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Abstract: Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes
chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are
vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that
surfactant protein A (SP-A) genetic variants influence susceptibility to neonatal lung disease. SP-A
modulates activation of alveolar macrophages and parturition onset in late gestation. We asked
whether a lack of SP-A alters alveolarization in a mouse model of hyperoxia-induced BPD. SP-A-
deficient and control newborn mice were exposed to either clinically relevant 60% O2 hyperoxia or
normoxia for 5–7 days. Alveolar formation was then assessed by mean linear intercept (MLI) and
radial alveolar count (RAC) measurements in lung tissue sections. We report that the combination of
SP-A deficiency and hyperoxia reduces alveolar growth compared to WT mice. The morphometric
analysis of normoxic SP-A-deficient lungs showed lower RAC compared to controls, indicating
reduced alveolar number. In the presence of hyperoxia, MLI was higher in SP-A-deficient lungs
compared to controls. Differences were statistically significant for female pups. Spatial proteomic
profiling of lung tissue sections showed that hyperoxia caused a 4-fold increase in the DNA damage
marker γH2Ax in macrophages of SP-A-deficient lungs compared to normoxia. Our short report
suggests an important role for SP-A in perinatal lung development and the protection of lung
macrophages from oxidant injury. These studies warrant future investigation to discern the temporal
interaction of SP-A, gender, oxidant injury, and lung macrophages in perinatal alveolar formation
and development of BPD.
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1. Introduction

Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory morbidity
of prematurity. BPD is characterized by an arrest in lung growth and disruption of alveolar
development [1]. BPD is associated with high mortality, increased healthcare costs, and
poor neurodevelopmental outcomes [2]. Despite advances in critical care, there is increasing
BPD incidence with challenges in developing newer diagnostics and therapeutics. The
innate immune system likely plays an important role in BPD pathogenesis in the setting
of inflammation and oxidative stress [3]. Premature neonates are born with surfactant
deficiency and lack immune protection by surfactant protein A (SP-A). SP-A plays a dual
role in surfactant ultrastructure and modulation of inflammation and innate host defense by
alveolar macrophages (AMs) [4]. SP-A gene polymorphisms have been associated with an
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increased risk for the development of BPD in preterm infants [5,6]. SP-A is not incorporated
in commercially available surfactant replacement therapies that are used to treat preterm
infants at risk of BPD.

SP-A is expressed and secreted by alveolar type II epithelial cells of the fetal lung in
late gestation. SP-A modulates the activation of AMs and the onset of parturition in late
gestation [7–9]. SP-A mediates bacterial phagocytosis [10] and secretion of inflammatory
mediators by macrophages [11]. These SP-A functions are relevant to BPD pathogenesis as
infection and inflammation play an important role in causing lung injury. Additionally, SP-
A affects the NAD(H) redox status of AMs in response to ozone exposure [12]. Oxidative
stress due to hyperoxia is an important factor in the pathology of BPD [3]. Here, we
report that lack of SP-A affects neonatal lung growth in response to hyperoxia in SP-A-
deficient mice.

2. Materials and Methods
2.1. Mice

All animal work was approved by the Institutional Animal Care and Use Committee
(Protocol No 101786) and performed within an American Association for the Accreditation
of Laboratory Animal Care-certified barrier facility at Pennsylvania State University College
of Medicine. Mice were housed under specific pathogen-free conditions in micro-isolator
cages, provided food and sterile water ad libitum, and maintained on a 12 h-light/12 h-dark
cycle. The generation of SP-A-deficient mice has been described previously [13]. SP-A-
deficient mice were backcrossed to the C57BL/6J background [14]. WT male and female
C57BL/6J controls were purchased from JAX labs at 4–6 weeks of age and bred in house.
Male and female mice were used for mating at the age of 6–8 weeks at a ratio of 1:1 male
to female.

2.2. Exposure to Hyperoxia or Normoxia

Dams and pups were exposed to either hyperoxia (60% O2) or maintained at normoxia
in room air (21% O2) from postnatal day 1 (P1) until postnatal day 5–7 (P5–P7). The litter
size was maintained at 6–10 pups per exposure. Nursing dams received food ad libitum. If
nursing dams were unable to nurse due to oxygen toxicity, they were transferred between
room air and hyperoxia. Dams did not exhibit overt signs of illness at 60% O2 during the
7-day exposure period.

