Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach
Abstract
:1. Introduction
2. Environmental and Animal Impacts of Domoic Acid
3. Human Health Effects of Domoic Acid
4. Cytogenotoxic Activity of Domoic Acid
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pitt, S.J.; Gunn, A. The One Health Concept. Br. J. Biomed. Sci. 2024, 81, 12366. [Google Scholar] [CrossRef] [PubMed]
- Roberts, V.A.; Vigar, M.; Backer, L.; Veytsel, G.E.; Hilborn, E.D.; Hamelin, E.I.; Vanden Esschert, K.L.; Lively, J.Y.; Cope, J.R.; Hlavsa, M.C.; et al. Surveillance for Harmful Algal Bloom Events and Associated Human and Animal Illnesses—One Health Harmful Algal Bloom System, United States, 2016–2018. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 1889–1894. [Google Scholar] [CrossRef]
- Diogene, J. Marine Toxin Analysis for the Benefit of ‘One Health’ and for the Advancement of Science. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 78, pp. 1–34. ISBN 9780444639417. [Google Scholar]
- Turner, A.D.; Lewis, A.M.; Bradley, K.; Maskrey, B.H. Marine Invertebrate Interactions with Harmful Algal Blooms—Implications for One Health. J. Invertebr. Pathol. 2021, 186, 107555. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Feng, X.; Zhang, Y.; Du, C.; Wen, Y. Marine Toxins in Environment: Recent Updates on Depuration Techniques. Ecotoxicol. Environ. Saf. 2024, 284, 116990. [Google Scholar] [CrossRef] [PubMed]
- Vilariño, N.; Louzao, M.; Abal, P.; Cagide, E.; Carrera, C.; Vieytes, M.; Botana, L. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins 2018, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Gerssen, A.; Pol-Hofstad, I.E.; Poelman, M.; Mulder, P.P.J.; Van den Top, H.J.; De Boer, J. Marine Toxins: Chemistry, Toxicity, Occurrence and Detection, with Special Reference to the Dutch Situation. Toxins 2010, 2, 878–904. [Google Scholar] [CrossRef]
- James, K.J.; Carey, B.; O’Halloran, J.; van Pelt, F.N.A.M.; Škrabáková, Z. Shellfish Toxicity: Human Health Implications of Marine Algal Toxins. Epidemiol. Infect. 2010, 138, 927–940. [Google Scholar] [CrossRef]
- Morabito, S.; Silvestro, S.; Faggio, C. How the Marine Biotoxins Affect Human Health. Nat. Prod. Res. 2018, 32, 621–631. [Google Scholar] [CrossRef]
- Mos, L. Domoic Acid: A Fascinating Marine Toxin. Environ. Toxicol. Pharmacol. 2001, 9, 79–85. [Google Scholar] [CrossRef]
- Bates, S.S.; Hubbard, K.A.; Lundholm, N.; Montresor, M.; Leaw, C.P. Pseudo-Nitzschia, Nitzschia, and Domoic Acid: New Research since 2011. Harmful Algae 2018, 79, 3–43. [Google Scholar] [CrossRef]
- Hasle, G.R. Are Most of the Domoic Acid-Producing Species of the Diatom Genus Pseudo-nitzschia Cosmopolites? Harmful Algae 2002, 1, 137–146. [Google Scholar] [CrossRef]
- Trainer, V.L.; Bates, S.S.; Lundholm, N.; Thessen, A.E.; Cochlan, W.P.; Adams, N.G.; Trick, C.G. Pseudo-Nitzschia Physiological Ecology, Phylogeny, Toxicity, Monitoring and Impacts on Ecosystem Health. Harmful Algae 2012, 14, 271–300. [Google Scholar] [CrossRef]
- Lundholm, N.; Clarke, A.; Ellegaard, M. A 100-Year Record of Changing Pseudo-Nitzschia Species in a Sill-Fjord in Denmark Related to Nitrogen Loading and Temperature. Harmful Algae 2010, 9, 449–457. [Google Scholar] [CrossRef]
- Clark, S.; Hubbard, K.A.; Anderson, D.M.; McGillicuddy, D.J.; Ralston, D.K.; Townsend, D.W. Pseudo-Nitzschia Bloom Dynamics in the Gulf of Maine: 2012–2016. Harmful Algae 2019, 88, 101656. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M. Ocean Climate Change, Phytoplankton Community Responses, and Harmful Algal Blooms: A Formidable Predictive Challenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- WHOI. Harmful Algal Blooms Understanding the Threat and the Actions Being Taken to Address It; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2022. [Google Scholar]
- Smodlaka Tanković, M.; Baričević, A.; Gerić, M.; Domijan, A.-M.; Pfannkuchen, D.M.; Kužat, N.; Ujević, I.; Kuralić, M.; Rožman, M.; Matković, K.; et al. Characterisation and Toxicological Activity of Three Different Pseudo-Nitzschia Species from the Northern Adriatic Sea (Croatia). Environ. Res. 2022, 214, 114108. [Google Scholar] [CrossRef]
- WHOI. Harrness a National Environmental Science Strategy; US National Office for Harmful Algal Blooms Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2024. [Google Scholar]
- Lefebvre, K.A.; Bargu, S.; Kieckhefer, T.; Silver, M.W. From Sanddabs to Blue Whales: The Pervasiveness of Domoic Acid. Toxicon 2002, 40, 971–977. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful Algae at the Complex Nexus of Eutrophication and Climate Change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Tsikoti, C.; Genitsaris, S. Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters. Diversity 2021, 13, 396. [Google Scholar] [CrossRef]
