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Abstract: The major pathological characteristics of Alzheimer’s disease (AD) include senile plaques
and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ)
peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive
oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological
mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue
adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic
target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to
AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of
HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well
as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based
on current experimental evidence in the literature, we then discuss the possible beneficial as well
as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple
chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the
induction or inhibition of HIF-1.

Keywords: amyloid-beta peptide (Aβ); amyloid precursor protein (APP); microglia; neurofibril-
lary tangle (NFT); neuroinflammation; oxidative stress; reactive oxygen species (ROS); secretase;
tau hyperphosphorylation

1. Pathophysiology of Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease
and presents with progressive memory impairment, declined cognition, and behavioral dys-
functions. Currently no effective treatment for the deteriorating clinical course of dementia
is available, thus contributing substantial economic burdens to the patients’ families and
eventually to the whole society [1–3]. According to the World Health Organization (WHO),
around 55 million people suffer from dementia worldwide, with approximately 10 million
cases added each year. These situations underscore dementia as one of the leading causes
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of mental and/or physical disability. Among various causes, AD may comprise 60–70% of
dementia cases (https://www.who.int/news-room/fact-sheets/detail/dementia, accessed
on 15 March 2023). Based on the report “2023 Alzheimer’s disease facts and figures” [4],
nearly 6.7 million Americans aged 65 years and above are estimated to suffer from AD.
By 2060, the number of AD patients, with a rather steep rise, may increase to 13.8 million.
Comparing the death tolls from 2000 to 2019 among various diseases, death caused by
human immunodeficiency virus, cardiac diseases, and cerebrovascular disorders declined
while those from AD increased by more than 145% [5]. The total expenses for AD health-
care in 2023 were around USD 345 billion and are predicted to escalate to more than USD
1 trillion by 2050 due to the aging population [4,5].

The major pathological features in AD include atrophy of the brain [6], deposition of
amyloid-beta (Aβ) plaques, and the presence of neurofibrillary tangles (NFTs) in axonal
microtubules [7–9] (Figure 1). Aβ is a neurotoxic peptide fragment of 39–43 amino acids
derived from the sequential cleavage of amyloid precursor protein (APP) by a group of
enzymes called secretases [10,11]. In non-amyloidogenic pathways, most of the APP under-
goes cleavage by α-secretase to yield the extracellular soluble APP-α fragment (sAPPα) and
C-terminal fragment-α (α-CTF or C83); the latter is then subjected to γ-secretase-mediated
proteolysis to produce p3 and an APP intracellular domain (AICD) fragment [12]. Alter-
natively, in the amyloidogenic pathway, a minor population of APP may first undergo
β-secretase cleavage to generate sAPPβ (β-CTF or C99), followed by γ-secretase-mediated
cleavage to produce Aβ and AICD [12]. Excessive Aβ aggregation can exert neurotoxicity
through diverse mechanisms including excitotoxicity [13], oxidative stress [14], aberrant
cell cycle reentry [15,16], mitochondrial dysfunction [17], and impaired DNA function [18],
together contributing to the damage or even demise of the neurons.
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Figure 1. The major pathologies in AD brains include deposition of extracellular Aβ plaques
and intraneuronal neurofibrillary tangles (NFTs) mainly composed of hyperphosphorylated tau
proteins. Excessive Aβ aggregation can trigger diverse mechanisms including excitotoxicity, oxidative
stress with heightened ROS levels, mitochondrial dysfunction with compromised ATP production,
aberrant cell cycle reentry with subsequent apoptosis, and activation of neurotoxic glial cells like
microglia to trigger neuroinflammation; these effects together lead to the damage or even demise
of the neurons. Tau belongs to the microtubule-associated protein (MAP) family that is vital for
microtubule assembly and stabilization in neuronal axons. Hyperphosphorylated tau proteins not
only compromise microtubule structures to disturb axonal transport but also aberrantly aggregate
into NFTs, which also contribute to neuroinflammation and neuronal apoptosis. Excessive neuronal
death ultimately results in brain atrophy in AD patients.
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Tau, a member of the microtubule-associated protein family crucial for microtubule
assembly and stabilization, is involved in axonal transport in neurons [19]. The hyper-
phosphorylation of tau proteins not only impairs the biological functions, with resultant
compromised microtubule structures and disturbed axonal transport, but also causes aber-
rant aggregation leading to neuronal damage [19]. Moreover, emerging evidence indicates
that Aβ may also impair axonal transport and further aggravate the AD pathophysiol-
ogy [20]. Additionally, Aβ can affect gene transcription and alter protein expression that
may change the fate of neuronal survival or death under AD-related pathophysiological
conditions [17]. Thus, any means to delay or lessen the consequences from AD may mitigate
the socioeconomic impacts on the patients’ families and societies.

2. The Pathophysiological Roles of HIF-1 in Cancer, Immunity, and Oxidative Stress

In mammalian tissues, three hypoxia-inducible factors (HIFs) including HIF-1, HIF-2,
and HIF-3 have been reported, whose expression levels are strictly regulated by oxygen
tension [21]. The activation of HIF-1 is crucial for numerous cellular responses to adapt
the tissues to hypoxic environments, such as increasing cell proliferation, accelerating the
formation of new blood vessels, regulating glucose and energy metabolisms, affecting
the synthesis of glycogen and fatty acids, and adjusting the pH level [22–24]. Besides
HIF-1, HIF-2 is expressed in a cell-specific manner that plays a pivotal role in pulmonary
development, vascularization, and erythropoiesis [25,26]. While HIF-1 and HIF-2 may
function as transcription factors to drive the expression of either distinctive or overlapping
target genes, the function of HIF-3 is less well understood [27]. In the present article, we
only focus on the potential roles of HIF-1 in AD.

HIF-1 consists of an alpha subunit (HIF-1α) that senses the low-oxygen tension for
its stabilization and a beta subunit (HIF-1β) that is constitutively expressed [28,29]. The
half-life of HIF-1α in living cells under normoxic condition is only minutes [28]. This rapid
degradation of HIF-1α occurs through oxygen-dependent hydroxylation catalyzed by the
proteins of the prolyl hydroxylase domain (PHD) family; the hydroxylation of HIF-1α
promotes binding to an E3 ubiquitin ligase, which contains the von Hippel–Lindau (VHL)
protein, to facilitate its polyubiquitination and subsequent proteasomal degradation [30,31].
Under hypoxic conditions, the hydroxylation of HIF-1α is hindered due to insufficient
oxygen supply, thus leading to the stabilization and accumulation of the HIF-1α subunit
within the cytoplasm of a cell. In addition to hypoxic conditions, HIF-1α can also be
induced by various chemical compounds such as pravastatin, deferoxamine (DFO), and
cobalt chloride in miscellaneous brain cells including endothelial cells, glioma cells, and
neurons under normoxic conditions [32–34].

HIF-1α and HIF-1β each contain the structure of basic helix-loop-helix-PAS (bHLH-
PAS) domains that are crucial for heterodimerization and DNA binding [28,35]. During
hypoxia, translocation of the heterodimeric HIF-1α/β into the nucleus then drives the
expression of target genes with the hypoxia-response elements (HREs) in their promot-
ers [36]. Using genome-wide chromatin immunoprecipitation, hundreds of genes have
been identified to be altered, either with increased or decreased expression levels, in an HIF-
1-dependent manner in response to hypoxia [37]. Several well-known HIF-1 target genes
including EPO, VEGF, and PDK1, which encode erythropoietin (EPO), vascular endothelial
growth factor (VEGF), and pyruvate dehydrogenase kinase-1 (PDK1), are critical for the
production of red blood cells, formation of blood vessels, and oxidative phosphorylation
in the mitochondria, respectively. The heightened expression of HIF-1 target genes may
assist these cells with inadequate oxygen supply in accommodating the critical hypoxic
condition [23] (Figure 2).
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Figure 2. Activation of HIF-1 and its biological functions. HIF-1 is a heterodimeric transcription factor
consisting of an oxygen-sensitive alpha subunit (HIF-1α) and a constitutively expressed beta subunit
(HIF-1β). Under normoxia, HIF-1α undergoes hydroxylation of the proline residues catalyzed by
the prolyl hydroxylase (PHD), which requires molecular oxygen (O2). The hydroxylated HIF-1α is
then recognized by the von Hippel–Lindau (VHL) protein and E3 ubiquitin ligase for ubiquitination
and subsequent proteasomal degradation. Under hypoxia, low-oxygen tension interferes with
PHD hydroxylation and disrupts the interaction between HIF-1α and VHL, thereby stabilizing
HIF-1α for its accumulation to form the heterodimeric HIF-1α/β. Translocation of the HIF-1α/β
complex into the nucleus, along with coactivators p300/CBP, then drive the expression of target genes
containing the hypoxia-response element (HRE) sequences in their promoters. HIF-1-dependent gene
expression is crucial for numerous cellular responses to adapt the tissues to hypoxic environments,
such as promoting angiogenesis and regulating vascular tone, enhancing antioxidation, regulating
glucose transport and reprogramming energy metabolisms, affecting apoptosis, and regulating
immune responses.

