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Non-communicable diseases (NCDs), including cardiovascular diseases, diabetes, and
neurodegenerative disorders, pose a significant global health challenge [1,2]. Central to
their pathogenesis are two interlinked mechanisms: oxidative stress and inflammation [3,4].
Oxidative stress arises from the excessive production of reactive oxygen species (ROS),
overwhelming the body’s antioxidant defenses, while inflammation is a key protective
response triggered by tissue damage or infection. Extensive research indicates that these
processes are not only pivotal in the onset of NCDs but also drive their progression [5,6].
This Special Issue compiles 17 articles that explore various dimensions of oxidative stress
and inflammation, offering new insights into preventive and therapeutic strategies.

One area addressed is the role of oxidative stress and inflammation in renal diseases,
a topic of growing interest in the literature [7–9]. Liu et al. [10] investigate the predictive
value of interleukin-18 (IL-18) and superoxide dismutase 3 (SOD3) in patients with end-
stage renal disease (ESRD). Their findings reveal that elevated IL-18 and reduced SOD3
levels are linked to a higher risk of kidney-related complications and mortality. Similarly,
Khalaf et al. [11] identify the protective role of paraoxonase-1 (PON1), a hydrolytic enzyme,
in chronic kidney disease (CKD). In PON1-deficient rats (SS-PON1 KO), increased renal
injury—characterized by fibrosis, sclerosis, and acute tubular damage—was observed
compared to control Dahl salt-sensitive rats. These findings suggest that modulating PON1
activity may represent a promising therapeutic target for mitigating inflammatory pro-
cesses in CKD progression. In the context of acute kidney injury, Cheng et al. [12] highlight
the potential of dexmedetomidine (DEX)-preconditioned adipose-derived stem cell mi-
crovesicles (DEX-MVs) in reducing renal ischemia/reperfusion (IR) injury. In a mouse
model, DEX-MVs downregulated miR-122-5p-mediated oxidative stress and upregulated
protective factors such as Bcl2 and erythropoietin, reducing tubular cell apoptosis and
enhancing renal function. This approach offers a safer alternative to intravenous stem cell
therapy by reducing immune rejection while enhancing cellular protection.

Mitochondrial dysfunction, a recurring theme in NCD progression, is especially no-
table for its role in generating oxidative stress and activating inflammatory pathways [13].
Monserrat-Mesquida et al. [14] describe how oxidative stress triggers key inflammatory
pathways, including nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases
(MAPKs), which are central to cardiovascular and neurodegenerative disease pathogene-
sis. These findings underscore the therapeutic potential of antioxidants, which neutralize
ROS and modulate inflammatory signaling, offering promising strategies for managing
multiple NCDs [15,16]. Manea et al. [17] further investigate oxidative stress in cardiovas-
cular disease, identifying lysine-specific demethylase 1 (LSD1) as a potential therapeutic
target. Their study demonstrates that inhibiting LSD1 in hypercholesterolemic mice re-
duces atherosclerotic lesions and oxidative stress by downregulating NADPH oxidase
(Nox) subunits involved in ROS production, which in turn decreases inflammation and
pro-inflammatory gene expression.
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Endothelial dysfunction, a precursor to atherosclerosis, is tightly linked to oxidative
stress and chronic inflammation [18]. The review by Higashi et al. [19] highlights how these
processes reinforce one another, leading to cardiovascular complications. Oxidative stress,
often driven by the activation of NADPH oxidase, xanthine oxidase, and mitochondrial
dysfunction, promotes endothelial damage, while chronic inflammation sustains atheroscle-
rosis progression. This interplay underscores the importance of targeting both oxidative
stress and inflammation in cardiovascular disease management.

Alzheimer’s disease (AD) exemplifies the critical roles of oxidative stress and inflam-
mation in neurodegenerative disorders. The accumulation of neurotoxic amyloid-beta
(Aβ) peptides and neurofibrillary tangles induces neuroinflammation and synaptic dys-
function via oxidative stress pathways [20–22]. Natural compounds, such as polyphenols
and vitamins, are gaining attention for their potential to slow AD progression [23–25].
Khan et al. [26] report that caffeic acid, a polyphenol found in various fruits and vegetables,
protects against cognitive decline in AD model mice by reducing neuroinflammation and
restoring neuronal function. Similarly, Shah et al. [27] review the roles of vitamins and
minerals in AD, emphasizing their antioxidant and anti-inflammatory properties as well as
their potential to influence amyloid precursor protein processing and blood–brain barrier
integrity, thereby contributing to neuroprotection.