- Anderson, D.; Burkholder, J.M.; Cochlan, W.P.; Gobler, C.J.; Heil, C.A.; Kudela, R.M.; Parsons, M.L.; Rensel, J.E.J.; Townsend, D.W.; Trainer, V.L.; et al. Harmful Algal Blooms and Eutrophication: Examining Linkages from Selected Coastal Regions of the United States. Harmful Algae 2008, 8, 39–53. [Google Scholar] [CrossRef]
- Anderson, D. HABs in a Changing World: A Perspective on Harmful Algal Blooms, Their Impacts, and Research and Management in a Dynamic Era of Climactic and Environmental Change HHS Public Access. Harmful Algae 2012, 2012, 3–17. [Google Scholar]
- Arapov, J.; Skejić, S.; Bužančić, M.; Bakrač, A.; Vidjak, O.; Bojanić, N.; Ujević, I.; Gladan, Ž.N. Taxonomical Diversity of Pseudo-nitzschia from the Central Adriatic Sea. Phycol. Res. 2017, 65, 280–290. [Google Scholar] [CrossRef]
- Ji, Y.; Yan, G.; Wang, G.; Liu, J.; Tang, Z.; Yan, Y.; Qiu, J.; Zhang, L.; Pan, W.; Fu, Y.; et al. Prevalence and Distribution of Domoic Acid and Cyclic Imines in Bivalve Mollusks from Beibu Gulf, China. J. Hazard. Mater. 2022, 423, 127078. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, K.A.; Robertson, A. Domoic Acid and Human Exposure Risks: A Review. Toxicon 2010, 56, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, A.C.; VanDola, F.M.; Gulland, F.M.; Rowles, T.K.; Schwacke, L.H. Production and Toxicity of the Marine Biotoxin Domoic Acid and Its Effects on Wildlife: A Review. Hum. Ecol. Risk Assess. Int. J. 2008, 14, 544–567. [Google Scholar] [CrossRef]
- Broadwater, M.H.; Van Dolah, F.M.; Fire, S.E. Vulnerabilities of Marine Mammals to Harmful Algal Blooms. In Harmful Algal Blooms; Wiley: Hoboken, NJ, USA, 2018; pp. 191–222. [Google Scholar]
- Brunson, J.K.; McKinnie, S.M.K.; Chekan, J.R.; McCrow, J.P.; Miles, Z.D.; Bertrand, E.M.; Bielinski, V.A.; Luhavaya, H.; Oborník, M.; Smith, G.J.; et al. Biosynthesis of the Neurotoxin Domoic Acid in a Bloom-Forming Diatom. Science 2018, 361, 1356–1358. [Google Scholar] [CrossRef]
- Ohfune, Y.; Tomita, M. Total Synthesis of (−)-Domoic Acid. A Revision of the Original Structure. J. Am. Chem. Soc. 1982, 104, 3511–3513. [Google Scholar] [CrossRef]
- Costa, L.G.; Giordano, G.; Faustman, E.M. Domoic Acid as a Developmental Neurotoxin. Neurotoxicology 2010, 31, 409–423. [Google Scholar] [CrossRef]
- Radad, K.; Moldzio, R.; Al-Shraim, M.; Al-Emam, A.; Rausch, W.-D. Long-Term Neurotoxic Effects of Domoic Acid on Primary Dopaminergic Neurons. Toxicol. In Vitro 2018, 52, 279–285. [Google Scholar] [CrossRef]
- Jeffery, B.; Barlow, T.; Moizer, K.; Paul, S.; Boyle, C. Amnesic Shellfish Poison. Food Chem. Toxicol. 2004, 42, 545–557. [Google Scholar] [CrossRef]
- Perl, T.M.; Bédard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.D.; Remis, R.S. An Outbreak of Toxic Encephalopathy Caused by Eating Mussels Contaminated with Domoic Acid. N. Engl. J. Med. 1990, 322, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.L.C.; Boyd, R.K.; de Freitas, A.S.W.; Falk, M.; Foxall, R.A.; Jamieson, W.D.; Laycock, M.V.; McCulloch, A.W.; McInnes, A.G.; Odense, P.; et al. Identification of Domoic Acid, a Neuroexcitatory Amino Acid, in Toxic Mussels from Eastern Prince Edward Island. Can. J. Chem. 1989, 67, 481–490. [Google Scholar] [CrossRef]
- Bargu, S.; Silver, M.W.; Ohman, M.D.; Benitez-Nelson, C.R.; Garrison, D.L. Mystery behind Hitchcock’s Birds. Nat. Geosci. 2012, 5, 2–3. [Google Scholar] [CrossRef]
- Pohnert, G.; Poulin, R.X.; Baumeister, T.U.H. The Making of a Plankton Toxin. Science 2018, 361, 1308–1309. [Google Scholar] [CrossRef] [PubMed]
- Pulido, O.M. Domoic Acid Toxicologic Pathology: A Review. Mar. Drugs 2008, 6, 180–219. [Google Scholar] [CrossRef]
- Saeed, A.F.; Awan, S.A.; Ling, S.; Wang, R.; Wang, S. Domoic Acid: Attributes, Exposure Risks, Innovative Detection Techniques and Therapeutics. Algal Res. 2017, 24, 97–110. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, H.; Che, H.; Li, X.; Zhang, Z.; Peng, J.; Guo, M.; Tan, Z. Residue Analysis and Assessment of the Risk of Dietary Exposure to Domoic Acid in Shellfish from the Coastal Areas of China. Toxins 2022, 14, 862. [Google Scholar] [CrossRef]