2.1. Roles of HIF in Cancer

Mounting evidence supports the pivotal role of HIF-1 in tumor development, invasion,
and metastasis [38]. The main components of the tumor microenvironment include blood
vessels, lymphatic vessels, extracellular matrix, various immune cells, and fibroblasts [39].
A hypoxic tumor microenvironment is a driving force for cancer invasion [40–42]. The
unmet demand for oxygen in human cancers can modify cellular metabolisms; these in-
clude the shift from oxidative phosphorylation to glycolysis, the enhanced synthesis of
glycogen, and changes in the major substrate from glucose to glutamine for fatty acid
synthesis. In parallel with these effects of metabolic reprogramming, HIF-1 activation may
drive the expression of various genes to accommodate the hypoxic conditions and serve
as a network hub to coordinate relevant signaling molecules for the promotion of tumori-
genesis [24,43]. In recent years, combining HIF inhibitors with current cancer therapies
to enhance anti-tumor activity is one strategy for combating therapeutic resistance [44].
This leads inevitably to an important question as to whether HIF inhibitors used in cancer
patients may worsen their cognitive functions, especially in the elderly population, as age
is a common risk factor for cancer and neurodegeneration. Similar concerns also exist for
the clinical application of HIF inhibitors in the treatment of renal anemia [45], because the
US FDA has recently approved Daprodustat, the first HIF prolyl hydroxylase (HIF-PH)
inhibitor capable of blocking HIF-1 degradation, to treat anemia caused by chronic kid-
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ney disease (https://www.fda.gov/news-events/press-announcements/fda-approves-
first-oral-treatment-anemia-caused-chronic-kidney-disease-adults-dialysis, accessed on 1
February 2023). Currently less well understood, these are pivotal issues that also deserve
attention besides the roles of HIF-1 in AD.

2.2. Roles of HIF in Immunity

The immune system includes innate and adaptive components that can function
efficiently through various immune-related cells such as dendritic cells, macrophages,
neutrophils, B cells, and T cells. Infected and inflammatory tissues often appear with
hypoxia with HIF-1 activation for adapting to hypoxic conditions; HIF-1 may also stabilize
immunity under normoxic condition by regulating the metabolism and stimulating the
expression of immune genes [46]. HIF-1 can affect innate immune cells in various aspects
in macrophages, dendritic cells, and neutrophils. Depending on the extent of the stimuli,
macrophages may polarize toward the proinflammatory status of the M1-type or toward
the anti-inflammatory status of the M2-type. Notably, HIF-1α is induced in M1 macrophage
polarization, whereas HIF-2α is induced during an M2 response. Macrophage polarization
controls functionally divergent processes including the production of nitric oxide (NO),
which is in part controlled by HIFs. Overall, NO availability is differentially regulated by
HIF-1α versus HIF-2α to increase or suppress NO synthesis, respectively [47]. HIF-1α in-
duced in lipopolysaccharide (LPS)-activated macrophages is involved in glycolysis and the
induction of proinflammatory genes [48]. LPS stabilizes HIF-1α by the succinate-dependent
inhibition of PHDs; further, pyruvate kinase M2 (PKM2) is also induced to promote the
function of HIF-1α, which serves as a key metabolic reprogrammer for the expression of in-
flammatory genes [48]. Another study also reported that the glycolysis metabolism induced
by HIF-1 is crucial for M1 macrophage polarization in mice [49]. Dendrite cells pivotal
for antigen presenting play a significant role in innate immunity. HIF-1 is involved in the
differentiation, migration, metabolism, and survival of dendrite cells under hypoxia and
inflammation [50,51]. In immature dendritic cells, higher levels of HIF-1α are associated
with the increased expression of pro-apoptotic molecule, such as the BCL2/adenovirus E1B
19-kDa protein-interacting protein (BNIP3) and BAX, along with the decreased expression
of anti-apoptotic proteins like Bcl-2, heightened caspase-3 activity, enhanced cleavage of
poly (ADP-ribose) polymerase (PARP), and cell death. On the contrary, the LPS-triggered
maturation of dendritic cells attenuates hypoxia-induced cell death, wherein the PI3K/Akt
pathway plays a vital part in this protective effect [51]. Pathogens may be captured and
eradicated in neutrophil extracellular traps (NETs), which are mainly composed of DNA
and relevant proteins generated by neutrophils. However, dysregulated NET formation
may lead to excessive inflammation. A previous study showed the critical role of the
mTOR/HIF-1α pathway for NET formation in neutrophils in response to LPS stimula-
tion [52]. HIF-1 has also been shown to affect the differentiation and function of different
subsets of T cells under both hypoxic and normoxic conditions. For example, HIF-1α is
critical for the differentiation of various T cells including Th1, Th17, and CD8-positive
effector cells; HIF-1 may also inhibit the development of regulatory T cells [53,54]. The T
cell-specific knockout of HIF-1α in mice displays more severe colonic inflammation induced
by dextran sodium sulfate; notably, hypoxia-induced HIF-1 is required for Treg activation
but suppresses Th17 activation [55]. HIF-1α is also critical for B cell development and en-
hances the expression of interleukin (IL)-10 and CD11b, which may exert anti-inflammatory
action [56–58]. B cells derived from HIF-1α-deficient mice manifested decreased IL10 and
CD11b expression and became more susceptible to collagen-induced arthritis, experimental
autoimmune encephalomyelitis, and inflammatory bowel diseases [58,59].

2.3. Roles of HIF in Oxidative Stress and Cerebral Hypoperfusion

Reactive oxygen species (ROS) are highly unstable, oxygen-containing molecules often
with an unpaired electron. Fundamental for an aerobic life, the main sources of ROS in
living cells include diverse origins such as the mitochondria, NADPH oxidase, cytochrome
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P450 enzymes, and 5-lipoxygenase [60–62]. To maintain the balance of redox status, cells
possess the capability to counteract excessive ROS through endogenous enzymatic an-
tioxidant systems (such as catalase, superoxide dismutase, glutathione peroxidase, and
glutathione reductase) and non-enzymatic antioxidants (such as glutathione, thioredoxin,
ubiquinone, and uric acid) [63,64]. However, excessive ROS may be generated under
various stressful conditions such as hypoxia, inflammation, and serum deprivation [60,65].
These conditions may advance to overoxidation and result in lipid peroxidation, protein
carbonylation, and DNA damage that can together proceed to cell death [66,67]. Ox-
idative stress is involved in numerous aging-related pathological conditions, including
cancer, diabetes, chronic neurodegenerative disorders, and acute brain injuries like cerebral
ischemia [68–70].

The role of HIF-1 in hypoxia-related oxidative stress is well-known in various ischemic
conditions with inadequate oxygen supply [71–75]. ROS and several signal transduction
pathways, including IKK/NF-kB, PI3K/AKT/mTOR, and RAS/RAF/MEK/ERK, can
induce HIF-1 expression [46,76]. Downstream of HIF-1, a number of target genes involved
in antioxidation with HREs in their promoters have been reported. Chromatin immuno-
precipitation revealed that HIF-1α overexpression in hypoxic cardiomyocytes increases its
binding to the HRE in the promoter of antioxidant gene heme oxygenase-1 (HO-1) that is
known to attenuate the accumulation of ROS [77]. HO-1, but not HO-2, is also transcrip-
tionally induced by HIF-1α in the renal medullary interstitial cells [78]. The suppression of
glutathione peroxidase-8 (GPx8) enhances ER stress and cell death induced by oxidative
stress in hepatocellular carcinoma cells [79]; notably, GPx8 is transcriptionally regulated
by HIF-1α [80]. Peroxiredoxins (PRDXs) are a group of antioxidant enzymes that reduce
hydrogen peroxide and alkyl hydroperoxides [81]; peroxiredoxin-2 (PRDX2) is a direct
HIF-1 target gene whose expression is induced by prolonged hypoxia that may recipro-
cally interact with HIF-1α to suppress expression of other selected HIF-1 target genes
under prolonged hypoxic conditions [82]. Hypoxia also affects the antioxidant activity of
glutaredoxin-3 (Grx3) through HREs [83]. Depending on the experimental model systems,
these previous findings together strongly support the potential antioxidative effects of
HIF-1 via transcriptional induction of a multitude of antioxidation genes.

