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Abstract: Glutathione peroxidases (GPxs) are a family of enzymes that play a critical role in cellular
redox homeostasis through the reduction of lipid hydroperoxides to alcohols, using glutathione as
a substrate. Among them, GPx4 is particularly of interest in the regulation of ferroptosis, a form
of iron-dependent programmed cell death driven by the accumulation of lipid peroxides in the
endoplasmic reticulum, mitochondria, and plasma membrane. Ferroptosis has emerged as a crucial
pathway in the context of cancer, particularly pancreatic cancer, which is notoriously resistant to
conventional therapies. GPx4 acts as a key inhibitor of ferroptosis by detoxifying lipid peroxides,
thereby preventing cell death. However, this protective mechanism also enables cancer cells to
survive under oxidative stress, which makes GPx4 a potential druggable target in cancer therapy.
The inhibition of GPx4 can trigger ferroptosis selectively in cancer cells, especially in those that rely
heavily on this pathway for survival, such as pancreatic cancer cells. Consequently, targeting GPx4
and other GPX family members offers a promising therapeutic strategy to sensitize pancreatic cancer
cells to ferroptosis, potentially overcoming resistance to current treatments and improving patient
outcomes. Current research is focusing on the development of small-molecule inhibitors of GPx4 as
potential candidates for pancreatic cancer treatment.

Keywords: pancreatic cancer; ferroptosis; GPx4; glutathione peroxidases; drug resistance

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, primarily due to its
late diagnosis. The latest statistics report 66,440 estimated new cases and 51,750 estimated
deaths for both sexes in the United States in 2024 [1]. The lethality of PDAC is largely
due to the absence of early detection and screening methods. The five-year survival rate
is significantly higher when tumors are detected early, at less than 2 cm, reaching up to
50% for tumors <2 cm and 100% for tumors <1 cm. Therefore, due to late detection, when
metastasis has often occurred, the survival rate drops dramatically to 3% [2]. Surgical
resection offers the only potential cure; however, it is viable for only 15–20% of patients
at diagnosis, often hindered by a vascular invasion. Even with surgery, recurrence rates
reach over 80% systemically and over 20% locally. Hence, treatments like chemotherapy,
radiotherapy, and combined modalities are utilized before and after surgery, though they
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provide limited survival benefits [3]. Gemcitabine has been the cornerstone of PDAC
chemotherapy, traditionally used alone but now often combined with nab-paclitaxel. This
combination extends the median overall survival (OS) from 6.7 months with monotherapy
to 8.5 months in combination [4]. FOLFIRINOX, a multi-drug regimen composed of folinic
acid, 5-FU, irinotecan, and oxaliplatin, offered a better OS of 21.6 months compared to
12.8 months with gemcitabine [5]. Recent advancements include the NAPOLI-3 trial, which
introduced NALIRIFOX, a modified FOLFIRINOX regimen with liposomal irinotecan.
It showed an improved median OS (11.1 months) and progression-free survival (PFS)
(7.4 months) over the gemcitabine/nab-paclitaxel combination. Given these compelling
findings, NALIRIFOX is emerging as the preferred chemotherapy option for patients with
metastatic PDAC [6]. Despite significant success in other cancers, immunotherapy has not
been effective for PDAC, likely due to the tumor’s complex microenvironment [7]. Targeted
therapies have shown limited success, particularly those targeting KRAS G12C mutations,
which are present in only 1–2% of PDAC cases. Sotorasib, targeting this mutation, showed
a 21% response rate and median OS of 6.9 months, but limited patient applicability and
short duration of response are major drawbacks [8]. Therefore, the ongoing challenge of
PDAC underscores the urgent need for research into novel treatments, which emphasizes
the necessity for breakthroughs specifically tailored to pancreatic cancer.

In this concern, GPxs have provided a new insight for cancer treatment due to their
role in protecting cells from oxidative stress by reducing peroxides. GPxs are often dysreg-
ulated in several types of cancers like lung, breast, and colorectal and can influence tumor
progression and chemoresistance by modulating reactive oxygen species (ROS) levels [9].
In this review, we compile the evidence that supports GPx proteins as a potential target for
novel treatment strategies against PDAC.

