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Abstract: Oxidative stress plays a crucial role in mediating life-history processes, where it can
compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In
this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived
African ground squirrel species with a high reproductive skew and unique life history strategies.
We measured oxidative stress as total antioxidant capacity (TAC), total oxidant status (TOS), and an
oxidative stress index (OSI) in blood plasma from individuals of approximately known ages. Our
results reveal a distinct pattern of decreasing oxidative stress with age, consistent across both sexes.
Females exhibited lower OSI and TOS levels than males. Males employing different life-history
strategies, namely natal (staying at home), had significantly lower oxidative stress compared to
the band (roaming male groups), likely due to variations in metabolic rate, activity, and feeding
rates. However, both strategies exhibited reduced oxidative stress with age, though the underlying
mechanisms require further investigation. We propose that selection pressures favoring survival
contributed to the observed reduction in oxidative stress with age, potentially maximizing lifetime
reproductive success in this species.

Keywords: life-history strategies; Xerus inauris; oxidative stress; aging; reproductive health

1. Introduction

Life history theory investigates how animals allocate limited resources between aging,
survival, and reproduction, shaping their overall evolutionary fitness [1–3]. Traditionally,
life history and aging biology suggest that trade-offs between reproduction and longevity
drive the evolution of aging rates, lifespans, and reproductive success [4–6]. This suggestion
is based on the concept that reproductive success post-maturity often comes at the cost of
accelerated aging, and vice versa. However, animals have evolved diverse behavioral and
physiological strategies to navigate these trade-offs [7]. For example, some species invest
heavily in maintaining their own body condition to enhance survival (somatic maintenance
or self-maintenance strategy), while others prioritize reproductive success (reproductive
effort or reproductive investment strategy) [3,8]. Moreover, reproductive strategies (for
example dominant and subordinate strategies) and cooperative behaviors such as group
living can help mitigate these life-history trade-offs [9,10]. Dominant reproductive tactics
occur when males or females gain priority access to mates, often through social dominance
or physical competition [11]. In contrast, subordinate strategies involve avoiding direct
competition with dominant individuals [11]. Subordinate animals may attempt to mate
opportunistically, such as when dominant breeders are distracted or absent [12]. Both tactics
aim to maximize reproductive success, and the choice of strategy can depend on factors like
social status, environmental conditions, developmental stage, or population density [12–15].
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In such species, increased body condition through social support may enhance reproductive
success, even in aging individuals [16]. Certain physiological adaptations, including those
that bolster immunity during reproduction, may further improve survival, longevity, and
overall fitness [17]. Nonetheless, the underlying mitigating mechanisms of these trade-offs
remain poorly understood [3,18–20].

Oxidative stress is thought to play a central role in balancing the physiological trade-
offs between survival, reproduction, and aging [21–26]. This condition arises when the
production of reactive oxygen species (ROS)—highly reactive molecules produced natu-
rally during metabolism—exceeds the body’s antioxidant defenses [27–30]. When ROS
production is in excess past normal physiological levels, ROS can cause cellular damage to
DNA, lipids, and proteins, which may reduce an organism’s ability to survive and repro-
duce [27–30]. This impact of oxidative stress is particularly significant during reproduction,
as the heightened metabolic demands of reproduction can increase ROS production, impos-
ing unavoidable costs on survival [18,21,31–34]. Given this increase, oxidative stress may
represent a “proximate cost” of reproduction—a physiological consequence that organisms
must balance when investing energy in reproduction [19,35–38]. Adding to the complexity,
oxidative stress and aging are closely intertwined [39–41]. Although oxidative stress gener-
ally increases with age, some species, like the naked mole-rat (Heterocephalus glaber), have
evolved mechanisms that mitigate this damage, potentially influencing longevity [40,42–45].
Despite the recognized role of oxidative stress in life-history trade-offs, there are relatively
few studies examining how alternative reproductive strategies over an animal’s lifespan
(age) can impact whole-body oxidative stress.