With aging, the competency for oxygen delivery in the body gradually declines and
the ability to adapt hypoxia is presumed to be compromised [84–86]. Hypoxia may thus
exacerbate the progression of neurodegenerative diseases including AD [87]. Emerging
evidence has revealed that long-lasting or intermittent hypoxia, as seen in chronic obstruc-
tive pulmonary disease (COPD) or sleep apnea, is closely associated with AD [88,89]. In
a prospective clinical study, older women with a sleep-related breathing disorder, which
was defined as an apnea–hypopnea index of 15 or more events per hour of sleep, have an
increased risk for declined cognition as compared with those without this disorder [90].
Apnea or hypopnea during sleep may therefore contribute to cognitive impairment. Never-
theless, discernible acute hypoxia is not often encountered clinically in AD patients and
robust evidence for hypoxic microenvironments within the AD brains, as those seen in
solid tumors, is still lacking [88,91]. With advanced neuroimaging tools, however, cerebral
hypoperfusion, and accordingly hypoxia, is recognized as a constant feature along the AD
continuum [92]. Evidence from neuroimaging studies showed that hypoperfusion in the
brain areas, as a result of dysfunctional neurovascular units or the immunosuppressive
network [93–97], is a potential inducer of AD pathology [98]. Cerebrovascular disease
increased tau pathology in AD patients; further, transient cerebral artery occlusion as
an animal model for brain hypoperfusion also promoted tau hyperphosphorylation [99].
Magnetic resonance imaging (MRI) studies showed cortical atrophy and hypoperfusion
in a transgenic mouse model of AD [100]. In another human study, insufficient cerebral
perfusion is correlated with cognitive deficits in AD. Regions with a lower perfusion index
showed spatial similarities with atrophy in the posterior cingulate cortex, temporal lobes,
and angular gyrus, while regions with lower relative cerebral blood flow were specified
to the territories of distal branches in posterior cerebral artery territories [101]. It was also
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revealed with resting-state functional MRI that hypoperfusion may contribute to cognitive
impairment via abnormal brain functional connectivity [102]. A prospective observational
study in an aging population with an 11-year follow-up period has shown that anemia,
wherein the compromised oxygen-carrying capability of blood may lead to brain hypoxia,
was associated with an increased chance of developing dementia [103]; in another study,
anemic subjects with a good baseline cognitive performance also had a two-fold higher
risk of developing dementia three years later as compared to those without anemia [104].
Although the underlying mechanism linking anemia to incidental dementia is incompletely
understood, one hypothesis suggested that chronic brain hypo-oxygenation is associated
with an anemia-dependent risk of dementia [104]. Further studies linking cerebrovascular
hypoperfusion or chronic hypoxia to dementia development are needed to further clarify
these issues.

It was realized that hypoxia, oxidative stress, and neuroinflammation are crucial
contributors in neurodegenerative diseases including AD [88,89]. Intriguingly, these factors
may also trigger the activation of the HIF-related pathway. As compared to cancers,
however, the role of HIF-1 is not well-defined in AD in terms of chronic hypoxia, oxidative
stress, and inflammation, all of which are worthy of further exploration. Highly conserved
during evolution, HIF-1α is stabilized under hypoxic stress so the organisms may cope with
such stressful conditions. Therefore, manipulating the components of the HIF pathway
may potentially exert neuroprotective effects in a variety of human neurological disorders
including AD [105–107].

3. Expression Level of HIF-1α and Its Impacts on AD

It is well understood that the HIF system activates a wide variety of physiological
responses to hypoxia, ranging from the enhancement of survival to cell cycle arrest or even
cell demise [6]. Whether the Janus-faced HIF-1α acts as a “damaging factor” or a “pro-
survival factor” in AD may depend on the cell types and local cellular conditions [108,109].
The altered expression of HIF-1α has been noted in AD patients as well as in transgenic
AD mouse models. The downregulation of HIF-1α, which regulates the two major brain
glucose transporters GLUT1 and GLUT3 for glucose uptake into neurons, was observed
in AD brains; this decrease in HIF-1/GLUT1/3 correlated to the hyperphosphorylated
tau and higher density of NFTs [110]. In contrast, HIF-1α is overexpressed in brain mi-
crovessels derived from AD patients [111]. Consistently in the brains of adult (50–60 weeks
of age) Tg2576 AD mice, immunofluorescence staining of brain microvessels revealed a
significantly higher level of HIF-1α along with the heightened expression of pro-angiogenic
factors and reduced anti-apoptotic Bcl-xL [112]. Triple (3×-Tg AD; PS1M146V, APPswe,
tauP301L) transgenic AD mouse brains also showed hypoxic vessels expressing HIF-1α,
which resulted in the formation of NLR family pyrin domain-containing 1 (NLRP1) inflam-
masome to further stimulate HIF-1α expression and ultimately formed an HIF-1α-NLRP1
vicious circuit [113]. In the microglia of human AD hippocampus, the upregulation of
HIF-1α and its target genes correlates with reduced coverage of Aβ plaques by microglia
and an increased extent of plaque-associated neuropathology [114]. In APP knock-in mice,
complement C3a receptor (C3aR)-positive microglia showed an upregulated expression
of HIF-1 signaling with abnormal lipid droplet accumulation; the knockout of C3aR ac-
companied by reduced HIF-1α signaling reversed AD pathology with improved learning
memory [115]. In astrocytes derived from 5×FAD mouse brains, compensatory mecha-
nisms including increased HIF-1 expression was observed, which is expected to protect
cells against Aβ toxicity [116]. Depending on the types of cells that express HIF-1, coupled
with its multifaceted effects on handling various cellular stress, it is conceivable that HIF-1
may play very complicated roles in AD [117,118]. The potential beneficial and detrimental
roles of HIF-1 pathways in AD are discussed in detail below (Figure 3).
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Figure 3. Multiple AD-related mechanisms, including cerebral hypoperfusion, oxidative stress, and
neuroinflammation, may trigger activation of HIF-1 to exert either positive or negative impacts on
AD progression. The beneficial effects triggered by HIF-1 include affecting energy metabolisms,
promoting neuroprotection/neurorestoration, enhancing neurogenesis, and counteracting oxidative
stress, together allowing the tissues to adapt to the hypoxic environment. The detrimental effects
include enhancing BACE1 expression with heightened β-secretase activity to promote Aβ production,
impairing brain microvascular functions, and triggering neuronal cell cycle reentry followed by
apoptosis. Notably, several unclear effects of HIF-1 in AD deserve detailed investigation. These
include modulating brain circulation/angiogenesis, regulating tau hyperphosphorylation, affecting
microglial functions and neuroinflammation, controlling the activities of α-secretase, γ-secretase,
PS1/2 functions, and even Aβ degradation.