2. Glutathione Peroxidases Are Crucial for Oxidative Metabolism

GPxs are crucial enzymes in cellular antioxidant defense, reducing hydroperoxides
to water and alcohols using glutathione (GSH) as a reductant [10]. This enzyme family
comprises eight isoforms (GPx1-8) that are differentiated by the presence of either seleno-
cysteine or cysteine at their active sites [10]. GPx1 is the isoform with the highest specificity
for GSH due to the unique combination of amino acids present at its catalytic site [10].
As a result, it is considered the primary contributor to the catalysis of H2O2, and it is
ubiquitously expressed in both the cytosol and mitochondria of nearly all tissues [11].
GPx2 expression is mainly restricted to the gastrointestinal tract, where it protects against
the absorption of peroxides naturally found in food [10]. GPx3, secreted in plasma as a
glycoprotein, functions extracellularly to protect against systemic oxidative stress by neu-
tralizing ROS generated by surface lipoxygenases [12]. Unlike GPx1-3, GPx4 is a monomer,
similar to GPx7 and GPx8, while the other GPx enzymes are tetramers [9]. GPx4 exists in
three different isoforms: cytosolic (cGPx4), mitochondrial (mGPx4), and sperm nuclear
(snGPx4). While the cytosolic form is ubiquitous, mGPx4 and snGPx4 are specific to the
testes [13]. This enzyme not only reduces standard peroxides but is also capable of reducing
lipid peroxides already incorporated into cellular membranes, thereby helping to maintain
their integrity [14]. GPx4 is essential for cellular homeostasis, and its knockout results in
embryonic lethality [15]. GPx5 is expressed in the epididymis, where it protects sperm
from oxidative stress [13]. GPx6 is found in the olfactory epithelium and is believed to be
involved in the metabolism of odorants. GPx7 is highly expressed in the preadipocytes of
white adipose tissue and is involved in maintaining general redox homeostasis. Finally,
GPx8 is concentrated in the lungs where it prevents hydroperoxides from leaking from the
endoplasmic reticulum [10].

3. The Involvement of Glutathione Peroxidases in Ferroptosis and PDAC

Ferroptosis is a unique, non-apoptotic form of cell death driven by the iron-dependent
accumulation of lethal ROS, leading to the peroxidation of membrane lipids [16]. The
primary ROS source in ferroptosis is the Fenton reaction, catalyzed by iron ions, although
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the specific roles of iron and ROS in ferroptosis are still being elucidated. ROS are a double-
edged sword in cancer biology. On one hand, a moderate ROS level can promote DNA
damage, fostering carcinogenesis and tumor progression [17]; on the other hand, high
or excessive ROS levels can trigger programmed cell death mechanisms [10]. Recently,
antioxidant enzymes have been acknowledged for having a dual role in cancer: they act
as tumor-suppressor genes and as oncogenes during tumorigenesis. However, during
tumor progression, these enzymes help cancer cells evade ROS-mediated cell death, aiding
in their survival [18]. Specially, GPx4 is a central modulator of ferroptosis as it reduces
lipid hydroperoxides to lipid alcohols, preventing the peroxidation of membrane lipids
and maintaining membrane integrity [19]. GPx4 activity is contingent on GSH levels, with
cysteine uptake (via the system Xc-antiporter) being crucial for GSH synthesis. Depletion
of either GSH or cysteine can trigger ferroptosis in cancer cells, including PDAC [20].

Emerging research supports ferroptosis as a promising approach for PDAC treatment.
Agents like zalcitabine induce ferroptosis by generating ROS, showing cytotoxic effects in
PDAC cell lines [21]. Ferroptosis inducers may enhance chemotherapy sensitivity or over-
come resistance, exemplified by chrysin, which boosts gemcitabine efficacy in PDAC [22].
The interplay between GPx4, ferroptosis, and chemotherapy resistance underscores the
potential for combination therapies [23].