The Cape ground squirrel (Xerus inauris) presents an intriguing model to study the re-
lationship between oxidative stress, aging, and reproduction. This non-hibernating [46,47]
group-living species with a promiscuous and somatic maintenance mating system is hy-
pothesized to use various behavioral and physiological strategies to offset life-history
trade-offs [48,49]. Cape ground squirrels exhibit high reproductive skew [50–52]. Male
squirrels employ two distinct reproductive tactics or alternate reproductive tactics: band males,
who join same-sex roving groups in search of estrous females [53], and natal males, who, at ma-
turity, delay dispersal and remain with their natal group and provide alloparental care [50,51].
Despite these differences, reproductive success is similar between the two alternate reproduc-
tive tactics [50], and intriguingly, reproduction in this species does not appear to compromise
body condition [49,54]. In fact, reproductive success increases with age in male Cape ground
squirrels [55,56]. Given the unique life history of this species, oxidative stress may reveal
important physiological mechanisms that help to explain these life history trade-offs.

This study aimed to explore how oxidative stress varies with body condition—an
indicator of diet and overall nutritional health—and age in wild-caught male and female
Cape ground squirrels. Specifically, we examined oxidative stress in both band males
and natal males by measuring total antioxidant capacity (TAC), total oxidative status
(TOS), and their ratio, known as the oxidative stress index (OSI). Since age and body
condition are influential factors in reproduction for this species, with older males generally
achieving higher reproductive success and body condition differing between reproductive
strategies, we tested specific hypotheses on how these variables impact oxidative stress. We
hypothesized that females would exhibit lower oxidative stress than males, consistent with
findings from previous studies [57,58]. We predicted that oxidative stress would increase
with age as predicted by the metabolic theory of aging [59]. Additionally, among males, we
expected band and natal males to display similar oxidative stress levels, reflecting their
comparable reproductive success.

2. Materials and Methods
2.1. Ethics Statement

Experimental procedures adhered to the recommendations outlined in the National
Institutes of Health Guide for the Care and Use of Laboratory Animals and the American
Society of Mammalogists Animal Care guidelines [60,61].
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2.2. Study Site

Free-ranging Cape ground squirrels were captured at the S.A. Lombard Nature Reserve
(4600 ha), located 18 km northwest of Bloemhof, South Africa (27◦35′ S, 25◦23′ E). The study
was conducted from May to July 2024. Blood samples for oxidative stress analyses, along
with age and morphological measurements to assess body condition, were collected from
the animals. The reserve’s habitat consists of a floodplain with dry Cymbopogon-Themeda
grassland and black soil turfveld, interspersed with bush and pan areas [62]. During the
2023/2024 period (1 July to 30 June), the total rainfall was 465 mm, with 304.8 mm falling
between January and April. March had below-average rainfall, recording only 10 mm
compared to the usual 71 mm, suggesting a slight reduction in primary productivity.

2.3. Study Species, Trapping, Body Condition, and Reproductive Determination

Cape ground squirrels were trapped using Tomahawk live traps (15 × 15 × 50 cm)
baited with peanut butter and bird seed [48]. Trapping was conducted 2–4 times daily
(approx. 70 traps per round), between 07:00 and 17:30. Traps were shaded and checked
every hour to minimize heat stress. Each squirrel was marked with a pit tag (Shenzhen
XCC RFID Technology Co., Ltd., Shenzhen, China) for permanent identification and a
dorsal black hair dye mark (Rodol D; Lowenstein and Sons Inc., Brooklyn, NY, USA) for
identification from a distance. This population has been monitored yearly since 2002
resulting in long-term life-history data for all animals.

We captured 42 animals (26 males and 16 females) with known ages for this study.
For each individual, we measured body mass to the nearest 0.5 g using a Pesola Spring
scale (Pesola AG, Baar, Switzerland) and recorded spine length from the base of the skull
to the base of the tail using a tape measure. We also assessed each animal’s reproductive
condition. To evaluate body condition, we followed the methods outlined by Schulte-
Hostedde, et al. [63]. In brief, we calculated a body condition index using the residuals
from the ordinary least squares regression of spine length and body mass, where individuals
with better body condition exhibit positive residual values (Table S1) [63].

