in wavelength is crucial for facilitating precise imaging
using commercially available real-time photoacoustic tomographs. SR-APNO-3 is a much
more sensitive successor of the APNO-5 sensor, which was successfully used to detect the
concentration of NO relevant to the immune response [275]. Emerging evidence indicates
that the tumor microenvironment subsequently reduces macrophage motility, trapping
them within the tumor, which results in production of much lower levels of NO [276].
Therefore, the enhancement of the probe sensitivity for imaging cancer-derived NO is a
key issue. The SR-APNO-3 probe, in comparison to parent APNO-5, exhibits a significant
increase in ratiometric response to NO and was successfully applied to detected endogenous
NO in a mouse model of breast cancer, where steady-state concentrations are significantly
lower than those observed during immune responses [274]. This increased ratiometric
response, achieved by comparing the intensities of two photoacoustic signals at different
wavelengths, improves accuracy by accounting for variations in probe concentration and
environmental factors. This leads to a more precise and sensitive detection of NO in complex
biological settings [274]. Moreover, both SR-APNO-3 and its N-nitrosated derivative are
also characterized by relatively good photostability, which increases its potential for use in
NO bioimaging [274].
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Another example from this group is the NIR-II APNO-1080 photoacoustic probe
(Figure 10B), introduced by Lucero et al., that was designed for deep tissue imaging due to
its absorption in the NIR-II range [277]. Besides deeper tissue penetration, the advantages
of the application of the probes that exhibit absorption above 1000 nm are increased
sensitivity and a better signal/noise ratio. The APNO-1080 probe is designed with an
optimized p-anisidine trigger on the NIR-II cyanine platform, ensuring a significantly
high extinction coefficient in absorption maximum at 1080 nm and no spectra overlap of
N-nitrosation product with the probe. To evaluate the deep-tissue imaging capabilities of
APNO-1080 in vivo, the researchers conducted PA imaging in an orthotopic breast cancer
model (4T1-Luc) and a heterotopic lung cancer model (A549-Luc2). The lung cancer model,
which mimics liver metastases, allowed for the imaging of cancer-derived NO in much
deeper tissues.

The application of an electrochemical NO sensor is another available approach for
detecting NO in cancer cells. For example, Abdelwahab et al. [278] developed a biosensor
that integrates multiple enzymes—myeloperoxidase (MP), catalase (CAS), and SOD—on
a nanocomposite layer of multi-walled carbon nanotubes-poly(5,2′:5′,2′′-terthiophene-3′-
carboxylic acid) (MWCNT-PTTCA), enabling the precise detection of NO released from
cancer cells. Its mechanism relies on the electrocatalytic reduction of NO at the probe. Nitric
oxide is generated through the interaction of NOS and L-arginine. In this system, MP serves
as a catalyst for NO reduction, while CAS and SOD are utilized to prevent interference
from H2O2 and O2

−. during the electrochemical reduction of NO. The practical application
of the developed biosensor was evaluated by measuring the NO released from rat liver and
cultured cells, specifically, human gastric cancer (AGS) and intestinal cancer (HT-29) cells.
The validity of the probe was tested by the introduction of real samples (rat liver, AGS, and
HT-29 cells) with L-Arginine to induce NO production. Experimental results demonstrated
that adding real samples to a buffer solution (pH 4.0) without L-Arginine did not elicit a
NO response. Conversely, the detection of NO in real samples was achieved in the presence
of L-Arginine. The findings indicated that the biosensor can effectively detect NO released
from this reaction and has the potential to be applied to biological samples [278].

A different innovative strategy for NO detection in single cells involves genetically
encoded nitric oxide probes (geNOps), which provide advanced techniques for monitoring
NO concentrations in cancer cells. These probes utilize the GAF (G cyclase, Adenylyl
cyclase, FhlA) domain from a bacterial NO-binding protein fused with fluorescent proteins,
allowing for the precise real-time tracking of NO dynamics at the subcellular level. When
NO binds to the iron (II) center in the GAF domain, it leads to fluorescence quenching,
providing a direct visual signal and enabling detailed insights into NO’s role in tumor
processes and therapeutic responses [279]. A particularly noteworthy example is the NO-
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sensing gene switch system developed by Qin et al., designed for use in tumor-targeting
bacteria. This biosensor holds significant potential for both diagnostic and therapeutic
uses in cancer treatment. The system employs an attenuated strain of Salmonella enterica
subsp. enterica serovar Typhimurium. The genetic circuit within this system is designed
to detect NO via the NorR (nitrate and nitrite response regulator) protein, which then
triggers the expression of the DNA recombinase Fimbrial phase variation recombinase E
(FimE). This recombinase facilitates the unidirectional inversion of the promoter region
(fimS), thereby activating the expression of specific target genes. Upon the colonization
of tumors by S. Typhimurium, NO is produced by iNOS, which activates the gene switch
system. This mechanism ensures that gene expression is precisely controlled within the
tumor microenvironment and is specific to NO. Laboratory experiments showed that the
presence of a chemical NO source, such as diethylenetriamine/nitric oxide (DETA/NO),
effectively activates gene expression. Further in vivo studies validated the system’s efficacy
in targeting tumor-specific NO generated by iNOS in a tumor model, highlighting its
potential for clinical applications [280].

Overall, modern NO detection techniques play a key role in diagnosing and moni-
toring cancer and cardiovascular and neurodegenerative diseases. Advancements such as
fluorescent probes, photoacoustic techniques, electrochemical biosensors, and genetically
modified biosensors are improving our ability to visualize and quantify NO dynamics, en-
hancing our understanding of its role in disease progression. Future research focused on re-
fining these techniques could lead to more effective and personalized therapeutic strategies.

5. Conclusions and Future Perspectives

More than forty years have passed since the discovery of NO as the elusive endothe-
lium derived relaxing factor (EDRF), but various controversies still exist regarding its
formation and the true identity of the signaling molecule, as well as its downstream effector
sites and the mechanisms regulated by it. NO is classically derived from L-arginine-
dependent NOS isoforms, but can also be formed endogenously via the serial reduction
steps of nitrate and nitrite ions. Downstream signaling and functional effects link to both
cGMP-dependent and cGMP-independent mechanisms, with protein thiol S-nitrosation as
the most significant pathway. Knowledge about the nature and kinetics of the chemical
interactions between NO or RNS and biological targets in a cellular environment is crucial
not only to understand their role in biological signaling, but also to propose new drugs
and therapeutic strategies for various diseases. Despite intensive interdisciplinary research
towards understanding the NO biological activity and developing novel tools to control
NO biosynthesis and metabolism in numerous disorders, particularly in the cardiovascu-
lar, nervous, and immunological systems, the number of approved clinical applications
is limited. Innovative strategies that increase NO bioactivity and/or its specificity may
have therapeutic potential for the treatment of diseases. One of the challenges with such
groundbreaking drug candidates is to optimize their spatial and temporal delivery to
achieve the desired effects without any unwanted disturbances in normal physiological
redox signaling. The development of novel NO imaging agents will not only help with
addressing such issues, but will also be a driving factor for establishing new diagnostic
procedures and treatment protocols. Bioinorganic chemistry related to NO signaling and
sensing can provide new ideas for the design of drugs and therapeutic strategies in the
treatment of many civilization diseases, as well as help maintain the normal course of aging
processes in the body.
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