2.3. Histology and Morphometry

Mice were anesthetized by intraperitoneal injection of Ketamine/Xylazine
(90/10 mg/kg/dose) followed by laparotomy and exsanguination via inferior vena cava
incision. The lungs were then exposed via thoracotomy, intubated using a tracheal cannula,
and fixed with 10% (v/v) formalin or 4% (w/v) paraformaldehyde at 25 cm H2O hydrostatic
pressure. The fixed lungs were then processed for paraffin embedding, sectioned at 6 µm,
and stained with the periodic acid Schiff (PAS) stain. Sections were evaluated blinded to
the genotype. The quantitative measures included mean linear intercept (MLI) and radial
alveolar count (RAC). MLI was calculated by determining the average distance between
the intersections of alveolar septal tissue. To achieve this, we used a stereological method
that involves randomly placing a counting grid over the lung tissue. The number of times
the grid intersects the alveolar septal tissue was counted, and the average distance between
these intersections was computed to obtain the MLI. RAC was determined by counting
the number of alveoli between the pleural surface of the lung and the nearest terminal
bronchiole. We employed a systematic sampling method to determine RAC, which involves
counting the number of alveoli in a series of parallel lines intersecting the lung parenchyma.
RAC was expressed as the number of alveoli per unit length of the line, and it provides a
measure of the density of alveoli in the lung tissue.
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2.4. Spatial Proteomic Profiling by GeoMx® Nanostring

The changes in CD11b+ and ABAC3+ populations in the lungs exposed to hyperoxia
and normoxia were assessed using Nanostring spatial proteomics. Two representative
slides of mouse lungs from SP-A knockout male pups were analyzed. A total of 24 AOI
(area of interest) with 8 CD11b+, 8ABCA3+, and 8DNA+ populations were assessed. The
mouse immune-oncogene core protein panel plus immune activation status, immune cell
typing, cell death, MAPK signaling, PI3k/AKT signaling, and pan-tumor panels that
included 72 protein targets and 6 housekeeping targets were analyzed. The morphology
markers that were used were αSMA, CD11b, ABCA3, and DAPI to visualize airway
smooth muscle and blood vessels, macrophages, alveolar type II epithelial cells, and DNA,
respectively. The gene expression patterns were assessed by the DSP data analysis tool
(GeoMx® Nanostring, Seattle, WA, USA). Data normalization for the DSP protein assay was
performed by normalizing to housekeeping protein controls—GAPDH, Histone H3, S6 and
scaling to isotype negative controls- Rat IgG2a, Rat IgG2b, Rabbit IgG. Housekeeping and
isotype control normalization were used to control for within-slide differences in the region
of interest (ROI) cellularity and between-slide variability (differences in signal volume due
to tissue quality, fixation, processing, etc.). Further normalization was performed by scaling
to the area to normalize the geomean of the masked area to correct for variable surface
area, and scaling to nuclei was performed to normalize the geomean of nuclei count of
masked ROI.

2.5. Immunohistochemistry

Immunofluorescent staining of lung tissues was performed on formalin-fixed paraffin-
embedded sections. The sections were washed in xylene and gradually rehydrated in
ethanol (100%, 95%, 70%, 50%) and processed per the modified Chapman protocol. Sam-
ples were washed with Phosphate Buffered Saline (PBS), blocked with 1% BSA/5% horse
serum (45 min, room temperature), and then incubated overnight at 4◦C with primary anti-
body (1:500 dilutions in 0.5% BSA), washed 3 times with PBS, incubated with appropriate
fluorescent-labeled secondary antibodies (1:1000 dilution in 0.5% BSA, Life Technologies
Inc., Carlsbad, CA, USA) and the nuclear marker, 4′,6-diamidino-2-phenylindole, dihy-
drochloride (DAPI, Invitrogen cat# P36962). The primary antibody used was γH2AX
(Cell Signaling #9718). Slides were imaged using fluorescent microscopy (Nikon Eclipse
TE2000-U). Fluorescence intensity was quantified and analyzed via ImageJ software (ver
1.54, Wayne Rasband, NIH, USA) [15].