3.1. The Beneficial Roles of HIF-1 in AD
3.1.1. Potential Protective Mechanisms of HIF-1 in AD

Energy metabolism—Previous studies revealed a global reduction in glucose metabolism
that is associated with AD patients [119]. Several genes involved in glucose transport and
glycolysis, such as GLUT1/GLUT3 and phosphoglycerate kinase-1 (PGK1), are transcrip-
tionally regulated by HIF-1 [120,121]. The expression levels of glucose transporters were
downregulated in AD brains, which were correlated to abnormal tau phosphorylation
and the expression of HIF-1 [110]. HIF-1 critically involved in glucose metabolism medi-
ates neuroprotective effects against Aβ toxicity; further, both HIF-1 and those enzymes
in the glycolytic pathways are crucial for neuronal survival over the frontal cortex in AD
patients [122]. These studies may denote a possible mechanism underlying AD-related
neurodegeneration that involves impaired brain glucose uptake/metabolism due to de-
creased HIF-1, resulting in deficient expression of GLUT1 and GLUT3. Aerobic glycolysis,
the nonoxidative metabolism of glucose despite the presence of abundant oxygen, is a
key regulator of synaptic plasticity in neurons, which requires the synthesis of macro-
molecules like mRNA and proteins [123]. Reduced aerobic glycolysis during aging may
ruin cell survival mechanisms and fail to counteract neurodegenerative changes; notably,
aerobic glycolysis is regulated at the transcriptional level by HIF-1α and peptidyl-prolyl
cis/trans isomerase-1 (Pin1) [124]. Extended from these findings is that, under a critical
clinical condition, those drugs capable of decreasing glucose uptake in the brains should
be avoided for AD patients [125]. Besides neurodegeneration, glial activation is one of the
early alterations during AD progression, possibly related to the deposition of Aβ resulting
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in gliosis [126,127]. In the early stage of the Alzheimer’s continuum, reactive astrogliosis
is linked to higher consumption of cerebral glucose [128]. Preventing the proteolysis of
HIF-1α may reverse Aβ-induced glial activation and glycolytic changes [129]. These find-
ings again imply the crucial role of HIF-1α, which may be mediated by its transcriptional
activity to maintain metabolic integrity and restore compromised energy metabolism in
affected AD brains, in both neurons and glia.

Neuroprotection and neurorestoration—Hypoxia or brain hypoperfusion may con-
tribute to AD pathogenesis [130,131]. HIF-1α, induced under such hypoxic circumstances,
may play a compensatory role in coping with the diseased conditions [87]. Emerging
evidence has revealed HIF-1α as a potential therapeutic target for various neurological
disorders [87,132–134]. First, Aβ has been shown to directly induce HIF-1α expression
in vitro; interestingly, low levels of Aβ protect neurons from a more severe insult by trig-
gering HIF-1α, whereas the overexpression of HIF-1α alone is sufficient to protect neurons
against Aβ toxicity [122]. Second, several downstream genes of HIF-1 are well-known
to be vasoactive molecules, such as EPO, endothelial nitric oxide synthase (eNOS), and
VEGF [105,117]. Notably, these proteins may also improve neuronal cell growth or sur-
vival besides their pro-angiogenic functions. For example, EPO and VEGF carry essential
trophic effects during brain development and, in response to neuronal damage, exert
neuroprotective or neurorestorative effects [135]. In hippocampal neurons in vitro, EPO
was both necessary and sufficient to prevent Aβ-induced apoptosis in both the early and
later stages of neurodegeneration, which involves expression and translocation of the p65
subunit of nuclear factor-kappaB (NF-kB) [136]. We have shown previously that EPO may
exert neuroprotective effects against metabolic insults induced by mitochondrial inhibitor
3-nitropropionic acid (3-NP) in primary cortical neurons [137].

Neurogenesis—Sleep apnea is known to affect mental performance and may also
contribute to neurodegeneration in AD [138–140]. Rodents under intermittent hypoxia,
an animal model of sleep apnea, presented impaired spatial memory, hippocampal func-
tion, and adult neurogenesis; HIF-1α signaling activated by intermittent hypoxia in early
neuroprogenitors increases the production of mature neurons upon the termination of
intermittent hypoxia [141]. Chronic hypoxia also induces neurogenesis in the subgranular
zone (SGZ) in the hippocampus of adult double transgenic APPswe/PS1∆E9 mice via
activation of the Wnt/β-catenin signaling pathway [142], which is HIF-1α-dependent [143].
These findings suggest that adult neurogenesis regulated by HIF-1 may represent one of its
beneficial mechanisms in AD.

Counteracting oxidative stress—HIF-1 can generate the reductive equivalents of
NADH/NADPH to counter oxidative stress [122]. Under hypoxic conditions, increased
cytosolic anaerobic glycolysis over mitochondrial oxidative phosphorylation as a result
of HIF-1 induction may also generate more pyruvate, which is an antioxidant capable
of scavenging free radicals like H2O2 [144]. In another study of redox proteomics, sev-
eral hippocampal proteins critical for energy metabolism, neuroplasticity, and mitogene-
sis/proliferation were found to be oxidatively modified in patients with mild cognitive
impairment (MCI), including alpha-enolase, glutamine synthetase, pyruvate kinase M2,
and Pin1; notably, the interacteome of these proteins revealed that they functionally in-
teract with several factors including HIF-1 [145]. This study highlights the potentially
antioxidative roles of HIF-1, which are expected to be beneficial in AD.

Enhancing brain circulation or angiogenesis?—Earlier it was shown that individuals
suffering from severe hypoxia or ischemia are more susceptible to developing AD [146].
HIF-1α is found to be elevated in the microcirculation of AD patients [111]. In animal
studies, brain sections from AD transgenic mice also showed heightened expression of
HIF-1α as well as the pro-angiogenic proteins including angiopoietin-2 (Ang-2) and matrix
metalloproteinase-2 (MMP2) in the brain vasculature [112]. Conceivably, it seems reason-
able to predict that HIF-1 activation may exert beneficial effects against AD by enhancing
angiogenesis or augmenting cerebral blood flow. Despite these lines of correlative evidence
in clinics and animal models in vivo, however, direct causative evidence supporting this
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beneficial mechanism of HIF-1α in AD is still lacking in the literature. On the contrary,
the inhibition of HIF-1α expression was shown to mediate the beneficial effects of schisan-
drin B, an active component derived from the Chinese herb Wuweizi, in the rat bilateral
common carotid artery occlusion (BCCAO) as a vascular dementia model [147]. Therefore,
whether enhancing HIF-1 activity may have positive impacts on AD by augmenting brain
circulation or enhancing angiogenesis requires further investigation.

3.1.2. Multiple Chemical Reagents and Proteins Exert Beneficial Effects on AD via
Induction of HIF-1

Earlier it was demonstrated that iron is required for Aβ toxicity and iron chelators
have neuroprotective effects [148]. This may in part due to the fact that aberrant iron
metabolism, especially the ferrous iron (Fe2+) in the cytoplasmic labile iron pool, produces
superoxide anions (O2·) and a strong ROS hydroxyl radical (OH·) through a Fenton reaction
with H2O2.; the resultant ROS cause oxidative damage to lipids, proteins, and DNA, thus
leading to cell death and affecting Aβ misfolding along with plaque aggregation [149].
Furthermore, in the presence of Fe2+ and/or lipoxygenases, the polyunsaturated fatty acids
in the cell membrane catalyze lipid peroxidation to trigger ferroptosis, an iron-specific
programmed cell death, which is closely related to the occurrence, development, and
prognosis of AD [150]. Transferrin receptor 1 (TfR1) is a key player in the regulation of
the brain distribution of iron. One recent study suggested that, in AD under hypoxia and
other non-hypoxic stimuli, such as oxidative stress and inflammation, TfR1 upregulation
may be associated with HIF-1 activation causing iron dyshomeostasis in the brain, which
ultimately contributes to AD pathology [151]. In this regard, iron chelation may be con-
sidered a therapeutic option for AD [152]. Consistently, an iron chelator M30 capable of
upregulating HIF-1α with heightened expression of its downstream target genes, including
enolase-1, EPO, p21, tyrosine hydroxylase, VEGF, and insulin signaling pathway, in cortical
neurons and APP/PS1 AD mice, may have anti-Alzheimer characters [153,154] (Table 1). In
APP/PS1 transgenic mice, intranasal delivery of the iron chelator DFO can upregulate the
p38/HIF-1α pathway and lessen synaptic loss in the brain [155]. Intranasal DFO treatment
also improves memory in healthy mice that is accompanied by reduced GSK-3β activity
and intensified HIF-1α activity [156]. In primary cultures of rat and mouse astrocytes, DFO
stabilizes HIF-1α to inhibit both PHDs and the proteasome, thereby mitigating Aβ-induced
glial activation with enhanced pentose shunt to generate more NADPH for restricting ROS
accumulation [129]. We have also shown before that HIF-1 induction with cobalt chloride
or DFO can protect rat C6 glioma cells against metabolic insults induced by the irreversible
mitochondrial inhibitor 3-NP [157]. These results together denote potential beneficial effects
of iron chelators, such as M30 and DFO, through HIF-1α stabilization in AD.