- Ben-Gigirey, B.; Soliño, L.; Bravo, I.; Rodríguez, F.; Casero, M.V.M. Paralytic and Amnesic Shellfish Toxins Impacts on Seabirds, Analyses and Management. Toxins 2021, 13, 454. [Google Scholar] [CrossRef]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Liquete, C.; Piroddi, C.; Macías, D.; Druon, J.-N.; Zulian, G. Ecosystem Services Sustainability in the Mediterranean Sea: Assessment of Status and Trends Using Multiple Modelling Approaches. Sci. Rep. 2016, 6, 34162. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful Algal Blooms: A Climate Change Co-Stressor in Marine and Freshwater Ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A.M. Study Role of Climate Change in Extreme Threats to Water Quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.M.; Velthuis, M.; Van de Waal, D.B. Meta-analysis Reveals Enhanced Growth of Marine Harmful Algae from Temperate Regions with Warming and Elevated CO2 Levels. Glob. Chang. Biol. 2019, 25, 2607. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Tatters, A.; Hutchins, D. Global Change and the Future of Harmful Algal Blooms in the Ocean. Mar. Ecol. Prog. Ser. 2012, 470, 207–233. [Google Scholar] [CrossRef]
- Trainer, V.L.; Moore, S.K.; Hallegraeff, G.; Kudela, R.M.; Clement, A.; Mardones, J.I.; Cochlan, W.P. Pelagic Harmful Algal Blooms and Climate Change: Lessons from Nature’s Experiments with Extremes. Harmful Algae 2020, 91, 101591. [Google Scholar] [CrossRef]
- Wells, M.L.; Trainer, V.L.; Smayda, T.J.; Karlson, B.S.O.; Trick, C.G.; Kudela, R.M.; Ishikawa, A.; Bernard, S.; Wulff, A.; Anderson, D.M.; et al. Harmful Algal Blooms and Climate Change: Learning from the Past and Present to Forecast the Future. Harmful Algae 2015, 49, 68–93. [Google Scholar] [CrossRef]
- Cressey, D. Climate Change Is Making Algal Blooms Worse. Nature 2017. [Google Scholar] [CrossRef]
- Gobler, C.J. Climate Change and Harmful Algal Blooms: Insights and Perspective. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef]
- Xu, D.; Zheng, G.; Brennan, G.; Wang, Z.; Jiang, T.; Sun, K.; Fan, X.; Bowler, C.; Zhang, X.; Zhang, Y.; et al. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. ISME J. 2023, 17, 525–536. [Google Scholar] [CrossRef]
- Moore, S.K.; Trainer, V.L.; Mantua, N.J.; Parker, M.S.; Laws, E.A.; Backer, L.C.; Fleming, L.E. Impacts of Climate Variability and Future Climate Change on Harmful Algal Blooms and Human Health. Environ. Health 2008, 7, S4. [Google Scholar] [CrossRef]
- Townhill, B.L.; Tinker, J.; Jones, M.; Pitois, S.; Creach, V.; Simpson, S.D.; Dye, S.; Bear, E.; Pinnegar, J.K. Harmful Algal Blooms and Climate Change: Exploring Future Distribution Changes. ICES J. Mar. Sci. 2018, 75, 1882–1893. [Google Scholar] [CrossRef]
- Armbrust, E.V. The Life of Diatoms in the World’s Oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Hutchins, D.A.; Feng, Y.; Seubert, E.L.; Caron, D.A.; Fu, F.-X. Effects of Changing p CO 2 and Phosphate Availability on Domoic Acid Production and Physiology of the Marine Harmful Bloom Diatom Pseudo-nitzschia multiseries. Limnol. Oceanogr. 2011, 56, 829–840. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.-P.; Boyce, D.G.; Gibson, L.; et al. Coastal Phytoplankton Blooms Expand and Intensify in the 21st Century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C. Algal Blooms Have Boomed Worldwide|Scientific American. Available online: https://www.scientificamerican.com/article/algal-blooms-have-boomed-worldwide/ (accessed on 3 May 2024).
- Hassoun, A.E.R.; Ujević, I.; Mahfouz, C.; Fakhri, M.; Roje-Busatto, R.; Jemaa, S.; Nazlić, N. Occurrence of Domoic Acid and Cyclic Imines in Marine Biota from Lebanon-Eastern Mediterranean Sea. Sci. Total Environ. 2021, 755, 142542. [Google Scholar] [CrossRef]
- Marić, D.; Kraus, R.; Godrijan, J.; Supić, N.; Djakovac, T.; Precali, R. Phytoplankton Response to Climatic and Anthropogenic Influences in the North-Eastern Adriatic during the Last Four Decades. Estuar. Coast. Shelf Sci. 2012, 115, 98–112. [Google Scholar] [CrossRef]
- Turk Dermastia, T.; Cerino, F.; Stanković, D.; Francé, J.; Ramšak, A.; Žnidarič Tušek, M.; Beran, A.; Natali, V.; Cabrini, M.; Mozetič, P. Ecological Time Series and Integrative Taxonomy Unveil Seasonality and Diversity of the Toxic Diatom Pseudo-nitzschia H. Peragallo in the Northern Adriatic Sea. Harmful Algae 2020, 93, 101773. [Google Scholar] [CrossRef]
- Ljubešić, Z.; Bosak, S.; Viličić, D.; Borojević, K.K.; Marić, D.; Godrijan, J.; Ujević, I.; Peharec, P.; Đakovac, T. Ecology and Taxonomy of Potentially Toxic Pseudo-nitzschia Species in Lim Bay (North-Eastern Adriatic Sea). Harmful Algae 2011, 10, 713–722. [Google Scholar] [CrossRef]
- Marić, D.; Ljubešić, Z.; Godrijan, J.; Viličić, D.; Ujević, I.; Precali, R. Blooms of the Potentially Toxic Diatom Pseudo-nitzschia Calliantha Lundholm, Moestrup & Hasle in Coastal Waters of the Northern Adriatic Sea (Croatia). Estuar. Coast. Shelf Sci. 2011, 92, 323–331. [Google Scholar] [CrossRef]
