
Citation: Tyagi, S.C. Lactobacillus

Eats Amyloid Plaque and Post-

Biotically Attenuates Senescence Due

to Repeat Expansion Disorder and

Alzheimer’s Disease. Antioxidants

2024, 13, 1225. https://doi.org/

10.3390/antiox13101225

Academic Editor: Alessandra

Napolitano

Received: 22 August 2024

Revised: 6 October 2024

Accepted: 8 October 2024

Published: 12 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Perspective

Lactobacillus Eats Amyloid Plaque and Post-Biotically
Attenuates Senescence Due to Repeat Expansion Disorder and
Alzheimer’s Disease
Suresh C. Tyagi

Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
suresh.tyagi@louisville.edu

Abstract: Patients with Alzheimer’s disease and related dementia (ADRD) are faced with a formidable
challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amy-
loid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has
not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis,
is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and
the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA,
an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1)
and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate
sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes
senescence and AD. We aim to target the paradigm-shift pathway of the gut–brain microbiome axis
that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S.
We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of
AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate
and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits.
The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia
(HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy,
and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration
H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional
post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and
the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant,
potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore,
it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregu-
lates TET2/FTO, inhibiting β-amyloid deposits by lowering homocysteine. It is also important to
discuss whether lactobacillus upregulates SLC7A and inhibits β-amyloid deposits by increasing the
mitochondrial transsulfuration of H2S production.

Keywords: folate 1-carbon metabolism; CAA; ATP-citrate lyase; gene writer; eraser; RNA editor; Piezo

1. Introduction

The significance of this review provides a compelling and convincing case that dys-
biosis and dysregulation of homocysteine (Hcy) metabolism represents the dominant
mechanism whereby dysbiosis leads to detrimental changes in the brain cortex’s pial ves-
sels and metabolism. Recent research shows that the imbalance between good vs. bad
microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate
balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal
health [1]. However, diseases such as metabolic syndrome, inflammatory bowel disease,
diabetes, obesity, and hypertension in the dysbiotic gut environment tend to prevail [1].
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The high-fat dysbiosis diet (HFD) leads to cerebral vascular and heart diseases. In-
terestingly, according to the homocysteine theory, there is one diet high in animal protein
and low in B vitamins—which occur in many foods but are very easily destroyed by
processing—a diet of meat, cheese, milk, white flour, and foods that are canned, boxed,
refined, processed, or preserved. This suggests a strong connection between diet and
cerebrovascular and heart disease, but one that is a different path from cholesterol. The
homocysteine theory considers atherosclerosis a disease of what McCully calls protein
intoxication [2,3]. The cholesterol theory (sometimes called the lipid theory) instead de-
monizes fats. Since proteins and fats often occur in the same foods, the potential dietary
treatments for high homocysteine and high cholesterol levels are similar, with the following
distinction: the anti-homocysteine diet focuses on what should be eaten, as a preventive,
while the anti-cholesterol diet focuses on what should be avoided, as a precipitator. Thus, a
diet with lower homocysteine levels would include many natural sources of B vitamins
like fresh fruits and vegetables and would limit animal protein. The cholesterol-reducing
diet would limit foods high in saturated fats and cholesterol, like eggs, meat, and butter
(Figure 1). Unfortunately, the latter is more commercially popular.
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ketone/lactone, hydrogen sulfide (H2S). The probiotic lactobacillus reveres.

Is brain amyloidosis by proteinopathies more detrimental than atherosclerosis?
Atherosclerosis is primarily cholesterol engulfed by macrophage/foam cells along with
lipid/ApoE in core atheroma held with a thin fibrosis cap, which is prone to rupture by
MMPs. In addition, SMCs can induce apoptosis, and the colonial SMC causes thickening of
media, and hypertrophy and fibrosis. In amyloidosis, an accumulation of proteins occurs.
Proteinopathies include beta-amyloids, tau, TDP-43, alpha-synuclein, and lipids building
plaque. Interestingly, both cause a chronic decrease in blood flow; however, in the brain, this
decrease in blood flow causes VCID, leading to SMC apoptosis, whereas in other organs,
this is compensated until the plaque is ruptured and then acute thrombosis with no flow
occurs. Interestingly, the transactive DNA-binding protein 43 (TDP-43)’s immunoreactivity
is associated with sporadic Alzheimer’s disease (AD) and Down’s syndrome (DS) [4,5];
here, the mechanisms are unclear. Interestingly, a growth arrest in DNA damage protein
45 (GADD45) is associated with MMP-13 [6].