Oxidative stress and inflammation also significantly contribute to bone loss and osteo-
porosis, as discussed by Marcucci et al. [28]. They highlight the role of oxidative stress in
inducing osteocyte apoptosis, which impairs bone remodeling. Natural antioxidants pre-
vent this process by preserving osteocyte viability, promoting osteogenesis, and supporting
bone formation, underscoring the potential of antioxidant supplementation to complement
traditional antifracture therapies. Diet-derived antioxidants offer further benefits beyond
isolated supplements [29].

Natural compounds are increasingly recognized for their broad therapeutic potential
across various diseases [30–34]. Lien et al. [35] demonstrate the gastroprotective proper-
ties of Anisomeles indica, a traditional herb, in preventing aspirin-induced gastric ulcers.
Their findings show that A. indica fractions enriched in ovatodiolide reduce inflammation
and gastric acidity, offering a novel approach for treating NSAID-induced gastric injury.
Peri et al. [36] explore the anticancer effects of oleocanthal, an extra-virgin olive oil extract,
on chemotherapy-resistant gastric cancer cells. Oleocanthal reduces cell viability, inhibits
colony formation, and induces apoptosis through ROS production, highlighting its poten-
tial against resistant cancer cells in combination with chemotherapy. Flavonoids have also
been studied for their benefits in chronic disorders like inflammatory bowel disease [37–39].
Smeriglio et al. [40] report that citrus flavonoids, including hesperidin and hesperetin,
exhibit strong antioxidant and anti-inflammatory effects in IL-1β-stimulated Caco-2 cells.
Laudani et al. [41] summarize evidence on the cardioprotective effects of anthocyanins,
a class of polyphenols. While clinical studies show that anthocyanin intake supports car-
diovascular health by modulating gut microbiota and reducing inflammation [42–44], the
variability in gut microbiota among individuals suggests the need for further research.
Liao et al. [45] investigate the anti-inflammatory properties of kefir by comparing kefiran
(KE) and kefir exopolysaccharides (KEPSs) in murine macrophages and transgenic mice.
Kefir, a fermented milk product, has been widely studied for its health benefits. Research
shows that microorganisms in yogurt starter cultures produce bioactive compounds, such
as lactic acid, peptides, and bacteriocins, during milk fermentation, which contribute to
kefir’s positive effects on nutrition and health, including immune support, enhanced diges-
tive function, and potential benefits for conditions like hypertension, allergies, metabolic
disorders, and heart disease [46–48]. Liao et al. [45] further demonstrate that KE and
KEPS can reduce IL-6 secretion and inhibit NF-κB activation, supporting their potential to
mitigate systemic inflammation.

Finally, several studies highlight the critical role of lifestyle interventions in managing
and preventing metabolic disorders. Regular physical activity is widely acknowledged as
essential for reducing oxidative stress and enhancing insulin sensitivity, two key factors
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implicated in these conditions [49,50]. Research shows that 150 min of physical activity per
week, combined with a 7% weight reduction, can lower disease risk by 58% over three years.
Physical activity alone improves insulin sensitivity and can reduce type 2 diabetes (T2DM)
risk by 44% [51]. Piotrowska et al. [52] further demonstrate that regular exercise lowers pro-
inflammatory cytokines, such as TNF-α and IL-6, while increasing anti-inflammatory medi-
ators like IL-10, underscoring the role of exercise in diabetes management. Barrea et al. [53]
advocate for incorporating bioactive compounds with antioxidant and anti-inflammatory
properties, such as flavonoids and polyphenols, into the diet to enhance glycemic control
and reduce inflammation in T2DM patients. Additionally, Colombini et al. [54] explore
the impact of circadian rhythm disruptions on systemic inflammation, especially with age.
Circadian rhythms are 24-hour cycles that govern vital physiological, metabolic, and en-
docrine processes, such as hormone secretion, body temperature, and the cell cycle, through
the circadian clock system [55]. In this context, the concept of inflammaging underscores
how age-related circadian disruptions exacerbate chronic inflammation [56]. Emerging
research suggests that nutritional and pharmacological interventions may help counteract
these disruptions, reducing inflammation and promoting healthier aging [57,58].

Together, these studies deepen our understanding of the role of oxidative stress and
inflammation in NCDs. The Guest Editors of this Special Issue extend their gratitude to all
contributing authors and reviewers for their invaluable insights and to the Antioxidants team
for their continuous support. The integration of novel biomarkers, antioxidant therapies,
and lifestyle interventions—such as exercise and personalized nutrition—presents exciting
opportunities for the prevention and treatment of NCDs. Further research is essential to
validate these approaches and develop targeted therapies to modulate oxidative stress and
inflammation, ultimately improving health outcomes worldwide.
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