- Orsini, L.; Sarno, D.; Procaccini, G.; Poletti, R.; Dahlmann, J.; Montresor, M. Toxic Pseudo-nitzschia Multistriata (Bacillariophyceae) from the Gulf of Naples: Morphology, Toxin Analysis and Phylogenetic Relationships with Other Pseudo-nitzschia Species. Eur. J. Phycol. 2002, 37, S0967026202003608. [Google Scholar] [CrossRef]
- Viličić, D.; Djakovac, T.; Burić, Z.; Bosak, S. Composition and Annual Cycle of Phytoplankton Assemblages in the Northeastern Adriatic Sea. Bot. Mar. 2009, 52, 291–305. [Google Scholar] [CrossRef]
- Quiroga, I. Pseudo-nitzschia Blooms in the Bay of Banyuls-Sur-Mer, Northwestern Mediterranean Sea. Diatom Res. 2006, 21, 91–104. [Google Scholar] [CrossRef]
- Zingone, A.; Escalera, L.; Aligizaki, K.; Fernández-Tejedor, M.; Ismael, A.; Montresor, M.; Mozetič, P.; Taş, S.; Totti, C. Toxic Marine Microalgae and Noxious Blooms in the Mediterranean Sea: A Contribution to the Global HAB Status Report. Harmful Algae 2021, 102, 101843. [Google Scholar] [CrossRef] [PubMed]
- Arapov, J.; Ujević, I.; Marić Pfankuchen, D.; Godrijan, J.; Bakrač, A.; Ninčević Gladan, Ž.; Marasović, I. Domoic Acid in Phytoplankton Net Samples and Shellfish from the Krka River Estuary in the Central Adriatic Sea. Mediterr. Mar. Sci. 2016, 17, 340. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Magno, G.S.; Tartaglione, L.; Grillo, C.; Melchiorre, N. The Genoa 2005 Outbreak. Determination of Putative Palytoxin in Mediterranean Ostreopsis Ovata by a New Liquid Chromatography Tandem Mass Spectrometry Method. Anal. Chem. 2006, 78, 6153–6159. [Google Scholar] [CrossRef]
- Della Loggia, R.; Cabrini, M.; Del Negro, P.; Honsell, G.; Tubaro, A. Relationships between Dinophysis Spp. in Seawater and DSP Toxins in Mussels in the Northern Adriatic Sea. In Toxic Phytoplankton Blooms in the Sea; Smayda, T.J., Shimizu, Y., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1993; pp. 483–488. [Google Scholar]
- Marasović, I.; Ninčević, Ž.; Pavela-Vrančič, M.; Orhanović, S. A Survey of Shellfish Toxicity in the Central Adriatic Sea. J. Mar. Biol. Assoc. UK 1998, 78, 745–754. [Google Scholar] [CrossRef]
- Pistocchi, R.; Guerrini, F.; Pezzolesi, L.; Riccardi, M.; Vanucci, S.; Ciminiello, P.; Dell’Aversano, C.; Forino, M.; Fattorusso, E.; Tartaglione, L.; et al. Toxin Levels and Profiles in Microalgae from the North-Western Adriatic Sea—15 Years of Studies on Cultured Species. Mar. Drugs 2012, 10, 140–162. [Google Scholar] [CrossRef]
- Ujević, I.; Ninčević-Gladan, Z.; Roje, R.; Skejić, S.; Arapov, J.; Marasović, I. Domoic Acid—A New Toxin in the Croatian Adriatic Shellfish Toxin Profile. Molecules 2010, 15, 6835–6849. [Google Scholar] [CrossRef]
- Penna, A.; Casabianca, S.; Perini, F.; Bastianini, M.; Riccardi, E.; Pigozzi, S.; Scardi, M. Toxic Pseudo-nitzschia Spp. in the Northwestern Adriatic Sea: Characterization of Species Composition by Genetic and Molecular Quantitative Analyses. J. Plankton Res. 2013, 35, 352–366. [Google Scholar] [CrossRef]
- Turk Dermastia, T.; Dall’Ara, S.; Dolenc, J.; Mozetič, P. Toxicity of the Diatom Genus Pseudo-nitzschia (Bacillariophyceae): Insights from Toxicity Tests and Genetic Screening in the Northern Adriatic Sea. Toxins 2022, 14, 60. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Yousaf, M.; Rehman, A.; Wang, F. Biogenic ROS Mediated Degradation Mechanism of Marine Toxin Domoic Acid. Sci. Total Environ. 2024, 953, 176039. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.; Joens, J.A.; O’Shea, K.E. Fundamental Studies of the Singlet Oxygen Reactions with the Potent Marine Toxin Domoic Acid. Environ. Sci. Technol. 2020, 54, 6073–6081. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Connell, P.; Evans, R.H.; Gellene, A.G.; Howard, M.D.A.; Jones, B.H.; Kaveggia, S.; Palmer, L.; Schnetzer, A.; Seegers, B.N.; et al. A Decade and a Half of Pseudo-nitzschia Spp. and Domoic Acid along the Coast of Southern California. Harmful Algae 2018, 79, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.I.; Nemcek, N.; Hennekes, M.; Sastri, A.; Ross, A.R.S.; Shannon, H.; Shartau, R.B. Domoic Acid in Canadian Pacific Waters, from 2016 to 2021, and Relationships with Physical and Chemical Conditions. Harmful Algae 2023, 129, 102530. [Google Scholar] [CrossRef]
- Shartau, R.B.; Turcotte, L.D.M.; Bradshaw, J.C.; Ross, A.R.S.; Surridge, B.D.; Nemcek, N.; Johnson, S.C. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins 2023, 15, 395. [Google Scholar] [CrossRef]