2.6. Statistical Analysis

Descriptive characteristics were computed as the means +/− standard deviation (SD).
Two-way ANOVA was used to compare groups using GraphPad Prism software, ver 10.1.2
All tests were 2 tailed, and significance was assigned for p < 0.05. The p-value was adjusted
using Tukey’s multiple comparisons test. There were 3–10 mouse pups per sex per group.

3. Results
3.1. Lack of SP-A Enhances Hyperoxia-Induced Arrest in Alveolar Formation

To assess the impact of SP-A deficiency in alveolar simplification, we exposed mice
to 60% O2 for 5–7 days after birth when the saccular to alveolar transition of alveolar
development is known to occur [16]. This period corresponds to 24–36 weeks gestation
of human neonates when premature infants are at high risk of developing BPD. The 60%
O2 dose is comparable to clinical settings and sufficient to induce alveolar arrest in WT
mouse lungs [17]. We used MLI and RAC as hallmark morphometric measures of alveolar
development and growth, respectively [18,19]. Data were pooled together or analyzed
separately for male and female pups (Figure 1). Hyperoxia resulted in a significant increase
in MLI to 47.4 ± 12.4 µm (Mean ± SD) in SP-A-deficient lungs compared to 34.7 ± 2.3 µm
(adjusted p = 0.0005) and 34.5 ± 4.1 µm (adjusted p = 0.0006) in hyperoxic and normoxic WT
lungs, respectively (Figure 2A). The SP-A-deficient female lungs were the most sensitive to
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hyperoxia with an MLI at 50.1 ± 13.8 µm compared to 33.8 ± 4.7 µm (adjusted p = 0.018)
in normoxic WT male lungs, 35.3 ± 3.7 µm (adjusted p = 0.043) in normoxic WT female
lungs, 34.4 ± 3.6 µm (adjusted p = 0.014) in hyperoxic WT male lungs, and 35.14 ± 2.9 µm
(adjusted p = 0.039) in hyperoxic WT female lungs (Figure 2B).
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Figure 1. Prominent hyperoxia-induced alveolar simplification in SP-A-deficient lungs. Represen-
tative images of PAS-stained formalin-fixed lungs from WT (A–H) and SP-A-deficient (I–P) pups
exposed to normoxia (A–D,I–L) or hyperoxia (E–H,M–P). Images were captured at 200× (100 µm-
scale bar) (left columns) or 400× (50 µm- scale mar)(right columns) magnification from female and
male pups, as indicated. All images were captured on postnatal day 7 except images (I,J), which were
captured on day 6.

Measurements of RAC, however, showed that lack of SP-A impacts alveolar growth
independent of supplemental oxygen exposure (Figure 2C) and gender (Figure 2D). The
combined RAC indices of male and female mice of 3.9 ± 1.2 (Mean ± SD) and 4.0 ± 1.5
(Mean ± SD) in normoxic and hyperoxic SP-A-deficient lungs were significantly lower
than 8.7 ± 2.0 (adjusted p < 0.0001) and 7.9 ± 2.0 (adjusted p < 0.0001) in WT normoxic and
hyperoxic pups, respectively (Figure 2C). Alveolar growth under conditions of hyperoxia
appeared to occur faster in female lungs, although differences were not statistically different
(Figure 2D). This, however, reflects a significant difference in the RAC index between WT
and SP-A-deficient female pups (Figure 2D).

Taken together, these results indicate that the underdeveloped SP-A-deficient lungs
are vulnerable to hyperoxia-induced injury with more severe impact in the female prema-
ture lung.
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Figure 2. Lack of surfactant protein A (SP-A) modulates hyperoxia-induced alveolar simplification.
Neonatal pups were exposed to either normoxia or hyperoxia with oxygen exposure at 60% from
birth till postnatal day 5–7. Lack of SP-A causes worsening of alveolar simplification secondary
to hyperoxia as noted by increased mean linear intercept (A) and reduced radial alveolar count
(C) compared to wild type. Lack of SP-A noted to contribute to sex differences in hyperoxia-induced
neonatal lung injury, as female SP-A knockout (KO) mice are more prone to alveolar simplification
(B,D) when exposed to hyperoxia when compared to wild type (WT) genotype. Data are shown as
the means ± SD. N = 3–10 mouse pups per sex per group. * adjusted p < 0.05, *** adjusted p < 0.001,
**** adjusted p < 0.0001.