Age determination for all animals in this study followed established methods, and
all individuals were of reproductive age [49,50]. Among the 16 female squirrels sampled,
4 showed signs of oestrus or pregnancy. However, due to the small sample size of these
reproductively active females, we did not perform comparisons based on reproductive
state, though we included them in the age analyses. The ages of females ranged from
two to eight years. Males were classified based on their social behavior into two groups:
natal males (those remaining within their family groups and delay dispersal) and band
males (those that had dispersed to form or join all-male groups). Natal males typically
associate and sleep with family members, whereas band males sleep with other dispersed
adult males [48,64]. Natal males will eventually disperse into these bands, where the
maximum age of delayed dispersal in natal males is 5 years [50,53,64]. Because band males
typically dispersed onto our study site from other areas, their exact ages were not known.
Instead, we used their tenure on the site as adults as a proxy for age. Given that natal
males generally disperse around 3.5 years of age (range 1–5 years; O’Brien, Waterman, and
Bennett [64]), this proxy may underestimate the age of some band males. In this study,
estimated ages for band males ranged from one to seven years, while natal males ranged
from one to four years.

2.4. Blood Sample Collection and Storage

To collect blood, we transferred individuals from the live traps into cotton handling
bags designed to reduce movement and minimize stress while handling, allowing us to
collect blood quickly (<5 min) without anesthesia [65]. Animals were then released at their
site of capture. Approximately 1 mL of whole blood was collected from the femoral vein
using a sterile 26-gauge needle and syringe within the first two minutes of handling. The
blood was transferred into microcentrifuge tubes containing heparin to prevent clotting.
Samples were centrifuged at 6000 rpm for 10 min at the field lab and stored at −20 ◦C.
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The samples were later transported to the University of Pretoria, where they were kept at
−70 ◦C to −80 ◦C until oxidative stress analysis.

2.5. Reagents

All chemicals and reagents used in the study, unless otherwise stated, were obtained
from Merck (Pty) Ltd., Johannesburg, Gauteng, South Africa. Ammonium iron (II) sulfate
hexahydrate (215406; CAS 7783-85-9), Xylenol orange disodium salt (52097; CAS 1611-35-4),
Hydrogen Peroxide 100 vol (1053872; CAS 7722-84-1), Sulfuric Acid (258105; CAS 7664-93-
9), o-Dianisidine dihydrochloride (D9154; CAS 20325-40-0), Glycerol (G5516; CAS 56-81-5),
and Sodium Chloride (746398; CAS 7647-14-5).

2.6. TAC Assay

Plasma TAC was measured using a commercial total antioxidant capacity it (Item
709100, Cayman Chemical Co., Ann Arbor, MI, USA). This assay quantifies the inhibition
of ABTS (2,29-Azino-di-[3-ethybenzthiazoline sulphonate] oxidation by non-enzymatic
antioxidants in the sample. Oxidized ABTS is detected spectrophotometrically at 750 nm,
and antioxidant capacity is expressed as micromole Trolox equivalents per liter (µmol Trolox
equivalents/L). Each sample was tested in duplicate across two assay plates (repeatability:
r = 0.99), with intra-assay variability at 1.78%.

2.7. TOS Assay

Plasma TOS levels were determined using Erel’s method, which relies on the oxidation
of ferrous ions to ferric ions in the presence of oxidative species [66]. The oxidation reaction
is enhanced by glycerol molecules, which are abundantly present in the reaction medium.
The ferric ions form a colored complex with xylenol orange in an acidic medium, which
is measured spectrophotometrically. The results are expressed as micromole hydrogen
peroxide equivalent per liter (µmol hydrogen peroxide (H2O2) equivalent/L). Samples
were tested in duplicate (repeatability: r = 0.99), with intra-assay variability at 2.75%.

2.8. OSI

The OSI was calculated as the ratio of TOS to TAC, representing an arbitrary unit of
oxidative stress, as follows: OSI = [(TOS, µmol H2O2 equivalent/L)/(TAC, µmol Trolox
equivalent/L)].