In addition to iron chelators, several chemical compounds or proteins exert beneficial
effects against AD via the induction or stabilization of HIF-1α. Recently, it was shown
that gut dysbiosis, or disturbance in the gut microbiota, can lead to inflammation and is
associated with the pathogenesis of various diseases including AD [158,159]. The term
“brain–gut axis” denotes crosstalk between the brain and the gut that involves multiple
overlapping pathways, which comprise the autonomic functions, immune systems, neu-
roendocrine, neuro-modulatory molecules, and bacterial metabolites [160]. It is imperative
to understand the mechanisms inherent in the microbiota–gut–brain axis so that microbe-
based intervention and therapeutic strategies may be developed for neurodegenerative
diseases [161]. One previous study employing 3×Tg-AD mice revealed that chronic sup-
plementation with SLAB51, a multi-strain probiotic formulation, can augment the cerebral
expression of HIF-1α, possibly by reducing the level of PHD2 critical for HIF-1α degra-
dation; SLAB51 also decreases the expression of inducible nitric oxide synthase (iNOS) in
the brain, with a reduction in NO levels in the plasma of AD mice [162]. This study adds
an additional mechanism for probiotics to reduce oxidative stress and inflammation in
AD models through the regulation of HIF-1α expression. The lactoferrin present in milk
is an iron-binding glycoprotein with pleiotropic functions. Recently, lactoferrin has been
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suggested as a neuroprotective agent because the intranasal delivery of lactoferrin into AD
mice can augment α-secretase-dependent APP processing through the ERK1/2-CREB and
HIF-1α pathways [163]. The beneficial effects of lactoferrin in reducing Aβ aggregation
with improved spatial learning ability were also revealed. As a highly accessible nutrient
supplement, further clinical studies on the advantageous effects of lactoferrin for AD are
warranted. Neuroglobin is a hypoxia-inducible protein with protective effects in animal
models of AD, stroke, and related nervous system disorders [164]. It was demonstrated
that the knockdown and overexpression of HIF-1α, respectively, reduced and increased
neuroglobin levels, consistent with a causal relationship between HIF-1 and neuroglobin
induction [165]. This finding adds one more mechanism for the beneficial effect of HIF-1α
expression and neuroglobin with potential therapeutic values for AD. α-Lipoic acid can
maintain brain glucose metabolism through the BDNF/TrkB/HIF-1α signaling pathway in
P301S mice, a transgenic mouse model for tauopathy; chronic α-lipoic acid administration
into the P301S mouse brains elevated the expression of GLUT3, GLUT4, VEGF, and HO-1
at mRNA or protein levels that together increased glucose availability [166]. Finally, recent
epidemiological studies and experimental evidence suggested that coffee consumption
lowered the risk of cognitive disorders including AD [167,168]. Coffee was found to induce
VEGF expression in human neuroblastoma SH-SY5Y cells through the activation of HIF-
1α, which was related to the inhibition of prolyl hydroxylation independent of caffeine
or caffeic acid [169]. A previous study revealed that a single nucleotide polymorphism
(SNP) rs1868402 in the PPP3R1 gene encoding protein phosphatase 3 regulatory subunit
B (PPP3R1) is significantly associated with the rapid progression of AD [170]. A low
level of PPP3R1 proteins showed a strong correlation with AD and may serve as a poten-
tial biomarker for predicting and preventing AD for future development of personalized
medicine; notably, PPP3R1 was found to be involved in the HIF-1 pathway [171]. Not
surprisingly, the direct enhancement of HIF-1 activity or its specific downstream target
genes is expected to also provide protective effects against AD. For example, viral vectors
expressing HIF-1α may inhibit hippocampal neuronal apoptosis induced by Aβs both
in vivo and in vitro [172]. Apolipoprotein E4 (ApoE4), the most common genetic risk
factor for sporadic AD, is associated with more evident neurodegeneration and vascular
impairments [173,174]. ApoE4-driven brain pathology revealed a specific decrease in both
VEGF receptor-2 and HIF-1α. Using VEGF-expressing adeno-associated virus (AAV-VEGF)
driven by the GFAP promoter that allows VEGF expression exclusively in astrocytes, it
was demonstrated that the AAV-VEGF may reverse the ApoE4-related Aβ42 aggregation
and accumulation of hyperphosphorylated tau proteins [174]. This evidence indicates the
critical role of HIF-1 in AD patients with ApoE4. Further study is warranted to manipulate
the HIF-1 expression in these subgroups of AD to examine its potential clinical outcomes.
These findings together support the potential use of gene therapy for the treatment of
neurodegenerative diseases including AD.

Table 1. List of examples with beneficial roles of HIF-1 in AD-related studies.

Chemical Compound, Drug,
Nutrient, Protein Mechanisms Study Model Reference

M30, an iron chelator
upregulated HIF-1α and its target genes:
enolase-1, erythropoietin, p21, tyrosine
hydroxylase, VEGF, Glut-1

in vivo: APP/PS1 double Tg
mice in vitro: rat primary
cortical neurons

[153,154]

DFO, an iron chelator

* upregulated the p38/HIF-1α pathway and
lessened synaptic loss in the brain
** reduced GSK-3β activity and intensified
HIF-1α activity
*** increased HIF-1α, inhibited PHD2 and the
proteasome, reduced glial activation,
produced more NADPH to limit ROS
accumulation

in vivo: APP/PS1 Tg mice
in vivo: healthy mice
in vitro: mouse and rat
astrocytes

[155]
[156]
[129]
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Table 1. Cont.

Chemical Compound, Drug,
Nutrient, Protein Mechanisms Study Model Reference

SLAB51, a multi-strain probiotic
formulation

increased HIF-1α, decreased PHD2, iNOS in
brain, and NO levels in plasma

in vivo: 3 × Tg-AD and
wild-type mice [162]

Lactoferrin, a nutrient derived
from milk

augmented α-secretase-dependent APP
processing through the ERK1/2-CREB and
HIF-1α pathways, reduced Aβ aggregation

in vivo: APP/PS1 double Tg
mice [163]

Neuroglobin, a hypoxia-inducible
protein with cytoprotective effects

shRNA-mediated knockdown and lentiviral
vector-mediated overexpression of HIF-1α in vitro: HN33 neural cell line [165]

α-Lipoic acid

increased GLUT3, GLUT4, VEGF, and HO-1
expression with enhanced glucose
availability through BDNF/TrkB/HIF-1α
signaling

in vivo: tauopathy model,
P301S mice [166]

Coffee inhibited prolyl hydroxylation to activate
HIF-1α and induced VEGF expression

in vitro: SH-SY5Y human
neuroblastoma cell line [169]

Viral vector expressing HIF-1α inhibited hippocampal neuronal apoptosis
induced by Aβ protein

in vitro: primary culture of
hippocampal neurons
in vivo: Sprague-Dawley rats

[172]

APP/PS1: amyloid precursor protein/presenilin-1, DFO: desferoxamine, GLUT-1: glucose transporter-1, HO-1:
heme oxygenase-1, iNOS: inducible nitric oxide synthase, NADPH: nicotinamide adenine dinucleotide phosphate,
PHD2: prolyl hydroxylase 2. * denotes Ref [155]; ** denotes Ref [156]; *** denotes Ref [129].

3.2. The Detrimental Roles of HIF-1 in AD
3.2.1. Potential Detrimental Mechanisms of HIF-1 in AD

Although some experimental evidence supports the beneficial effects of the HIF-1
pathway in AD, unfavorable impacts of HIF-1 activation in AD have also been reported.
For example, HIF-1α can affect APP processing by regulating the activities of α-, β-,
and γ-secretase, thereby increasing the generation of Aβ or decreasing the secretion of
sAPPα. Hypoxia, and possibly HIF-1α, may also modulate the expression or activities
of Aβ-degrading enzymes like neprilysin (NEP), endothelin-converting enzyme (ECE)-1,
and insulin-degrading enzyme (IDE). HIF-1α may also modulate microglial activation to
aggravate the severity of neuroinflammation, which is expected to expedite AD patho-
genesis [175]. Other possible detrimental effects of HIF-1 in AD include impairing the
integrity of the blood–brain barrier (BBB) and compromising the microvasculature. For
example, in rat brain capillary endothelial cells (RBE4), oxygen–glucose deprivation (OGD),
as an in vitro model of hypoxia/ischemia, elicits Aβ42 production through HIF-1-mediated
BACE1 upregulation [176]. Thus, ischemic events may directly contribute to the enhance-
ment of the amyloidogenic metabolism in brain capillary endothelial cells, leading to
intracellular deposition of Aβ42, impaired Aβ clearance, and AD-related BBB dysfunctions.