4. The Prognostic Significance of Glutathione Peroxidases in Cancer

GPxs are direct antioxidant enzymes that play an essential role in maintaining cellular
homeostasis by protecting cells from oxidative damage. Their significance extends into the
realm of cancer, where different isoforms of GPx have been linked to patient survival and
prognosis across various cancer types (Table 1). Notably, there is currently no updated data
on the prognostic role of GPx5 and GPx6 in cancer patients. The significance of various
isoforms of GPx in prognosis across different cancer types underscores the need for future
investigations in this field. Considering that the expression levels of different GPx isoforms
can vary in a tissue-dependent manner, future patient-focused research should prioritize the
development of a signature that encompasses all GPx isoforms. Identifying the most crucial
isoform in a specific cancer type can pave the way for advancements in the therapeutic
field for oncologic purposes.

Table 1. Main oncologic features of glutathione peroxidases in different types of cancers.

GPx Isoform Cancer Type Association/Impact PMID/Reference

GPx1

Gastric cancer Elevated GPx1 levels correlate with poor
patient outcomes. [24]

Kidney cancer GPx1 expression is associated with aggressive tumor
features and reduced survival. [25]

Acute myeloid leukemia (AML) GPx1 impacts prognosis and survival rates in
AML patients. [26]

Head and neck cancer GPx1 expression contributes to tumor progression
and patient survival. [27]

Low-grade glioma GPx1 is linked to disease progression and
survival outcomes. [28]

Clear cell renal carcinoma (ccRCC) Upregulation correlates with advanced stages,
metastasis, and shorter survival. [25]

Breast cancer GPx1 polymorphisms, particularly Pro198Leu, are
associated with increased cancer risk. [29]
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Table 1. Cont.

GPx Isoform Cancer Type Association/Impact PMID/Reference

GPx2

Prostate cancer High GPx2 levels are linked to poor prognosis. [30]

Hepatocellular carcinoma GPx2 expression correlates with aggressive
tumor characteristics. [31]

High-grade glioma Elevated GPx2 expression worsens
patient outcomes. [32]

Gastric cancer Elevated GPx2 expression in tumors and lymphatic
metastases correlates with aggressive tumor behavior. [33]

GPx3

Thyroid cancer GPx3’s role in prognosis is under investigation. [34]

Breast cancer GPx3 expression is considered in determining
patient survival. [35]

Cervical cancer Lower GPx3 expression correlates with lymph
node metastasis. [36]

Gallbladder cancer Negative GPx3 expression is associated with
reduced survival. [37]

Hepatocellular carcinoma Low GPx3 levels predict poor outcomes. [38]

GPx4

Epithelial ovarian cancer GPx4 has prognostic value. [39]

Thyroid cancer High GPx4 expression relates to
disease advancement. [40]

Breast cancer GPx4 levels are crucial for understanding breast
cancer outcomes. [41]

Pan-cancer analysis GPx4 expression is generally higher in tumor tissues
compared to normal tissues across various cancers. [42]

Pancreatic ductal
adenocarcinoma (PDAC)

GPx4’s role as a biomarker is under-explored,
though it is suggested to regulate oxidative
homeostasis and EMT in cancer stem cells.

[43]

GPx7 Gliomas GPx7 is associated with poor prognosis. [44]

GPx8

Gastric cancer GPx8 is linked to unfavorable outcomes. [45]

Breast cancer GPx8 is linked to unfavorable outcomes. [46]

Non-small cell lung cancer GPx8 is linked to unfavorable outcomes. [47]

Remarkably, the extensive literature addressing the prognostic implications of GPxs
in cancer, coupled with the limited evidence in the context of PDAC, presents a com-
pelling avenue for further investigation and offers promising therapeutic opportunities for
PDAC patients.