2.9. Statistical Analysis

All statistical analyses were performed using R version 4.3.3 [67]. The response vari-
ables were TOS, TAC, and OSI. For all models, the predictors included age, sex state (with
separate models comparing males vs. females and band vs. natal), body condition, and
their interactions. Data normality was evaluated using the Shapiro-Wilk test and homo-
geneity of variance was assessed with Levene’s test. Generalized linear models were fitted
using the ‘glm’ function, with stepwise model selection guided by the Akaike Information
Criterion. Data visualization was performed using the ggplot2 package 3.5.1 [68]. Sep-
arate generalized linear models were used to visualize the linear relationships between
oxidative stress, age, and body condition across groups. The results are expressed as
mean ± standard error (s.e.m), and statistical significance was set at p ≤ 0.05.

3. Results
3.1. Sex Differences in Oxidative Stress

Oxidative stress markers, including TOS and OSI, were inversely related to body
condition but were not significantly affected by body condition itself (Table 1, Figure 1). In
both sexes, TOS and OSI levels decreased significantly with age and were consistently lower
in females than in males (Table 1, Figure 2). Additionally, females had significantly lower
OSI than males (Table 1, Figure 2). Contrastingly, TAC was not significantly influenced by
any of the predictors (Table 1, Figures 1 and 2).
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Figure 1. The linear relationships between body condition (body condition—residuals of size/mass
regression) and oxidative variables, namely oxidative stress index (OSI), total antioxidant capacity
(TAC), and total oxidant status (TOS) between female and male Cape ground squirrels (Xerus inauris).
Red values for females and dark blue values for males. The line represents a generalized linear model
regression with a Gaussian family and identity link as a representation for the statistical outputs. The
shaded areas around the smoothed line represent the 95% confidence intervals, indicating the range
in which the true smoothed values are likely to fall with 95% confidence.

Table 1. The generalized linear model was used to analyze oxidative markers—total oxidant status
(TOS), total antioxidant activity (TAC), and oxidative stress index (OSI)—for male and female Cape
ground squirrels (Xerus inauris), with age (years) and body condition (body condition—residuals of
size/mass regression) as fixed factors before backward selection based on the Akaike Information
Criterion (AIC). Significance at * p < 0.05, *** p < 0.001, ns as not significant.

Initial Model Variables Kept After Backward
Selection Estimate Standard Error Statistic p-Value

TOS~Sex * body condition * Age,
family = Gamma
(link = “identity”)

Intercept 6.54726 0.42692 15.336 ***

Sex Male 1.40032 0.32581 4.298 ***
Age −0.40856 0.07558 −5.405 ***
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Table 1. Cont.

Initial Model Variables Kept After Backward
Selection Estimate Standard Error Statistic p-Value

TAC~Sex * Age * body condition,
family = Gaussian
(link = “inverse”)

Intercept 6.15444315 0.15386392 39.999 ***

Sex Male −0.09345367 0.18039687 −0.518 ns
Age 0.01212761 0.03155852 0.384 ns

body condition 0.00003935 0.00209290 0.019 ns
Sex Male * Age 0.00864730 0.04158859 0.208 ns

Sex Male * body condition 0.00097065 0.00246685 0.393 ns
Age * body condition 0.00019369 0.00037647 0.514 ns

Sex Male * Age * body condition 0.00041114 0.00055699 −0.738 ns
OSI~Sex * Age * body condition,

family = Gamma
(link = “identity”)

Intercept 1.07161 0.07580 14.14 ***

Sex Male 0.23510 0.05791 0.05791 ***
Age −0.06815 0.01336 −5.10 ***
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Figure 2. The linear relationships between age (years) and oxidative variables, namely oxidative stress
index (OSI), total antioxidant capacity (TAC), and total oxidant status (TOS) between female and
male Cape ground squirrels (Xerus inauris). Red values for females and dark blue values for males.
The line represents a generalized linear model regression with a Gaussian family and identity link as
a representation for the statistical outputs. The shaded areas around the smoothed line represent the
95% confidence intervals, indicating the range in which the true smoothed values are likely to fall
with 95% confidence.
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3.2. Natal and Band Males