- Trapp, A.; Hayashi, K.; Fiechter, J.; Kudela, R.M. What Happens in the Shadows—Influence of Seasonal and Non-Seasonal Dynamics on Domoic Acid Monitoring in the Monterey Bay Upwelling Shadow. Harmful Algae 2023, 129, 102522. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Fan, J.; Yue, H.; Zhang, X. Marine Toxin Domoic Acid Alters Protistan Community Structure and Assembly Process in Sediments. Mar. Environ. Res. 2023, 191, 106131. [Google Scholar] [CrossRef]
- McKibben, S.M.; Peterson, W.; Wood, A.M.; Trainer, V.L.; Hunter, M.; White, A.E. Climatic Regulation of the Neurotoxin Domoic Acid. Proc. Natl. Acad. Sci. USA 2017, 114, 239–244. [Google Scholar] [CrossRef]
- Zabaglo, K.; Chrapusta, E.; Bober, B.; Kaminski, A.; Adamski, M.; Bialczyk, J. Environmental Roles and Biological Activity of Domoic Acid: A Review. Algal Res. 2016, 13, 94–101. [Google Scholar] [CrossRef]
- Chenouf, S.; Pérez Agúndez, J.A.; Raux, P. Analysing the Socioeconomic Impacts of Fishing Closures Due to Toxic Algal Blooms: Application of the Vulnerability Framework to the Case of the Scallop Fishery in the Eastern English Channel. Sustainability 2023, 15, 12379. [Google Scholar] [CrossRef]
- Rolton, A.; Rhodes, L.; Hutson, K.S.; Biessy, L.; Bui, T.; MacKenzie, L.; Symonds, J.E.; Smith, K.F. Effects of Harmful Algal Blooms on Fish and Shellfish Species: A Case Study of New Zealand in a Changing Environment. Toxins 2022, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-W.; Pushparaj, S.S.C.; Muthu, M.; Gopal, J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. Plants 2023, 12, 3936. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.K.; Cline, M.R.; Blair, K.; Klinger, T.; Varney, A.; Norman, K. An Index of Fisheries Closures Due to Harmful Algal Blooms and a Framework for Identifying Vulnerable Fishing Communities on the U.S. West Coast. Mar. Policy 2019, 110, 103543. [Google Scholar] [CrossRef]
- Alvarez, S.; Brown, C.E.; Garcia Diaz, M.; O’Leary, H.; Solís, D. Non-Linear Impacts of Harmful Algae Blooms on the Coastal Tourism Economy. J. Environ. Manag. 2024, 351, 119811. [Google Scholar] [CrossRef] [PubMed]
- Sanseverino, I.; Conduto, D.; Pozzoli, L.; Dobricic, S.; Lettieri, T. Algal bloom and its economic impact. Eur. Comm. Jt. Res. Cent. Inst. Environ. Sustain. 2016, 51. [Google Scholar] [CrossRef]
- CDC. Harmful Algal Blooms Threaten Our Health, Environment, and Economy; CDC: Atlanta, GA, USA, 2023. [Google Scholar]
- Lefebvre, K.A.; Tilton, S.C.; Bammler, T.K.; Beyer, R.P.; Srinouanprachan, S.; Stapleton, P.L.; Farin, F.M.; Gallagher, E.P. Gene Expression Profiles in Zebrafish Brain after Acute Exposure to Domoic Acid at Symptomatic and Asymptomatic Doses. Toxicol. Sci. 2009, 107, 65–77. [Google Scholar] [CrossRef]
- Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Vogelaere, A.; Harvey, J.; et al. Mortality of Sea Lions along the Central California Coast Linked to a Toxic Diatom Bloom. Nature 2000, 403, 80–84. [Google Scholar] [CrossRef]
- Silvagni, P.A.; Lowenstine, L.J.; Spraker, T.; Lipscomb, T.P.; Gulland, F.M.D. Pathology of Domoic Acid Toxicity in California Sea Lions (Zalophus californianus). Vet. Pathol. 2005, 42, 184–191. [Google Scholar] [CrossRef]
- Tryphonas, L.; Truelove, J.; Todd, E.; Nera, E.; Iverson, F. Experimental Oral Toxicity of Domoic Acid in Cynomolgus Monkeys (Macaca fascicularis) and Rats. Preliminary Investigations. Food Chem. Toxicol. 1990, 28, 707–715. [Google Scholar] [CrossRef]
- Petroff, R.; Hendrix, A.; Shum, S.; Grant, K.S.; Lefebvre, K.A.; Burbacher, T.M. Public Health Risks Associated with Chronic, Low-Level Domoic Acid Exposure: A Review of the Evidence. Pharmacol. Ther. 2021, 227, 107865. [Google Scholar] [CrossRef]
- Ramsdell, J.S.; Gulland, F.M. Domoic Acid Epileptic Disease. Mar. Drugs 2014, 12, 1185–1207. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.S.; Burbacher, T.M.; Faustman, E.M.; Gratttan, L. Domoic Acid: Neurobehavioral Consequences of Exposure to a Prevalent Marine Biotoxin. Neurotoxicol. Teratol. 2010, 32, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Grattan, L.M.; Kaddis, L.; Tracy, J.K.; Morris, J.G. Long Term Memory Outcome of Repetitive, Low-Level Dietary Exposure to Domoic Acid in Native Americans. Int. J. Environ. Res. Public Health 2021, 18, 3955. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, J.S.; Zatorre, R.J.; Carpenter, S.; Gendron, D.; Evans, A.C.; Gjedde, A.; Cashman, N.R. Neurologic Sequelae of Domoic Acid Intoxication Due to the Ingestion of Contaminated Mussels. N. Engl. J. Med. 1990, 322, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.C.D. Domoic Acid and Amnesic Shellfish Poisoning—A Review. J. Food Prot. 1993, 56, 69–83. [Google Scholar] [CrossRef]