5. The Prognostic Significance of Glutathione Peroxidases in PDAC

Antioxidant enzymes play a crucial role in cancer development, including PDAC.
Chronic pancreatitis, a major risk factor for PDAC, is characterized by reduced antioxidant
enzyme activity compared to healthy tissue. This reduction is even more pronounced in
PDAC, suggesting a diminished capacity to counteract ROS, which indicates a potential
progression from chronic pancreatitis to PDAC [48]. In this concern, GPx proteins appear
as key mediators in ROS homeostasis, being GPx1-4 the most studied.

Extensive research has focused on GPx1 due to its involvement in various diseases,
not to mention the presence of gene polymorphisms that could serve as prognostic factors
for cancer. The primary focus has been on the Pro198Leu gene polymorphism (rs1050450
C>T), although its susceptibility in different types of cancer is not yet fully understood [29].
GPx1 knockout (KO) mice exposed to normal oxidative stress exhibit no distinct phenotype.
However, under severe stress conditions, these KO mice die even when supplemented with
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selenium [49]. This finding highlights the critical role of GPx1, as it cannot be compensated
for by other selenoproteins under conditions of generalized stress [12]. Previous studies
have reported that GPx1 expression levels gradually decrease in pancreatic cells, progress-
ing from normal pancreatic tissue to chronic pancreatitis and ultimately to PDAC [48]. This
downregulation suggests a potential tumor-suppressive role for GPx1 in this neoplasia.
Moreover, increased expression of GPx1 has been shown to suppress the malignant phe-
notype both in vivo and in vitro (51% and 39% tumor cell growth suppression compared
to controls, respectively) [50]. Conversely, the silencing of GPx1 promotes epithelial–
mesenchymal transition (EMT) by activating the ROS-mediated Akt/GSK3β/Snail signal-
ing axis in PDAC cells, leading to the induction of gemcitabine resistance [51] (Figure 1).
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Figure 1. Molecular pathways of GPx1, GPx2, GPx3, and GPx4 in PDAC. In blue boxes are highlighted
those pathways modulated by GPx1, which has been involved in chemoresistance [29]. The molecular
pathway modulated by GPx2, which is associated with epithelial–mesenchymal transition (EMT), are
highlighted in yellow boxes [49]. In green boxes are shown how GPx3 is a major regulator of ROS
levels [12]. In purple boxes are highlighted how GPx4 is a master regulator of ferroptosis, having the
ability to act on lipid hydroperoxides (LOOHs) and prevent lipid peroxidation of the cell membrane.
On the contrary, when GPx4 is inhibited, the cell may enter ferroptosis and release signals to the
extracellular matrix to activate other cells such as macrophages or other tumor cells that increase
their tumor-prone phenotype [52].

GPx2 is significantly overexpressed in PDAC tissues [53]. Protein and mRNA analyses
have demonstrated that GPx2 upregulates β-catenin, vimentin, and Snail, while downreg-
ulating E-cadherin, in PDAC to promote EMT (Figure 1). Additionally, the silencing of
GPx2 has been shown to reduce the expression of metalloproteinases (MMPs) MMP2 and
MMP9 by downregulation of the Wnt pathway and inhibition of inflammation-mediated
carcinogenesis, which are critical for cancer cell proliferation, migration, and invasion [54].
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Regarding GPx3, it appears to function primarily as a systemic antioxidant; however,
its expression varies across different tumors. While low levels of GPx3 are associated with
a poor prognosis in several cancers, its upregulation in PDAC is linked to reduced ROS
levels and increased chemoresistance together with superoxide dismutase (SOD1) and
peroxidases (GPx2, thyroperoxidase, and myeloperoxidase) [55] (Figure 1).