3.2. Lack of SP-A Enhances the DNA Damage Response to Hyperoxia in Lung Macrophages

SP-A is the principal oxidant-sensitive component and modulator of reactive oxygen
species by AMs in pulmonary surfactant [11,20,21]. Here, we utilized spatial proteomics
to assess whether lack of SP-A impacts the hyperoxia response in neonatal lung immune
microenvironment (Figure 3). To address this question, we applied spatial proteomic
profiling using GeoMx® Nanostring to assess protein expression in ABCA3+ type II cells,
DNA, CD11b+ macrophages in hyperoxic and normoxic lungs of SP-A-deficient mice
(Figure 3A,B and Supplemental Figure S1). The cluster analysis shows the differential
protein expression profile among the 72 targeted proteins after exposure to hyperoxia vs.
normoxia in CD11b+ macrophages and ABAC3+ alveolar type II epithelial cells (Figure 3A).
The volcano plot in Figure 3B shows a 2- and 4-fold increase in phosphorylated S6 and
the formation of gamma-H2Ax in CD11b+ macrophages in SP-A-deficient lungs exposed
to hyperoxia (p < 0.05). These results indicate that lung macrophages in SP-A-deficient
mice experience increased levels of hyperoxic stress compared to normoxia. Oxidative
stress via hyperoxia in SP-A KO mouse pups resulted in increased expression of γH2AX as
7.3 × 106 mean intensity when compared to normoxia SP-A KO mouse pups as 4.9 × 106

mean intensity (p = 0.026) (Figure 4). These results indicate that lung macrophages in
SP-A-deficient mice experience increased levels of hyperoxic stress compared to normoxia.
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PND7. (A) Quantification of mean fluorescence intensity of γH2Ax in SP-A-deficient mouse pups 
exposed to normoxia and hyperoxia (one or more separate areas from each mouse formalin fixed 
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Figure 3. Spatial proteomic profiling of neonatal mouse lungs shows that lack of SP-A alters the
response to hyperoxia and contributes to lung injury. SP-A deficient neonatal pups were exposed to
either normoxia or hyperoxia with oxygen exposure at 60% from birth till postnatal day 7. (A) The
heatmap analysis demonstrates the differential protein expression profile of hyperoxia versus nor-
moxia among the 72 targeted proteins that were compared in different lung populations such as
macrophage (CD11b+), Type II cells (ABCA3+) and DNA (B) The volcano plot depicts the proteins
that have been upregulated and downregulated in the SP-A-deficient mouse alveolar macrophage
upon exposure to hyperoxia in comparison to normoxia. The blue color dot depicts the proteins with
a –log 10 p-value less than 2, and the red color dot shows a −log 10 p-value of more than 2.
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Figure 4. SP-A deficiency in hyperoxia-exposed mouse pups simulates alveolar injury in a mouse
model of BPD. Neonatal pups were exposed to normoxia or hyperoxia (O2 at 60%) from birth
till PND7. (A) Quantification of mean fluorescence intensity of γH2Ax in SP-A-deficient mouse
pups exposed to normoxia and hyperoxia (one or more separate areas from each mouse formalin
fixed paraffin embedded lung section was imaged and quantified, total mice n > 2 mice per group).
(B,C) Immunofluorescence images of γH2Ax staining at 20× magnification (γH2Ax - orange color,
DAPI nuclei - blue color) in normoxia (B) and hyperoxia (C). * p < 0.05.
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4. Discussion