- Gwaltney-Brant, S.M. Zootoxins. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 963–972. [Google Scholar] [CrossRef]
- Ramsdell, J.S.; Zabka, T.S. In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus Californianus). Mar. Drugs 2008, 6, 262–290. [Google Scholar] [CrossRef]
- Maucher, J.M.; Ramsdell, J.S. Maternal–Fetal Transfer of Domoic Acid in Rats at Two Gestational Time Points. Environ. Health Perspect. 2007, 115, 1743–1746. [Google Scholar] [CrossRef]
- Tanemura, K.; Igarashi, K.; Matsugami, T.-R.; Aisaki, K.; Kitajima, S.; Kanno, J. Intrauterine Environment-Genome Interaction and Children’s Development (2): Brain Structure Impairment and Behavioral Disturbance Induced in Male Mice Offspring by a Single Intraperitoneal Administration of Domoic Acid (DA) to Their Dams. J. Toxicol. Sci. 2009, 34 (Suppl. S2), SP279–SP286. [Google Scholar] [CrossRef]
- Maucher, J.M.; Ramsdell, J.S. Domoic Acid Transfer to Milk: Evaluation of a Potential Route of Neonatal Exposure. Environ. Health Perspect. 2005, 113, 461–464. [Google Scholar] [CrossRef]
- Kumar, K.P.; Kumar, S.P.; Nair, G.A. Risk Assessment of the Amnesic Shellfish Poison, Domoic Acid, on Animals and Humans. J. Environ. Biol. 2009, 30, 319–325. [Google Scholar]
- Paredes, I.; Rietjens, I.M.C.M.; Vieites, J.M.; Cabado, A.G. Update of Risk Assessments of Main Marine Biotoxins in the European Union. Toxicon 2011, 58, 336–354. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cravedi, J.; Domenico, A.D.; Doerge, D.; Dogliotti, E.; Edler, L.; Farmer, P.; et al. Marine Biotoxins in Shellfish—Domoic Acid Scientific Opinion of the Panel on Contaminants in the Food Chain Adopted on 2 July 2009. EFSA J. 2009, 7, 1181. [Google Scholar]
- Lee, M.J.; Henderson, S.B.; Clermont, H.; Turna, N.S.; McIntyre, L. The Health Risks of Marine Biotoxins Associated with High Seafood Consumption: Looking beyond the Single Dose, Single Outcome Paradigm with a View towards Addressing the Needs of Coastal Indigenous Populations in British Columbia. Heliyon 2024, 10, e27146. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, G.; Bates, S.S.; Spallino, J. Amnesic Shellfish Poisoning: Emergency Medical Management. J. Mar. Sci. Res. Dev. 2015, 6, 2. [Google Scholar] [CrossRef]
- Dizer, H.; Fischer, B.; Harabawy, A.S.; Hennion, M.C.; Hansen, P.D. Toxicity of Domoic Acid in the Marine Mussel Mytilus Edulis. Aquat. Toxicol. 2001, 55, 149–156. [Google Scholar] [CrossRef]
- Cavaş, T.; Könen, S. In Vivo Genotoxicity Testing of the Amnesic Shellfish Poison (Domoic Acid) in Piscine Erythrocytes Using the Micronucleus Test and the Comet Assay. Aquat. Toxicol. 2008, 90, 154–159. [Google Scholar] [CrossRef]
- Mazmanci, B.; Cavaş, T. Antioxidant Enzyme Activity and Lipid Peroxidation in Liver and Gill Tissues of Nile Tilapia (Oreochromis niloticus) Following in Vivo Exposure to Domoic Acid. Toxicon 2010, 55, 734–738. [Google Scholar] [CrossRef]
- Madl, J.E.; Duncan, C.G.; Stanhill, J.E.; Tai, P.-Y.; Spraker, T.R.; Gulland, F.M. Oxidative Stress and Redistribution of Glutamine Synthetase in California Sea Lions (Zalophus californianus) with Domoic Acid Toxicosis. J. Comp. Pathol. 2014, 150, 306–315. [Google Scholar] [CrossRef]
- Levin, M.; Leibrecht, H.; Ryan, J.; Van Dolah, F.; De Guise, S. Immunomodulatory Effects of Domoic Acid Differ between in Vivo and in Vitro Exposure in Mice. Mar. Drugs 2008, 6, 636–659. [Google Scholar] [CrossRef]
- Levin, M.; Joshi, D.; Draghi, A.; Gulland, F.M.; Jessup, D.; De Guise, S. Immunomodulatory Effects upon in Vitro Exposure of California Sea Lion and Southern Sea Otter Peripheral Blood Leukocytes to Domoic Acid. J. Wildl. Dis. 2010, 46, 541–550. [Google Scholar] [CrossRef]
- Ayed, Y.; Kouidhi, B.; Kassim, S.; Bacha, H. Proliferative Effect of the Phycotoxin Domoic Acid on Cancer Cell Lines: A Preliminary Evaluation. J. Taibah Univ. Sci. 2018, 12, 11–16. [Google Scholar] [CrossRef]