GPx4 has not been directly studied as a prognostic marker in PDAC. In an in vitro
study, it appeared to be upregulated in Panc-1 cancer stem cells (CSCs) compared with
parental Panc-1 cells. Therefore, the elevated levels of GPx4 could be responsible for
regulating oxidative homeostasis, maintaining the EMT program and maintaining the
undifferentiated and, subsequently, more aggressive phenotype [56]. Interestingly, GPx4,
further to being involved in lipid metabolism and the inhibition of ferroptosis, also plays
a significant role in tumor vascularization. Schneider et al. demonstrated that the partial
inactivation of GPx4 in mouse models leads to substantial changes in tumor vascular
characteristics, like thinner diameters and markedly reduced vessel lumina. This fact
suggested its involvement in tumor angiogenesis through the modulation of lipoxygenases-
12 and 15 (Figure 1) [57].

Another pathway that is activated along with PDAC tumorigenesis by promoting
cancer growth and metastasis via tumor microenvironment (TME) modulation is through
TMEM173/STING. This pathway promotes ferroptosis in human PDAC in vitro lead-
ing to subsequent ROS production and lipid peroxidation by an increase in MFN1/2-
dependent mitochondrial fusion [58]. Interestingly, depletion of TMEM173/STING pro-
tects against GPx4-depletion-induced neoplastic progression and reduces tumor-associated
macrophages (Figure 1) [52].

6. GPx4 as a Potential Therapeutic Target in PDAC

The diverse roles of GPx isoforms in cancer highlight their potential as predictive
markers. The variability in GPx expression across different cancer types and stages suggests
that a comprehensive GPx signature could enhance patient stratification and treatment
strategies. The identification and target of the most relevant GPx isoform in specific cancers
could pave the way for new therapeutic approaches. In this concern, GPx4 has emerged
as a vital regulator of ferroptosis, a form of programmed cell death characterized by
lipid peroxidation. Its significant role in mitigating oxidative damage and maintaining
cellular homeostasis has set it as a promising therapeutic target, particularly in PDAC.
GPx4 is fundamental to the system Xc–/GSH/GPx4 axis, which protects cells from lipid
peroxidation and subsequent ferroptosis [59]. Ferroptosis inducers (FINs) have been
classified based on their mechanisms: class I FINs deplete glutathione (GSH), class II
FINs directly inhibit GPx4, class III FINs can deplete GPx4 and coenzyme Q10 (CoQ10)
via the squalene synthase–mevalonate pathway, and class IV FINs increase labile iron
or oxidize iron to induce lipid peroxidation. Interestingly, key FINs like erastin, RSL-3,
and ML-162 have been widely studied for their ability to modulate GPx4 and induce
ferroptosis in PDAC [60]. Targeting GPx4 has been confirmed to be a potential treatment
strategy against PDAC. While FINs, like erastin and RSL-3, demonstrate in vitro efficacy,
their clinical development is hampered by their pharmacokinetics [61]. However, GSH
depletion has been effective in inhibiting PDAC cell proliferation [62], and rapamycin
has shown anti-cancer activity through GPx4 degradation [63]. Erastin inhibits cystine
uptake, depleting GSH, while RSL-3 and ML-162 were previously thought to directly
inhibit GPx4, but recent findings suggest they target thioredoxin reductase 1 (TXNRD1)
instead [64]. Novel compounds such as oleanolic-acid-derived triterpenoids, e.g.,: CCDO-
Me and benzothiazole compounds, have also been identified for their ability to induce
apoptosis and inhibit SOD and GPx activities in PDAC cells [65,66]. Another compound,
thiostrepton (TST), binds to STAT3, which inhibits GPx4 expression, while downregulation
of the upstream Transcription Factor 2 (USF2) shows a reduction in GPx4 and solute carrier
family 7 member 11 (SLC7A11) expression that increases lipid peroxidation, which sets
USF2 as an important mediator in PDAC [67]. Recent studies have focused on combination
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therapies integrating FINs and traditional chemotherapy. MnFe2O4-loaded nanoparticles
combined with gemcitabine showed increased ferroptosis in PDAC models [68]. Targeting
the hexosamine biosynthetic pathway (HBP) with compounds like FR054 alongside erastin
has promoted GSH depletion and ferroptosis [69].