Body condition did not significantly affect oxidative markers in natal and band males,
though trends indicated decreasing TOS and OSI and increasing TAC with a higher body
condition in all males (Figure 3). OSI and TOS decreased significantly with age in all males,
but the difference between natal and band males was not significant, although band males
consistently had increased OSI levels compared to natal means across age (Table 2, Figure 4).
Natal males had lower TOS levels than band males, and this effect persisted across ages but
was not significant (Table 2, Figure 4). Although band males exhibited higher average TAC
levels than natal males, this difference was not statistically significant (Table 2, Figure 4).
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Figure 3. The linear relationship between body condition (body condition—residuals of size/mass
regression) and oxidative variables, namely oxidative stress index (OSI), total antioxidant capacity
(TAC), and total oxidant status (TOS), between band and natal Cape ground squirrel (Xerus inauris)
males. Purple values for band males and orange values for natal males. Each line represents a
generalized linear model regression with a Gaussian family and identity link as a representation of
the statistical outputs. The shaded areas around the smoothed line represent the 95% confidence
intervals, indicating the range in which the true smoothed values are likely to fall with 95% confidence.



Antioxidants 2024, 13, 1401 8 of 14

Table 2. The generalized linear model used to analyze oxidative markers—total oxidant status (TOS),
total antioxidant activity (TAC), and oxidative stress index (OSI)—for Male State (natal and band)
Cape ground squirrels, with age (years) and body condition (body condition—residuals of size/mass
regression) as fixed factors before backward selection based on the Akaike Information Criterion (AIC).

Initial Model Variables Kept After
Backward Selection Estimate Standard Error Statistic (t Value) p-Value

TOS~Male State * Age * body condition,
family = Gamma (link = “identity”) Intercept 8.6543 0.7614 11.366 ***

Male State Natal −1.0468 −1.0468 −2.151 *
Age −0.4404 0.1484 −2.969 **

TAC~Male State * Age * body condition,
family = Gaussian (link = “identity”) Intercept 6.25230 0.16555 37.767 ***

Male State Natal −0.42375 −0.42375 −1.902 ns
Age −0.02071 0.03613 −0.573 ns

Male State Natal * Age 0.12071 0.06233 1.937 ns
OSI~Male State * Age * body condition,

family = Gamma (link = “identity”) Intercept 1.43497 0.15288 9.386 ***

Male State Natal −0.16921 0.09748 −1.736 ns
Age −0.07723 0.02966 −2.604 *

Significance at * p < 0.05, ** p < 0.01, *** p < 0.001, ns as not significant.
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Figure 4. The linear relationship between age (years) and oxidative variables, namely oxidative
stress index (OSI), total antioxidant capacity (TAC), and total oxidant status (TOS), between band
and natal Cape ground squirrel (Xerus inauris) males. Purple values for the band and orange values
for natal males. Each line represents a generalized linear model regression with a Gaussian family
and identity link as a representation of the statistical outputs. The shaded areas around the smoothed
line represent the 95% confidence intervals, indicating the range in which the true smoothed values
are likely to fall with 95% confidence.
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4. Discussion

The oxidative stress theory of aging suggests that oxidative damage accumulates over
time, contributing to the aging process [69,70]. Contrary to this expectation, our data showed
that circulating oxidative stress decreased with age in both sexes of ground squirrels. While
plasma oxidative markers can change rapidly due to the circulation of metabolites and oxy-
gen [71]; oxidative stress in tissues, which typically shifts more slowly [72], was not measured
in this study. Our finding raises important questions about the long-term effects of oxidative
stress. The observed age-related decreases in circulating oxidative stress may be due to in-
creased enzymatic antioxidant activity [73,74] or improved cellular repair mechanisms [75,76].
The concept of hormesis—where mild stressors trigger beneficial adaptive responses—might
also explain the reduction in oxidative stress with age [23,77,78]. Limited research exists
on how oxidative stress changes with age in natural environments [18,79]. Studies on
species like the hibernating Columbian ground squirrel (Urocitellus columbianus) show no
significant association between age and oxidative markers [24], possibly due to recov-
ery from hibernation-induced oxidative stress through evolutionary adaptations [80,81].
Cape ground squirrels, who do not hibernate, may experience continual self-maintenance,
potentially contributing to their age-related decrease in oxidative stress.