APP processing by BACE1/β-secretase—Previous studies suggested that hypoxia
may contribute to AD pathogenesis by overexpressing APP and increasing Aβ forma-
tion [177,178]. Hypoperfusion caused by focal ischemia induces APP expression at mRNA
levels [179]. Prolonged hypoxia increased production of Aβ that selectively increased the
expression of L-type Ca2+ channels, which is considered detrimental in AD; hypoxia also
promoted physical association of Aβ with the α1C subunit of the L-type Ca2+ channel that
likely contribute to the Ca2+ dyshomeostasis of AD [180,181]. These earlier findings collec-
tively revealed the link between hypoxia/ischemia and APP expression/processing that
may contribute to AD pathogenesis. The direct involvements of HIF-1 in APP processing
were later confirmed. For example, hypoxia increases BACE1 gene transcription at mRNA
levels through the induction of HIF-1 with resultant increased β-secretase activity and
Aβ production; notably, gel shift assays reveal HIF-1 binding to the HREs in the BACE1
promoter; indeed, the overexpression of HIF-1α is sufficient to increase BACE1 at both
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the mRNA and protein levels, whereas the downregulation of HIF-1α reduces the level of
BACE1 [182]. A further study revealed that hypoxia triggers BACE1 expression through a
biphasic mechanism; the early stage is mediated by the mitochondrial electron transport
chain and the later stage is caused by the activation of HIF-1 and oxidative stress [183].

APP processing by α-secretase?—Besides enhancing BACE1 expression along with
increased β-secretase activity, chronic hypoxia decreases the protein expression of a disinte-
grin and metalloproteinase 10 (ADAM10), which is considered an α-secretase mediating
the non-amyloidogenic processing of APP, in the neuronal SH-SY5Y cells [184,185], along
with the suppressed secretion of sAPPα [184]. However, the direct involvements of HIF-1α
were not reported in these two studies.

PS1/2 and γ-secretase?—The γ-secretase is responsible for further digesting the α-CTF
(C83) and β-CTF (C99) following the nonamyloidogenic and amyloidogenic cleavage of
APP by α- and β-secretase, respectively. Being a high-molecular-weight complex consisting
of four components, namely presenilin-1/2 (PS1/2), nicastrin (NCT), anterior pharynx-
defective-1 (APH-1), and presenilin enhancer-2 (PEN-2), PS1/2 is the catalytic subunit in the
γ-secretase complex [186]. Brain hypoxia induced by cerebral hypoperfusion or breathing
10% O2 triggered HIF-1α binding to γ-secretase to enhance its biological activity without
affecting the expression level of individual subunits; further, the expression of full-length
HIF-1α in primary neurons increased BACE1 expression and γ-secretase activity in a tran-
scriptional and non-transcriptional manner, respectively, for Aβ production under hypoxic
conditions [187]. In another earlier study, the activation of HIF-1 by short-term NiCl2 treat-
ments, a condition known as chemical hypoxia, substantially increases APH-1A expression
at both mRNA and protein levels without affecting APP or the other three components of
the γ-secretase complex; importantly, NiCl2 treatments also lead to an increased secretion of
Aβ and decreased formation of APP CTFs, indicative of elevated γ-secretase activity [188].
Importantly, loss-of-function mutations in PS1/2 or mutations in PS1 associated with famil-
ial AD (FAD) may also affect HIF-1 induction. PS1/2 γ-secretase-mediated cleavage of the
APP generates AICD, which functions as a transcriptional activator to induce Hif1a gene
expression; on the other hand, PS1/2 itself, in a γ-secretase-independent manner, increases
PHD2 activity to promote HIF-1α degradation in vitro [189]. Using fibroblasts lacking PS1,
the induction of HIF-1α was impaired in response to cobalt chloride, which is known to
stabilize HIF-1α under normoxia, or by insulin [190]. The lentivirus-mediated expression
of human PS1 in part rescued the responsiveness of PS1-/- fibroblasts to cobalt chloride
induction; however, HIF-1α induction did not require γ-secretase activity. Interestingly,
PS1 and HIF-1α appeared to physically interact with each other, suggesting that PS1 may
protect HIF-1α from degradation [190]. In fibroblasts harboring the M146V PS1 FAD muta-
tion on a mouse PS1-null background, the metabolic induction of HIF-1α by insulin was
impaired, but not by cobalt chloride [190]. These findings indicate complex mechanisms
whereby PS1/γ-secretase, both wild-type and those containing FAD mutations, modulate
the induction of HIF-1α.

Aβ degradation?—In addition to regulating APP expression and processing by secre-
tase activities, HIF-1 is also involved in Aβ degradation. Neprilysin (neutral endopeptidase,
NEP) is a zinc-dependent metalloprotease responsible for Aβ degradation [191]. In prostate
cancer cell lines and human umbilical vascular endothelial (HUVEC) cells, hypoxia in-
hibits the expression of NEP at mRNA levels; out of the three putative HREs upstream
of the NEP promoter, two demonstrate a specific reduction, rather than an increase, in
cobalt-induced HIF-1 binding in gel shift assays [192], suggesting a negative impact on
NEP expression on the binding of HIF-1 to these HREs. In contrast to these findings, one
study conducted in neuroblastoma cells reported that HIF-1α mediates the upregulation
of NEP through HIF-1α binding to histone deacetylase (HDAC)-1, thereby reducing the
association of HDAC-1 with the NEP promoter, with a resultant activation of its transcrip-
tion in a de-repression manner [193]. The causes underlying these contradictory results
regarding the HIF-1-mediated regulation of NEP require further investigation, but several
contributing factors may be considered, including the different cell types (HUVEC versus
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N2a neuroblastoma cells) as well as how HIF-1α was induced (cobalt chloride versus
hypoxia under low-oxygen tension). Another Aβ-degrading enzyme, ECE-1, has also been
proposed to be an HIF-1 target gene in endothelial cells [194]. Hypoxia downregulated
the expression of IDE, another peptidase known to degrade Aβ, in U87 glioma cells [195],
but the potential roles of HIF-1α remain unclear. Taken together, understanding whether
HIF-1 directly regulates the expression or activities of these Aβ-degrading enzymes and
their potential impacts on AD pathogenesis requires more investigation.

Tau hyperphosphorylation?—Depending on the experimental model systems, how
HIF-1α may affect tau hyperphosphorylation remains controversial. In a clinical study,
two major brain glucose transporters, GLUT1 and GLUT3, responsible for glucose uptake
into neurons, were decreased in AD brains; notably, this decrease correlated to the hyper-
phosphorylation of tau and downregulation of HIF-1α, but not HIF-1β [110]. Since HIF-1
is a major regulator of GLUT1 and GLUT3, these studies provide a piece of correlative
evidence linking tau hyperphosphorylation to HIF-1α downregulation in AD. Accordingly,
HIF-1α has also been shown to suppress tau phosphorylation. For example, one recent
study reported that T-2 toxin, a mycotoxin that may potentially lead to the progression of
AD, stimulates HIF-1α expression, along with induction of APP and hyperphosphoryla-
tion of tau proteins in microglial BV2 cells; intriguingly, further studies revealed that the
T2-induced HIF-1α actually functions as a “brake” to negatively regulate APP induction
and tau phosphorylation, suggesting a protective effect of HIF-1α in microglial cells chal-
lenged with T-2 toxin, in part by suppressing tau hyperphosphorylation [196]. In contrast,
however, HIF-1α has also been shown to indirectly contribute to tau phosphorylation. As
a risk factor for AD, chronic hypoxia upregulates HIF-1α, which decreases the activity
of protein phosphatase-2A (PP2A), thereby mediating tau hyperphosphorylation with
resultant cognitive dysfunction [197]. Cobalt, as an environmental toxicant that is also
known to stabilize HIF-1α, severely induces Aβ deposition, tau hyperphosphorylation,
and dysregulated autophagy in the hippocampus and cortex of mice; importantly, HIF-1α
knockdown by siRNA effectively attenuated the increased tau phosphorylation at Thr181
induced by cobalt [198], suggesting that HIF-1α is responsible for cobalt-dependent tau
phosphorylation. Finally, HIF-1α may also mediate the beneficial effects of small-molecule
compounds without notably affecting tau phosphorylation. The iron chelator DFO, known
to stabilize HIF-1α, improves memory in healthy C57 mice [156] and also exerts protective
effects in P301L mice [199]. These transgenic mice overexpress the human 4R/2N tau
isoform bearing the P301L mutation under the control of the neuron-specific murine Thy1
promoter with an accumulation of hyperphosphorylated tau, which serves as a transgenic
model for AD and frontotemporal dementia (FTD). It was found that P301L mice have
significantly less HIF-1α with more severe total protein oxidation than wild-type controls,
whereas the intranasal delivery of DFO significantly reversed these differences; however,
no significant decrease in phosphorylated tau was observed in the brains of these DFO-
treated mice, at least for the brain regions examined [199]. Depending on the experimental
model systems, therefore, HIF-1α may enhance, suppress, or have no direct effects on
the phosphorylation status of tau proteins. Obviously more investigation is required to
establish the definite roles of HIF-1 in tau hyperphosphorylation.