However, cancer cells can develop resistance to ferroptosis. Studies in PDAC cells have
shown resistance linked to the overexpression of nuclear factor erythroid 2-related factor 2
(Nrf2) and other factors like protein Tyrosine Phosphatase Mitochondrial 1 (PTPMT1) and
ADP-ribosylation factor 6 (ARF6). PTPMT1 has been reported to be upregulated in PDAC
and inhibits ferroptosis by suppressing the expression of acyl-CoA synthetase long chain
family member 4 (ACSL4) and upregulating SLC7A11 in vitro [70]. ARF6 confers PDAC
cells sensitivity to oxidative stress, due to RSL3-induced lipid peroxidation, and contributes
to gemcitabine resistance via multiple pathways [71]. It is important to consider these com-
pounds as a potential therapy in PDAC because they address a new paradigm in ferroptotic
PDAC cell death. Future clinical trials must consider combination therapies including
these novel compounds with standard chemotherapy due to its aptness to drive excessive
and unendurable oxidative stress levels. Due to the paradoxical effects of reactive oxygen
species (ROS) modulation, it is crucial to determine the metabolic state of cancer cells
required to trigger ferroptosis. Cellular metabolic stress and the amount of ROS present in
a cell vary according to its metabolic state; low levels are physiological, while intermediate
levels can be protumorigenic since ROS react directly with DNA, allowing the accumulation
of mutations within tumor cells. However, high levels are detrimental, as cellular damage
cannot be adequately recovered by the remaining antioxidant enzymes, leading to cell
death via ferroptosis [72]. This balance, where ROS must not exceed a certain threshold,
forms the theoretical basis for GPx inhibition. Disrupting this equilibrium may drive cancer
cells to a transition from an intermediate level, which is advantageous for their survival, to
a toxic level triggering ferroptosis. In the context of advanced cancer, ferroptosis represents
a potential therapeutic weapon; however, the role of GPx inhibition in carcinogenesis
originating from precancerous lesions or healthy cells needs separate investigations.

Among the various isoenzymes, GPx4 is a monomer and is easy to inhibit. GPx4
exhibits a low protein expression across most tissues, achieving medium levels in thyroid
glandular cells and enterocytes of the small intestine. Consequently, the toxicity profile
should primarily be thyroidal and gastrointestinal, both of which are typically manageable
in clinical practice [73]. In contrast, other isoenzymes such as GPx1 have a moderate to
high expression in most tissues and function as tetramers, which makes effective inhibition
with minimal toxicity rather challenging. The toxicity observed in embryos underscores
the critical role of GPx4 in embryonic cells, akin to undifferentiated cancer cells, which are
prevalent in advanced cancer. This fact reaffirms its utility while warning of its potential
genotoxicity in humans.

Currently, there are no clinical trials assessing toxicity in humans. Nonetheless, cu-
mulative evidence from animal studies suggests a potential toxicity. In the work by Yang J.
et al., BALB/c nude mice were treated with RSL3, Cetuximab, or a combination of both,
and all mice survived across all study arms with no serious reported toxicity [74]. Further-
more, in the study by Shengbiao L. et al., B-NDG mice were treated with RSL3 with no
toxic deaths in the study [75]. Based on these data, the in vivo inhibition of GPx4 in mice,
alongside the in vitro toxicity profile, should be further investigated in phase I clinical trials.
Table 2 summarizes the main compounds to target GPx proteins and their direct targets to
induce cell death by ferroptosis or apoptosis.
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Table 2. Main compounds to target the glutathione peroxidases under evaluation and their associated
pathways.