Sex differences in oxidative stress are well-documented in mammals, with females
typically exhibiting lower oxidative stress levels than males [57,58,82,83]. This difference is
often attributed to estrogen, which plays a key role in antioxidant defense and can function
as a potent antioxidant itself [58,84–86]. Additionally, females tend to produce fewer ROS
due to lower NADPH-oxidase activity [86]. Our findings show that female Cape ground
squirrels exhibit lower oxidative stress compared to males. Similar patterns have been
observed in other mammals, such as Wistar and Spraque Dawley rats (Rattus norvegicus),
where females show lower oxidative stress than males, a difference that diminishes in
ovariectomized females [87,88]. In some group-living species, such as the Damaraland
mole-rat (Fukomys damarensis), sex differences in oxidative stress are only observed in non-
breeding individuals, but not in breeding individuals [89]. In the Natal mole-rat (Cryptomys
hottentotus natalensis), this effect is seasonal: females exhibit lower oxidative stress than
males during the summer, but not in the winter [90]. No significant sex differences have
been found in the highveld mole-rat (C. h. pretoriae) [91]. Contrastingly, in the naked
mole-rat, breeding females show a much higher OSI compared to males and non-breeding
females, which all have similar OSI levels [89]. It has been postulated that naked mole rats
accumulate cellular damage at an exceptionally low rate, and any increase in oxidative stress
associated with reproduction is likely inconsequential due to efficient repair mechanisms
compensating for an elevated oxidative stress state [43,89,92–94].

Male reproductive strategies also influenced oxidative stress, with distinct age-related
differences observed between natal and band males. Natal males, who remain within their
family groups, showed lower oxidative stress compared to band males, who dispersed into
all-male groups. This difference was primarily due to variations in TOS, as TAC levels did
not differ significantly between the groups. Band males face higher metabolic demands and
spend less time successfully feeding compared to natal males [14]. Less time spent feeding
can reduce the intake of antioxidants and minerals such as zinc and selenium, which
are important for enzymatic antioxidant function [95]. Elevated metabolic demands may
contribute to the observed oxidative stress differences, as increased metabolism can lead to
greater free radical production [96,97]. One additional factor that may explain the lower
oxidative stress observed in older band males is hormesis—the concept that exposure to
mild stressors can build adaptive responses [98–100]. As band males experience heightened
metabolic demands, they may develop physiological adaptations over time that reduce
oxidative stress, potentially enhancing their reproductive success in the long term [98–100].
Overall, oxidative stress differences between these reproductive strategies are clear, though
further research is needed to disentangle the specific contributions of metabolic rate and
feeding efficiency to these observed patterns.
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5. Conclusions

In conclusion, this study provides valuable insights into how the Cape ground squirrel
employs various life-history and reproductive strategies to manage oxidative stress—an
important factor that can impact longevity and reproductive success. Both male and
female Cape ground squirrels appear to prioritize their survival through a variety of
yet-to-be-understood physiological and/or behavioral mechanisms that may help reduce
oxidative stress as they age. Additionally, we observed significant differences in oxidative
stress between sexes and among male squirrels with different reproductive strategies. The
variation in oxidative stress between natal males (those remaining within their birth groups)
and band males (those that roam to access mates) suggests that metabolic demands and
foraging behavior influence oxidative balance. Different male reproductive strategies may
result in varying levels of oxidative stress, potentially affecting survival differently, even if
reproductive efforts are similar.

Our study has two limitations: (1) we were unable to compare oxidative stress between
breeding and non-breeding females due to limited sample sizes and (2) we did not measure
long-term oxidative stress indicators, such as antioxidant enzyme levels. To gain a complete
understanding of how oxidative stress influences survival and reproduction in Cape ground
squirrels, future research should include longitudinal studies with long-term markers.

Overall, our findings offer a valuable reference for understanding how oxidative
stress could decline with age as a result of survival-based selection pressures, thereby
enhancing lifetime reproductive success in this species. Our study contributes to a broader
understanding of how physiological processes like oxidative stress impact reproductive
success and longevity in Cape ground squirrels and potentially other species.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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