Microglia and neuroinflammation?—HIF-1 may affect microglia in different aspects.
Using methoxy-X04 (X04), a brain-penetrant fluorescent Aβ probe, to isolate plaque-
containing (X04+) and non-containing (X04-) microglia from 5×FAD mouse brains for
transcriptome analysis, it was found that HIF-1α and its downstream target genes are in-
volved in the enhanced phagocytosis of synaptic components around plaques and, through
a feed-forward loop, ultimately augment Aβ phagocytosis in microglia [200]. The rapid
pruning of damaged synapses near dystrophic neurites around plaques and the enhance-
ment of Aβ phagocytosis may be considered protective and, in this regard, HIF-1 likely
plays a beneficial role in microglia-dependent phagocytosis in AD. In contrast, however,
excessive HIF-1 activity may have detrimental effects on microglia in AD. For example,
the prolonged activation of HIF-1α results in cell cycle arrest along with the impaired
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proliferation of microglia; under in vivo condition, the overstabilization of HIF-1α reduces
the proliferation and clustering of plaque-associated microglia along with increased Aβ

neuropathology [114]. It has been demonstrated that hypoxia may also induce autophagic
cell death and inflammatory responses through HIF-1α in microglia [201], although its
potential impact on AD requires more investigation. In addition to affecting phagocytosis,
cell proliferation, clustering around Aβ plaques, and possibly autophagic cell death, the
HIF-1α pathway plays a pivotal role in the metabolic program and immune responses
in microglia. The exposure of microglia to Aβ triggers acute inflammation along with
metabolic reprogramming from oxidative phosphorylation to glycolysis, which depends on
the mTOR-HIF-1α pathway; however, chronic exposure to Aβ leads to an overall defective
energy metabolism with diminished immune responses, including cytokine secretion and
phagocytosis [202]. Overall, conditions with prolonged or overwhelming stress like severe
or chronic hypoxia may alter the beneficial roles of HIF-1 such that it is converted into a
potential activator of cell death in AD [133].

Brain hypoperfusion and impaired vascular functions—As mentioned above, mi-
crovessels isolated from the brains of AD patients [111] as well as AD transgenic mice [112]
express a number of angiogenic proteins along with elevated HIF-1α expression. However,
direct evidence supporting the beneficial mechanism of enhancing cerebral blood flow
or microcirculation by HIF-1α in AD models is still lacking. On the contrary, it has been
reported that chronic cerebral hypoperfusion commonly observed in AD patients may
induce HIF-1α to cause BBB damage and ultimately impair Aβ clearance [203]. Another
recent study revealed that chronic hypoxia capable of activating HIF-1 is detected in AD
brains and retinas, especially in microvascular endothelial cells, which leads consequently
to the formation of NLRP1 inflammasome and upregulates the signaling cascades of “adap-
tor molecule apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-1-
IL-1β”. In turn, NLRP1 can reciprocally stimulate HIF-1α expression to reinforce the
HIF-1α-NLRP1 circuit, which may further destroy the vascular system and thus suggest a
detrimental role of HIF-1α in microvascular structures in AD [113]. These negative impacts
of HIF-1α in the microvasculature of AD, along with the aforementioned HIF-1 effects on
APP processing and Aβ production/degradation, may further impair vascular function in
AD and compromise BBB function, leading to impaired Aβ clearance [204].

Neuronal cell cycle reentry—Emerging evidence indicates that aberrant cell cycle reen-
try and subsequent apoptosis in fully differentiated neurons occur during the advancement
of AD or other neurodegenerative diseases [205–207]. We have shown before that the signal
transduction pathways involving the inhibitor of DNA-binding/differentiation protein-1
(Id1), HIF-1α, cyclin-dependent kinases-5 (CDK5), sonic hedgehog, and protein kinase
C-delta (PKCδ) may contribute to Aβ-induced cell cycle reentry and neurotoxicity in fully
differentiated postmitotic neurons [15,16,206,208–210], adding another piece of evidence
supporting the detrimental role of HIF-1α in AD under selected circumstances.

3.2.2. Proteins and Chemical Reagents Exert Beneficial Effects in AD via Inhibition of HIF-1

Recently, the relationship between dementia and diabetes mellitus has inspired re-
searchers to explore new therapeutic potential from glucose regulators for devastating
neurodegenerative diseases like AD or PD [211–213]. Fibroblast growth factor 21 (FGF21),
a member of the FGF family, is a liver-secreted peptide hormone encoded by the fgf21
gene [214]. Positively implicated in the regulation of energy, glucose, and lipid metabolism,
FGF21 is an appealing and promising therapeutic target for DM [215]. However, FGF21
may also present miscellaneous influences on the central nervous system [216,217]. For
example, FGF21 lessened tau hyperphosphorylation and oxidative stress in cellular and
rat models of AD; its beneficial effects involved the inhibition of the PP2A/MAPKs/HIF-
1α pathway [216] (Table 2). Heparin-binding EGF-like growth factor (HB-EGF), an EGF
family member widely distributed in neurons and glia, can be induced by hypoxia and/or
ischemia, which contributes to chronic cerebral hypoperfusion (CCH)-mediated Aβ accu-
mulation [218]. An HB-EGF-dependent increase in HIF-1α expression can activate matrix
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metalloprotease-9 (MMP9) to cause BBB disintegration [203]. Neuregulin 1 (NRG1), which
belongs to the epidermal growth factor family, is thought to play a role in synaptic plas-
ticity [219,220]. Cobalt chloride, which is known to stabilize HIF-1α, induced cytotoxicity
along with the increased expression of HIF-1α and p53 in SH-SY5Y cells; notably, pre-
treatment with NRG1 inhibited the accumulation of HIF-1α, decreased p53 stability, and
significantly mitigated cell death in the SH-SY5Y cells exposed to cobalt chloride [221].
These studies revealed the detrimental effects of HIF-1 by various protein mediators in
Aβ-induced neurotoxicity or AD animal models, both in vivo and in vitro.

In addition to protein mediators, various cellular environments or growth conditions
may affect HIF-1α induction and AD pathology. Under high-glucose condition, BACE1 is
upregulated with increased Aβ production through HIF-1α activation and decreased LXRα
expression via the JNK pathway in a ROS-dependent manner in SK-N-MC, a neuroblastoma
cell line [222]. Thiamine (Vitamin B1) insufficiencies (TI) have been associated with AD-like
neuropathology. Using the HT22 neuronal hippocampal cell line, it was demonstrated
that TI-induced HIF-1α triggers amyloidogenesis through the transcriptional expression of
BACE1 along with increased β-secretase activity (BACE1); furthermore, TI also induces the
expression of pro-apoptotic protein BNIP3 via HIF-1α and, correspondingly, neurotoxicity
caused by TI conditions can be significantly reduced with the knockdown of HIF-1α and
BNIP3 [223]. This study suggests that, under selected circumstances, the induction of HIF-
1α may also trigger the expression of pro-apoptotic genes that contribute to neuronal death.