Compound Target Mechanism Cell Death Reference

Erastin SLC7A5 (Xc− system) GSH depletion by blocking
cysteine entrance Ferroptosis [76]

RSL-3 GPx4 (TXNRD1) Inhibition through active
site binding Ferroptosis [60]

ML-162 GPx4 (TXNRD1) Inhibition through active
site binding Ferroptosis [64]

Rapamycin GPx4 GPx4 protein degradation Ferroptosis [63]

CCDO-Me Akt, Bcl-2, GPx4,
mTOR and NF-κB Anti-apoptotic protein inhibition Apoptosis [77]

Thiosteptron (TST) STAT3 Binding to STAT3 and thus
decreasing GPx4 Ferroptosis [67]

USF2 SLC7A11 and GPx4 Increasing Fe2+ and thus lipid
peroxidation in the cell

Ferroptosis [78]

Manganese ferrite
(nanoparticles) + gemcitabine GSH ROS production and GSH depletion Ferroptosis [68]

FR054 + erastin PGM3 Glutamine metabolism disruption
and GSH depletion Ferroptosis [69]

Other drugs like ophiopogonin-B induce ferroptosis in gastric cancer cells by inhibiting
SLC7A11 and GPx4 expression [79]. Sanguinarine and Bufotalin promote GPx4 degrada-
tion, which enhances ferroptosis in non-small cell lung cancer [80,81]. Solasonine enables
the induction of ferroptosis in hepatocellular carcinoma by the inhibition of GPx4 and glu-
tathione synthetase [82]. Arsenic trioxide (ATO) has shown efficacy in inducing ferroptosis
by blocking GPx4 activity in neuroblastoma [83].

GPx4’s role in the regulation of ferroptosis and oxidative damage makes it a compelling
target for cancer therapy, especially in PDAC. Despite challenges in drug development and
resistance, ongoing research and novel compound development offer promising avenues
for targeting GPx4 to improve patients’ outcomes. The human safety evaluation of GPx4-
targeted treatments warrants consideration for ongoing phase I clinical trials. This approach
is particularly relevant since the inhibition exerts a promising preclinical activity. In the
context of PDAC, it could present a valuable therapeutic opportunity for establishing
especially a third-line treatment following NALIRIFOX or Gemcitabine plus nab-paclitaxel,
where a standard of care is currently lacking to enhance response rates of conventional
chemotherapy regimens by overcoming chemoresistance. However, it is crucial to assess
the safety of combining GPx4 inhibition with chemotherapy in phase Ib/II clinical trials.

7. Glutathione Peroxidases Modulate the Immune Microenvironment in PDAC

PDAC is known for its unique TME, which features clusters of cancer cells and a dense
stroma that constitutes about 80% of the tumor mass [84]. This stroma evolves as the tumor
progresses, significantly impacting tumor growth, metastasis, immune evasion, and drug
resistance. The dense stroma acts basically as a physical barrier that hampers vascular-
ization and reduces drug penetration, impeding treatment to reach cells. For example,
gemcitabine is more effective in lesions with a minimal stroma but struggles to penetrate
those with high desmoplasia [85]. To improve drug delivery in PDAC, several strategies
focusing on the TME have been proposed, e.g., hypoxia-activated pro-drugs, inhibitors
of the Sonic Hedgehog pathway, or with hyaluronidase enzymes [86]. Hyaluronidase
enzymes and fibrosis inhibitors like Ibrutinib have been developed to reduce the stromal
barrier [86] (Figure 2. Red boxes).
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PDAC is commonly called a “cold” tumor due to its low T-cell infiltration and immuno-
suppressive environment, driven by the presence of cancer-associated fibroblasts (CAFs)
and hypoxia [87]. Immune evasion mechanisms in PDAC include limited tumor-associated
antigens, downregulation of the major histocompatibility complex (MHC) molecules, and
Fas/Fas ligand abnormalities, which lead to the apoptosis of T-effector cells and recruit-
ment of immunosuppressive cells like TAMs, MDSCs, and Tregs [7]. Immunotherapies
based on PD-1/PD-L1 or CTLA-4 blockade, such as Durvalumab/Nivolumab plus Tremeli-
mumab/Ipilimumab, have limited effectiveness as single agents in PDAC (Figure 2. Blue
boxes) [88]. However, their combination with gemcitabine has shown promising results, par-
ticularly in TGF-β-deficient patients. TGF-β plays a key role in the PDAC stroma promoting
fibrosis and immune suppression, which can hinder immune cell infiltration and boost the
efficacy of immunotherapy. In patients with TGF-β deficiency, the reduced stromal fibrosis
and less immunosuppressive microenvironment allow for better immune cell infiltration
and a more robust anti-tumor immune response, which enhance the effectiveness of im-
mune checkpoint inhibitors combined with gemcitabine [86]. Furthermore, to promote
anti-tumor immunity in PDAC, several strategies have been developed based on the de-
pletion of Tregs, which are key contributors to immune suppression in the TME. Certain
therapies such as doxorubicin, oxaliplatin, and radiation are used to induce immunogenic
cell death, a process that releases damage-associated molecular patterns (DAMPs) and
activates the immune system. These treatments can help to convert cold tumors into hot
tumors, promoting the infiltration of immune cells into the tumor and boosting the immune
response. This approach aims to overcome the immunosuppressive environment of PDAC,
making the tumor more susceptible to immune therapies and improving their overall effi-
cacy [89]. In a phase I/II trial, 17 patients with PDAC received treatment with gemcitabine,
nab-paclitaxel, and pembrolizumab. The maximum tolerated dose was determined to be
pembrolizumab 2 mg/kg every 21 days, gemcitabine 1000 mg/m2, and nab-paclitaxel
125 mg/m2 on days 1 and 8 every 21 days. Among 11 evaluable patients, the disease con-
trol rate was 100%, median PFS was 9.1 months, and overall survival was 15 months [90].
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Lynch-syndrome-associated PDAC, characterized by microsatellite instability (MSI), may
benefit from PD-1 blockade, as these tumors show better responses to immunotherapy [91].
The combination of gemcitabine with PD-1/PD-L1 antibodies has demonstrated significant
anti-tumor effects in mouse models [92].