The downstream micro-vessels are more responsive to flow-mediated vaso-elastic
compliance. Therefore, atherosclerosis in a conduit artery is not that detrimental; it is the
decrease in flow to downstream small micro-vessels that causes endothelial dysfunction and
VCID. Homocysteine (Hcy, a consequence of proteinopathies) has a direct damaging role
in the endothelium as compared with cholesterol or lipids, suggesting that Hcy contributes
significantly to proteinopathy/arteriosclerosis and VCID. Interestingly, the conversion of
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this toxic Hcy to H2S is beneficial to downstream micro-vessel endothelial vaso-elastic
compliance and H2S dissolution of the amyloid plaques, as this project elutes.

Alzheimer’s disease (AD/ADRD) is multifactorial in the sense that it is associated
with amyloid beta [7] and tau [8] depositions. Interestingly, folic acid attenuates beta
amyloid deposits [9–11]. The interest in molecular clean-up mechanisms to remove plaque
in Alzheimer’s disease is suggested [12]. A study also suggested that eubiotic bacteria
degrades cholesterol [13] and may reduce plaque. Here, we propose to target the paradigm-
shift pathway in the gut–brain microbiome axis in which a eubiotic bacteria lactobacillus
treatment selectively inhibits amyloid deposits in part by producing folate (an epigenetic
regulator) and H2S (improves mitochondrial bioenergetics) and selectively inhibits amyloid
deposits in Alzheimer disease. Additionally, folic acid and H2S inhibit the beta-amyloid
plaque accumulation [9–11].

The increased levels of proprotein convertase/secretase (BACE1) [14–16] are associated
with AD. We have demonstrated the role of proteinase/convertase and anti-proteinase
in the accumulation of homocysteine (Hcy, i.e., hyperhomocysteinemia (HHcy)) by the
disrupted folate-1 carbon metabolism (FOCM) cycle; in vascular stiffness [15], contributing
to the enlarged perivascular space (EPVS) [17–20]; and in vascular contributions to cognitive
impairment and dementia (VCID) via the activation of matrix metalloproteinase-9 (MMP-
9) [21–23]. Using MMP-9 knockout (MMP-9KO) mice, we observed attenuation in HHcy-
induced BBB leakage and EPVS [24,25].

HHcy is associated with VCID, AD and ADRD in a dose-dependent (causative) man-
ner [26–38]. Further, HHcy induces seizures in animals [37] and is associated with vascular
dementia and AD in humans [30,38].

Children born with severe HHcy have intellectual disabilities and do not live past
teenage years. However, children with mild/moderate HHcy live relatively asymptomatic
with mild intellectual disabilities. That is why, to reduce HHcy, folic acid, a probiotic, is pre-
scribed during pregnancy to avoid detrimental effects of HHcy and to mitigate intellectual
disabilities and prevent neural tube defects during embryonic development [39–41].

The Hcy plasma levels are higher in males than premenopausal females; however, they
become similar in post-menopausal females [28]. Interestingly, gut dysbiosis is associated
with the degradation of estrogen and depression in premenopausal women [42].