Several compounds may also exert beneficial effects through the inhibition of the HIF-1
pathway. Ginsenoside Rg1, one of the active ingredients in Panax ginseng, can ameliorate de-
clined cognitive function and reduce cerebral Aβ levels [224,225]. It was demonstrated that
Rg1 reduced Aβ-induced mitochondria-dependent apoptosis in human endothelial cells,
which involved lessened HIF-1α expression accompanied by diminished ROS production
and protein nitrotyrosination [226]. Salidroside, a glucoside of tyrosol found in the plant
Rhodiola rosea, has been reported to mitigate hypoxia-induced abnormal APP processing in
SH-SY5Y neuronal cells [227]. Salidroside pretreatment significantly decreased the expres-
sion of BACE1 at both mRNA and protein levels along with inhibited β-secretase activity,
thus attenuating Aβ generation induced by hypoxia without affecting γ-secretase activity.
Salidroside also promoted the secretion of sAPPα in hypoxic condition without affecting
APP, ADAM10, and ADAM17; the latter two are considered α-secretases, suggesting that
heightened sAPPα secretion may be the consequences of decreased β-secretase activity.
Notably, under hypoxic conditions, salidroside pretreatment reduced the protein level of
HIF-1α, suggesting that salidroside may attenuate a hypoxia-induced increase in BACE1,
possibly through downregulating the HIF-1α protein level [227]. A high-fat diet stimulates
amyloidogenic pathways, which is critical for the pathogenesis of AD [228]. Palmitic
acid-BSA (PA-BSA) treatment stimulates BACE1 expression in astrocytes with elevated
oxidative stress [229,230]. It was found that PA-BSA-induced Aβ production involved the
activation of Akt/mTOR/HIF-1α and Akt/NF-κB pathways to stimulate the expression
of APP and BACE1; silencing both genes correspondingly attenuated the production of
Aβ [231]. Neurotropin® (NTP), a well-known drug for chronic pain, was found to stim-
ulate BDNF expression in SH-SY5Y cells and restore the declined expression of BDNF in
the hippocampus [232]. It was reported that Neurotropin® possesses a neuroprotective
character by lessening Aβ-induced oxidative damage and alleviating Aβ deposition in the
hippocampus through the downregulation of the HIF-1α/MAPK signaling cascade [233].
By transferring mitochondria from a living sporadic AD [205] patient into mitochondrial
DNA (mtDNA)-free SH-SY5Y cells, mitochondrial transgenic neuronal cells, or cybrids,
can be produced [234,235]. Using the cybrids of SAD and age-matched controls, it was
demonstrated that, under hypoxic conditions with different dosages of simvastatin, the
extents of HIF-1α and BACE induction may vary in these cybrids. In the low-dose sim-
vastatin group, the reduced expression of HIF-1α and BACE1 was observed in the SAD
cybrids as compared to the controls. In the high-dose simvastatin group, however, the
heightened expression of HIF-1α and BACE1 was observed in both the SAD and the control
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cybrids. These results denote the potential usefulness of low-dose simvastatin treatment in
attenuating the expression of HIF-1α and BACE to lower Aβ production [236]. In human
neuroblastoma SH-SY5Y cells under the in vitro ischemic condition of OGD and OGD
with reoxygenation (OGD/R), HIF-1α was highly upregulated at both the mRNA and pro-
tein levels, which were downregulated by melatonin; consistently, the heightened BACE1
mRNA and proteins under such ischemic condition were suppressed by melatonin [237].
However, a direct causal relationship between melatonin-induced HIF-1α and BACE1
under ischemic conditions was not established in this study.

Table 2. List of examples with detrimental roles of HIF-1 in AD-related studies.

Chemical Compound, Drug,
Nutrient, Protein Mechanisms Study Model Reference

Fibroblast growth factor 21 (FGF21) inhibition of PP2A/MAPKs/HIF-1α
pathway triggered by Aβ25-35

in vitro: SH-SY5Y human
neuroblastoma cell line
in vivo: adult male Wistar rats

[216]

HB-EGF increased HIF-1α expression can activate
MMP9 to cause BBB disintegration

in vivo: BCCAO mouse
model,
CCH manifests AD
neuropathology

[203]

Neuregulin 1 inhibited CoCl2-induced accumulation of
HIF-1α and p53 stability to attenuate cell death

in vitro: SH-SY5Y human
neuroblastoma cell line [221]

High glucose condition

upregulated BACE1-mediated Aβ

production through HIF-1α activation,
decreased LXRα expression via the JNK
pathway in a ROS-dependent manner

in vitro: SK-N-MC
neuroblastoma cell line
in vivo: homozygous ZDF
and ZLC rats

[222]

Thiamine insufficiency (TI)

triggered HIF-1-mediated amyloidogenesis
through transcriptional expression of BACE1
and increased activity of β-secretase-
induced HIF-1-dependent expression of
pro-apoptotic protein BNIP3

in vitro: HT22 hippocampal
neuronal cell line [223]

Ginsenoside Rg1, active ingredients
of Panax ginseng

reduced the Aβ-induced mitochondrial
apoptosis, lessened HIF-1α expression,
decreased RNS and protein nitrotyrosination

in vitro: human endothelial
cells [226]

Salidroside, a glucoside of tyrosol
found in the plant Rhodiola rosea

reduced protein level of HIF-1α under
hypoxia; decreased expression of BACE1 and
inhibited β-secretase activity, thus enhancing
sAPPα secretion and attenuating Aβ

generation induced by hypoxia

in vitro: SH-SY5Y human
neuroblastoma cell line [227]

PA-BSA

induced expression of APP and BACE1,
accelerated Aβ production via
Akt/mTOR/HIF-1α and Akt/NF-κB
pathways

in vitro: SK-N-MC
neuroblastoma cell line [231]

NTP, a non-protein extract of
inflamed rabbit skin inoculated with
vaccinia virus clinically used for the
treatment of neuropathic pain

lessened Aβ-induced oxidative damage,
improved Aβ deposition in hippocampus
through regulating HIF-1α/MAPK signaling
pathway

in vitro: HT22 hippocampal
cells
in vivo: APP/PS1 Tg mice

[233]

Simvastatin, in low dosage reduced HIF-1α and BACE1 expression
in vitro: sporadic AD and
age-matched control neuronal
mitochondrial cybrid

[236]

Melatonin
suppressed HIF-1α and BACE1 expression
under the in vitro ischemic condition
induced by OGD and OGD/R

in vitro: SH-SY5Y human
neuroblastoma cell line [237]

BCCAO, bilateral common carotid artery occlusion; BNIP3, BCL2/adenovirus E1B 19-kDa protein-interacting pro-
tein; CCH, chronic cerebral hypoperfusion; HB-EGF, heparin-binding EGF-like growth factor; NTP, Neurotropin®;
OGD and OGD/R, oxygen–glucose deprivation and OGD with reoxygenation; PA-BSA, palmitic acid-bovine
serum albumin; RNS, reactive nitrogen species; TI, thiamine insufficiency; ZDF and ZLC rats, Zucker diabetic
fatty and Zucker lean control fatty rat.



Antioxidants 2024, 13, 1378 18 of 27

4. Conclusions and Future Perspectives

AD is the most prevalent neurodegenerative disease in the aging population with
progressive memory impairment, deteriorated cognition, and behavioral dysfunctions. At
present, there is no effective treatment for this devastating disease. Any means to delay
or lessen the consequences of AD may therefore represent a significant improvement for
patients, their families, and societies. HIF-1α, a master regulator for gene expression under
hypoxic conditions, can increase cell proliferation, accelerate new blood vessel formation,
and regulate glucose and energy metabolisms to cope with a stressful cellular milieu such as
hypoxia. HIF-1α is also known to be activated under oxidative stress, neuroinflammation,
and cerebral hypoperfusion, the conditions often accompanied by AD. Increasing the
transcriptional activity of HIF-1α can enhance angiogenesis and erythropoiesis, trigger
anti-apoptotic cascades, and regulate autophagy, and thus represent a potential therapeutic
scheme in the treatment of neurodegenerative disorders including AD. In contrast, however,
ample evidence also indicates that HIF-1α inhibition might exert a beneficial effect on AD.
Additionally, the effect of the HIF signaling greatly depends on the extent of hypoxic
magnitude, severity of the stress, and the cell types that express HIF-1α. Since HIF-1
signaling could be either beneficial or detrimental, there is a pressing need to design
highly selective modulators, either activators or inhibitors, for manipulating the HIF-1
transduction pathway as well as effective means of the targeted delivery of these HIF-1
modulators into proper brain regions or even cell types for AD therapy.
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