- Gajski, G.; Gerić, M.; Oreščanin, V.; Garaj-Vrhovac, V. Cytokinesis-Block Micronucleus Cytome Assay Parameters in Peripheral Blood Lymphocytes of the General Population: Contribution of Age, Sex, Seasonal Variations and Lifestyle Factors. Ecotoxicol. Environ. Saf. 2018, 148, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Gajski, G.; Kašuba, V.; Milić, M.; Gerić, M.; Matković, K.; Delić, L.; Nikolić, M.; Pavičić, M.; Rozgaj, R.; Garaj-Vrhovac, V.; et al. Exploring Cytokinesis Block Micronucleus Assay in Croatia: A Journey through the Past, Present, and Future in Biomonitoring of the General Population. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2024, 895, 503749. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, N.; Kašuba, V.; Milić, M.; Rozgaj, R.; Želježić, D.; Gajski, G.; Mladinić, M.; Garaj-Vrhovac, V. Normal and Cut-off Values of the Cytokinesis-Block Micronucleus Assay on Peripheral Blood Lymphocytes in the Croatian General Population. Arh. Hig. Rada Toksikol. 2010, 61, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Gekara, N.O. DNA Damage-Induced Immune Response: Micronuclei Provide Key Platform. J. Cell Biol. 2017, 216, 2999–3001. [Google Scholar] [CrossRef]
- Carvalho, P.-S.; Catia, R.; Moukha, S.; Matias, W.G.; Creppy, E.E. Comparative Study of Domoic Acid and Okadaic Acid Induced—Chromosomal Abnormalities in the CACO-2 Cell Line. Int. J. Environ. Res. Public Health 2006, 3, 4–10. [Google Scholar] [CrossRef]
- Carvalho Pinto-Silva, C.R.; Moukha, S.; Matias, W.G.; Creppy, E.E. Domoic Acid Induces Direct DNA Damage and Apoptosis in Caco-2 Cells: Recent Advances. Environ. Toxicol. 2008, 23, 657–663. [Google Scholar] [CrossRef]
- Ramya, E.M.; Kumar, G.P.; Anand, T.; Anilakumar, K.R. Modulatory Effects of Terminalia Arjuna against Domoic Acid Induced Toxicity in Caco-2 Cell Line. Cytotechnology 2017, 69, 725–739. [Google Scholar] [CrossRef]
- Rogers, C.G.; Boyes, B.G. Evaluation of the Genotoxicity of Domoic Acid in a Hepatocyte-Mediated Assay with V79 Chinese Hamster Lung Cells. Mutat. Res. 1989, 226, 191–195. [Google Scholar] [CrossRef]
- Hymery, N.; Sibiril, Y.; Parent-Massin, D. Improvement of Human Dendritic Cell Culture for Immunotoxicological Investigations. Cell Biol. Toxicol. 2006, 22, 243–255. [Google Scholar] [CrossRef]
- Gajski, G.; Gerić, M.; Domijan, A.-M.; Golubović, I.; Žegura, B. Marine Toxin Domoic Acid Induces in Vitro Genomic Alterations in Human Peripheral Blood Cells. Toxicon 2020, 187, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G.; et al. Measuring DNA Modifications with the Comet Assay: A Compendium of Protocols. Nat. Protoc. 2023, 18, 929–989. [Google Scholar] [CrossRef] [PubMed]
- Madunić, J.; Hercog, K.; Gerić, M.; Domijan, A.-M.; Žegura, B.; Gajski, G. Marine Toxin Domoic Acid Induces Moderate Toxicological Response in Non-Target HepG2 Cells. Toxicology 2022, 470, 153157. [Google Scholar] [CrossRef] [PubMed]
- Gerić, M.; Gajski, G.; Garaj-Vrhovac, V. γ-H2AX as a Biomarker for DNA Double-Strand Breaks in Ecotoxicology. Ecotoxicol. Environ. Saf. 2014, 105, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Ladeira, C.; Costa-Veiga, A.; Perelman, J.; Gajski, G. Forgotten Public Health Impacts of Cancer—An Overview. Arh. Hig. Rada Toksikol. 2017, 68, 287–297. [Google Scholar] [CrossRef]
- Tewari, K. A Review of Climate Change Impact Studies on Harmful Algal Blooms. Phycology 2022, 2, 244–253. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived Global Increase in Algal Blooms Is Attributable to Intensified Monitoring and Emerging Bloom Impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
- Dale, B.; Edwards, M.; Reid, P.C. Climate Change and Harmful Algal Blooms. In Ecology of Harmful Algae; Springer: Berlin/Heidelberg, Germany, 2006; pp. 367–378. ISBN 978-3-540-32210-8. [Google Scholar]
- Hengl, B.; Petrić, J.; Gross Bošković, A.; Ujević, I.; Listeš, E.; Bogdanović, T.; Džafić, N.; Kvrgić, K. Znanstveno Mišljenje o Morskim Biotoksinima u Školjkašima u Republici Hrvatskoj; CRORISO: Osijek, Croatia, 2024. [Google Scholar]
- Toyofuku, H. Joint FAO/WHO/IOC Activities to Provide Scientific Advice on Marine Biotoxins (Research Report). Mar. Pollut. Bull. 2006, 52, 1735–1745. [Google Scholar] [CrossRef]
- FDA. Appendix 5: FDA and EPA Safety Levels in Regulations and Guidance; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- FSA. Biotoxin and Phytoplankton Monitoring; Food Standards Agency: London, UK, 2023. [Google Scholar]
Cell Type | Type of Study | Concentration Range | Method/Assay | Effect | References |
---|---|---|---|---|---|
Gill cells (Mytilus edulis) | In vivo | 1–500 ng/g bw | Cholinesterase activity | Positive | Dizer et al. [113] |
Digestive gland cells (Mytilus edulis) | DNA fragmentation (DNA damage) assay | Positive | |||
Hemocytes (Mytilus edulis) | Cell vitality | Positive | |||
Phagocytosis activity | Positive | ||||
Erythrocytes (Oreochromis niloticus) | In vivo | 1–10 μg/g bw | Comet (DNA damage) assay | Positive | Cavaş and Könen [114] |
Micronucleus (genome instability) assay | Positive | ||||
Liver cells (Oreochromis niloticus) | In vivo | 1–10 μg/g bw | Lipid peroxidation (LPO) analysis | Positive | Mazmanci and Cavaş [115] |