In addition, telomere shortening via epigenetic methylation [43,44] by the gene writer
(DNMT1) and hydroxylation/de-methylation by the gene eraser (TET2) is also linked
to AD (Figures 2 and 3). A direct relationship exists between a healthy lifestyle and
eubiosis. However, during dysbiosis, there is an increase in Hcy levels associated with
cerebrovascular dementia (CVD) and AD [45–48]. Figure 2 elicits how this project fills the
gaps in AD research. A chronic high-methionine diet, a substrate for homocysteine (Hcy),
contributes to AD and ADRD [49–52]. The s-adenosine-methionine (SAM) transporter
(SLC25A) was increased by hyperhomocysteinemia (HHcy) [53–55] and cysteine was
transported by SLC7A5 [56]. Interestingly, we and others have shown that the conversion
of methionine to Hcy is regulated by the epigenetic folate 1-carbon metabolic (FOCM)
pathway (Figure 3) [57–59]. The inhibition of methionine adenosyltransferase2A (MAT2A)
restores metabolism to improve regenerative capacity and strength in aging muscles [60].
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Figure 2. Schematics of how gut dysbiosis leads to epigenetic methylation alterations and causes
Alzheimer’s disease (AD). ADAR, adenosine deaminase acting on RNA; CAG, cytidine-adenosine-
guanidine), m1A, methyl-1-adinosine; SAM, s-adenosine methionine; SAH, s-adenosine homocys-
teine; SAHH, s-adenosine homocysteine hydrolase; DNMT, DNA methyltransferase; TET, ten eleven
translocators; HDAC, histone de-acetylase; SIRT, Histone-protein de-acetylase; H3K4, histone-3 lysine
4 [21,60,61].
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Figure 3. Repeat nucleotide sequences (CAG) cause random mutations, leading to ALS and AD. The
tannic acid inhibits transporter SLC25A and mitigates ALS and AD.

Recent studies show that intellectual disabilities are caused by the hypermethylation
of genes [62,63], which generates Hcy [59]. There is rhythmic methylation/de-methylation
during the mitochondrial TCA cycle by the epigenetic gene writer (DNMT) and erasers
(TET and FTO) [16] (Figure 4).
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Figure 4. During ischemic conditions such as COPD, sleep apnea and decrease pulmonary function,
initially mitochondrial synthesizes H2S and coups with dys-bioenergetics. COPD, chronic obstructive
pulmonary diseases; TCA, tri-carboxylic acid; CAT, cysteine transferase; 3MST, 3mercaprtopyruvate
sulfotransferase; CBS, cystathionine beta transferase; Piezo, mechano-thermal Na/Ca/Mg and
transient receptor potential receptor/channels.

Although epidemiological studies have also indicated that HHcy is a contributing
factor for the development of atherosclerotic lesions and hypertension [64,65], in fact,
HHcy synergizes with an increase in blood pressure and induces endothelial dysfunction
by decreasing the bioavailability of endothelial NO [66–68]. Although we and others
demonstrated cognitive impairment and cerebral vascular dementia/leakage in CBS-/+-
HHcy and AD mice [69–72], the connection between active gene writers and erasers and an
increase in the formation of Hcy is unclear. In addition, HHcy instigates thromboembolism
and cerebral vascular diseases [33,34]. Reductions in Hcy levels are associated with reduced
carotid artery restenosis events after angioplasty [35,36].

Epigenetic DNA methylation via FOCM and choline (Figure 5) [58] are a part of
epigenetic memory, i.e., gene imprinting and off-printing during embryogenesis, develop-
ment, and AD [21]. This epigenetic memory is retained in a transgenerational manner [73].
Treatment with tri-directional Lactobacillus rhamnosus (i.e., folate- and lactate-producing
post-biotics) reverses the dysbiosis-induced cerebral vascular injury in part by increasing
mitochondrial sulfur transsulfuration (CBS, CSE, 3MST, LDH, H2S, i.e., mitochondrial
biogenesis) [74]. The H2S again protects against AD [75]. Therefore, it is important to
identify microbiome-derived post-biotic metabolites such as folate and ketone bodies for
their beneficial effects (Figure 5) [76–84].
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2. Conclusions and Future Directions

Dysbiosis disrupts the gene writer/eraser ratio [85–88] and shifts the equilibrium
towards vascular dementia and cognitive impairment. The hypothesis that gut dysbiosis
in AD induces epigenetic gene writers DNMT and SAHH and decreases erasers TET
and FTO, creating HHcy, is novel. HHcy decreases mitochondrial sulfur metabolism, i.e.,
transsulfuration by CBS, CSE and 3MST, causing oxidative stress (decrease in H2S) and
MMP activation. Lactobacillus, a probiotic that produces folic acid, mitigates dysbiotic
1-carbon metabolism by re-methylation of Hcy to methionine, HHcy and vascular dementia.
The metabolites of probiotic lactobacillus, such as lactones, are also beneficial as fuel for
mitochondria. Lactobacillus is a novel therapy based on its safety, is inexpensive and is
a noninvasive way that can mitigate ADRD. Organoids such as vascular mapping of the
brain [89–91] and our X-ray imaging of micro-vessels in the brain clearly demonstrate that
micro-vessels in brains with AD are narrower than the WT controls. This may be due in
part to the fact that mitochondrial oxidative/reductive imbalances are due to dysfunctional
mitochondrial sulfur metabolism [92] and transsulfuration. The tri-directional lactobacillus
(i.e., folic acid and lactate/lactone/ketone body producers) attenuates HHcy and amyloid
deposits [9–11] and improves mitochondrial function. This mitigates microvascular leakage,
VCID and AD [93–101].