To our knowledge, we present the first known evaluation of the effects of hyperoxia
on neonatal mouse pups in the absence of SP-A. Prior research involving rodent models
exposed to hyperoxia by Nogee et al. observed an increase in surfactant protein A (SP-A)
in rats subjected to elevated oxygen [22]. Correspondingly, another published study
confirmed that, among the surfactant proteins, only SP-A exhibited an increase in response
to hyperoxia [23]. Based on these findings, we hypothesized that the absence of SP-A
would influence the extent of lung injury when exposed to hyperoxia. We demonstrate
that SP-A-deficient neonatal mice exhibit greater arrest in alveolar development at 60% O2
compared to WT mice. The O2 dosage was shown to cause morphological changes in WT
neonatal lungs following prolonged exposure from P1 to P14 days after birth [17]. Our
study shows that a lack of SP-A accelerates the effect of hyperoxia on alveolar arrest within
a shorter time frame of oxygen exposure. Our findings reflect those of preterm infants at
risk of BPD, who may develop lung injury even with lower oxygen exposure.

Lack of SP-A reduced RAC similarly in both male and female hyperoxic lungs com-
pared to normoxia. The RAC index of normoxic SP-A-deficient lungs, however, was lower
than that of WT lungs, suggesting a novel role of SP-A in perinatal lung development.
This hypomorphism may contribute to increased susceptibility to oxidant injury in the
immature preterm lung when SP-A is not yet induced. Recent studies showed that SP-A
supports the integrity of the developing airspace from inflammation through the SP-A
receptor SP-R210 [24].

Data analysis according to gender indicates a greater impact of gender in hyperoxic
female lungs of SP-A-deficient mice. Previous studies reported sexual dimorphism at a
higher 95% O2 [25]. Biochemical assays and secretion of inflammatory mediators on day 7
in this study showed increased inflammation in females, although alveolar simplification
was not quantitated on this day. Sex-dependent differences in alveolar simplification were
inferred by immunohistochemical differences in endothelial cell remodeling with lesser
impact in females [25]. The present results show that WT female lungs had the highest
increase in RAC index under hyperoxia, consistent with a more resilient endothelium in
female lungs. Lack of SP-A, however, also resulted in the highest MLI in female lungs.
Adult female SP-A-deficient mice are also noted to be affected more by oxidative stress
compared to their male counterparts [26]. However, clinically, males are affected more
with severe BPD, and WT male mice exposed to hyperoxia were noted to have increased
alveolar simplification compared to females [25]. The present results, however, indicate
that SP-A-deficient males exposed to hyperoxia exhibit increased interstitial infiltration
comparable to WT counterparts, indicating that sex-specific response to hyperoxia needs
further exploration beyond lung morphometry. Additional studies are therefore needed
to decipher the intersection of SP-A and gender in alveolar expansion, hyperoxic saccular
injury, and inflammation.

Alveolar macrophages (AMs) play central roles in postnatal lung function and devel-
opment [27–35] and are critically involved in the pathogenesis of BPD [27,36–38]. Preterm
infant lung macrophages primed with 65% O2 display a persistent inflammatory response
to LPS [37]. Prior studies have reported γH2Ax as a response to DNA damage resulting
from oxidative stress in lung tissues associated with chronic pulmonary obstructive dis-
ease [39,40] and pulmonary arterial hypertension [41]. Our preliminary spatial proteomic
profiling indicating an increase in γH2Ax in macrophages in hyperoxic SP-A-deficient
lungs warrants additional studies to determine whether SP-A modulates the DNA damage
response in lung macrophages that would indicate SP-A administration as a treatment to
promote lung development in premature neonates.

Our study is limited as we did not investigate the effects of the absence of SP-A on
the timing of parturition. SP-A secreted by the fetal lung induces parturition [9]. Our prior
published work has also noted that SP-A affects parturition via receptor SP-R210L [24].
Future studies are necessary to delineate the effect of SP-A in the setting of hyperoxia on
the timing of parturition. Another limitation of our study is that the mouse model we
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used did not address the multifactorial nature of bronchopulmonary dysplasia (BPD). We
specifically focused on oxidative stress injury in neonatal lungs. Other factors, such as
the effects of steroids, infections, and chronic inflammation, were not investigated in our
research, but they may also contribute to lung injury in the absence of SP-A.

In conclusion, our preliminary research indicates that the lack of SP-A modulates
hyperoxia-induced lung injury. These findings call for further investigation into the mecha-
nisms by which SP-A attenuates the development of BPD in early infancy.
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