Liver cells (Oreochromis niloticus) | Superoxide dismutase (SOD) analysis | Positive | |||
Catalase (CAT) analysis | Positive | ||||
Glutathione peroxidase (GPx) analysis | Positive | ||||
Glutathione reductase (GR) analysis | Positive | ||||
Gill cells (Oreochromis niloticus) | Lipid peroxidation (LPO) analysis | Positive | |||
Superoxide dismutase (SOD) analysis | Positive | ||||
Catalase (CAT) analysis | Positive | ||||
Glutathione peroxidase (GPx) analysis | Positive | ||||
Glutathione reductase (GR) analysis | Positive | ||||
Monocytes (ICR female mice) | In vivo | 2.5 μg/g bw | Phagocytosis analysis | Positive | Levin et al. [117] |
Neutrophils (ICR female mice) | |||||
Lymphocytes (ICR female mice) | Proliferation assay | Positive | |||
Monocytes (ICR female mice) | In vitro | 1–100 μM | Phagocytosis analysis | Positive | |
Neutrophils (ICR female mice) | |||||
Lymphocytes (ICR female mice) | Proliferation assay | Positive | |||
Leukocytes (Enhydra lutris) | In vitro | 0.0001–100 μM | Phagocytosis and respiratory burst analysis | Negative | Levin et al. [118] |
Proliferation assay | Negative | ||||
Leukocytes (Zalophus californianus) | Phagocytosis and respiratory burst analysis | Negative | |||
Proliferation assay | Positive | ||||
V79 lung cells (Chinese hamster) | In vitro | 27.2 and 54.4 μg/mL | Micronucleus (genome instability) assay | Negative | Rogers and Boyes [127] |
Sister chromatid exchange (SCE) assay | Negative | ||||
Human Caco-2 intestinal cells | In vitro | 15–100 ng/mL | Cytotoxicity (MTT) assay | Positive | Carvalho et al. [124] |
Micronucleus (genome instability) assay | Positive | ||||
Human Caco-2 intestinal cells | In vitro | 30–300 ng/mL | Cytotoxicity (Trypan Blue) assay | Positive | Carvalho et al. [125] |
15–100 ng/mL | Comet (DNA damage) assay | Positive | |||
Apoptotic (AO/EtBr) assay | Positive | ||||
Human Caco-2 intestinal cells | In vitro | 10–100 ng/mL | Cytotoxicity (MTT) assay | Positive | Ramya et al. [126] |
75 ng/mL | Apoptotic assay | Positive | |||
DNA damage (DAPI) assay | Positive | ||||
Reactive oxygen species (ROS) analysis | Positive | ||||
Nitric oxide (NO) analysis | Positive | ||||
Glutathione reductase (GR) analysis | Positive | ||||
Catalase (CAT) analysis | Positive | ||||
Human leukemia (K562) cells | In vitro | 30–120 μM | Cytotoxicity (MTT and Neutral Red) assay | Positive | Ayed et al. [119] |
Human endothelial (EA.hy926) cells | |||||
Monkey kidney Vero cells | |||||
Human dendritic (CD34+ and monocytes) cells | In vitro | 3.2–320 nmol/L | Cytotoxicity assay | Negative | Hymery et al. [128] |
Dendritic cell maturation | Negative | ||||
Cytokine (IL-10 and IL-12) secretion | Negative | ||||
Autologous lymphocyte proliferation | Negative | ||||
Human peripheral blood cells | In vitro | 0.01–10 μg/mL | Cytotoxicity (AO/EtBr) assay and proliferation kinetics | Positive | Gajski et al. [129] |
0.01–1 μg/mL | Comet (DNA damage) assay | Positive | |||
hOGG1-modified comet assay | Negative | ||||
Micronucleus (genome instability) assay | Positive | ||||
Reactive oxygen species (ROS) analysis | Positive | ||||
Glutathione (GSH) analysis | Positive | ||||
Superoxide dismutase (SOD) analysis | Positive | ||||
Lipid peroxidation (LPO) analysis | Positive | ||||
Protein carbonyl (PC) analysis | Positive | ||||
Human hepatocellular carcinoma (HepG2) cells | In vitro | 0.001–10 μg/mL | Cytotoxicity (MTT) assay | Positive | Madunić et al. [131] |
0.01–1 μg/mL | Proliferation (Ki67) assay | Negative | |||
Cell cycle analysis | Negative | ||||
γ-H2AX (DNA damage) assay | Negative | ||||
Comet (DNA damage) assay | Positive | ||||
Lipid peroxidation (LPO) analysis | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajski, G.; Gerić, M.; Baričević, A.; Smodlaka Tanković, M. Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach. Antioxidants 2024, 13, 1366. https://doi.org/10.3390/antiox13111366
Gajski G, Gerić M, Baričević A, Smodlaka Tanković M. Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach. Antioxidants. 2024; 13(11):1366. https://doi.org/10.3390/antiox13111366
Chicago/Turabian StyleGajski, Goran, Marko Gerić, Ana Baričević, and Mirta Smodlaka Tanković. 2024. "Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach" Antioxidants 13, no. 11: 1366. https://doi.org/10.3390/antiox13111366
APA StyleGajski, G., Gerić, M., Baričević, A., & Smodlaka Tanković, M. (2024). Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach. Antioxidants, 13(11), 1366. https://doi.org/10.3390/antiox13111366