It is important to consider the inhibition of senescence and β-amyloid deposits via
tri-directional probiotic strategies for the attenuation of repeat expansion disorder in
Alzheimer’s disease. The repeat expansion disorder (RED) in the CAG codon and methyla-
tion of m1A and m6A in this codon contribute to defective DNA repair, senescence, and
dementia [102–108]. The mechanism is unclear. The hypothesis is that, in AD, the methy-
lation of RED increases Hcy and TDP43/GADD45/MMP/ADAMTS, causing senescence
and decreasing H2S [85–87]. This causes CAM1/β-amyloid deposits, VCID and ADRD.
The probiotic (PB), lactobacillus, produces post-biotic folate and increases H2S levels, and
inhibits senescence, β-amyloid deposits and VCID/ADRD (Figure 6). It is important to
determine whether lactobacillus inhibits senescence by decreasing DNMT1, m1A, m6A,
TDP-43, GADD45, MMP-13, and ADAMTS1, and increasing TET2, 3MST, H2S and TIMPs
in RED and Alzheimer’s disease. Also, it is novel to determine whether lactobacillus
inhibits β-amyloid deposits and CAM1 by increasing folate and H2S for the attenuation of
RED, VCID and Alzheimer’s disease.
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Figure 6. The hypothesis is that the chronic gut-dysbiosis induces SLC25A, gene writer (DNMT1),
HHcy and decreases gene eraser (TET2/FTO), leading to decrease SLC7A and mitochondrial transsul-
furation H2S production and bioenergetics. Lactobacillus, a tri-directional, folic acid (an inhibitor of
beta amyloid deposits, reduces Hcy levels), and lactate ketone-body (fuel for mitochondria) producer
increases SLC7A and H2S production and inhibits amyloid deposits.

This review presents an innovative hypothesis to test the role of repeat expansion dis-
order in the development of senescence, dementia, and AD through methylation and HHcy.
This is a consequence of the disruption of “1-carbon metabolism” in RED via the modula-
tion of epigenetics (hypermethylation and HHcy) [102–108]. In addition, the therapeutic
effect of probiotic treatment will be tested to reverse these effects. The elucidation of the
mechanisms through which RED and hypermethylation affect brain senescence, memory
and health is important, and positive findings will support the relevance and impact of RED
and hypermethylation in brain disorders. Although the use of probiotics as a therapeutic
alternative for AD has been previously studied in pre-clinical models and clinical trials,
there is an unmet need for a mechanism-based, simple, and safe therapy. Here, we suggest
that a probiotic that produces folate (lowers Hcy and inhibits beta amyloid deposits) and
lactate (a ketone body, fuel for mitochondria, and increases H2S) can potentially mitigate
the consequences of RED, Alzheimer’s disease and related dementia.
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Abbreviations

AD, Alzheimer’s disease; ADRD, Alzheimer’s disease and related dementia; ADAMTS, a disin-
tegrin and metalloproteinase thrombospondin domain 1; CAA, cerebral arterial angiopathy; CAM1,
cell adhesive molecule 1; DNMT1, DNA methyl transferase 1; 3MST, 3-mercaptopyruvate sulfur trans-
ferase; RED, repeat expansion disorders; m1A, 1-methyl adenosine; m6A, 6-methyl adenosine; CAG,
cytosine adenosine guanidine; MMP, matrix metalloproteinase; Hcy, homocysteine; H2S, hydrogen
sulfide; TDP43, transactive DNA protein-43; GADD-45, growth arrest DNA damage protein-45; SMC,
smooth muscle cell; TET2, ten eleven translocator 2; TIMPs, tissue inhibitors of metalloproteinases;
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