An exciting area of research in cancer therapy is focused on GPx4, particularly given
its central role in ferroptosis (Figure 2. Yellow boxes). From the immune system point of
view, selenium supplementation is known to enhance the activity of GPx4 and has shown
an increased immune infiltration, particularly of T-helper cells, which are essential for the
initiation and maintenance of effective immune responses [93]. This suggests that selenium
could help to prime the immune system in PDAC by improving immune cell infiltration
and enhancing anti-tumor immunity.

On the other hand, the combination of GPx4 inhibitors with PD-1 blockers has shown
promising results in preclinical models, such as those in triple-negative breast cancer, where
it increased CD8+ T cell infiltration and increased response rates [94]. The use of GPx4
inhibitors, such as RSL3, which induces ferroptosis, can disrupt the tumor’s redox balance
and trigger cell death that enhances the release of tumor antigens (Figure 2. Left yellow
box). When combined with gemcitabine-based chemotherapy and PD-1 blockade, this ap-
proach has been demonstrated to sensitize PDAC tumors to immune checkpoint inhibition
in vivo [95]. The induction of ferroptosis helps to break immune tolerance, increase immune
cell activity, and improve tumor visibility to the immune system, ultimately raising the
therapeutic response to PD-1 blockade.

These findings suggest that GPx4 inhibition through strategies like selenium supple-
mentation or the use of RSL3, in combination with gemcitabine and immune checkpoint
inhibitors, offers a promising avenue for improving immune responses and overcoming
the challenges of immune suppression and a fibrotic stroma in PDAC. These results jus-
tify further clinical investigations to explore GPx4 degradation as a potential therapeutic
strategy to improve the efficacy of current PDAC treatments [95].

In summary, the modulation of the immune microenvironment in PDAC through
a range of innovative strategies holds significant promise to improve the efficacy of im-
munotherapy in this highly challenging cancer. Key approaches include targeting the dense
stromal barrier, which limits drug delivery and immune cell infiltration, as well as employ-
ing immune checkpoint blockades to reinvigorate exhausted immune cells. Additionally,
the depletion of immunosuppressive cells, such as Tregs, can help overcome the tumor’s
immune evasion mechanisms. The induction of ferroptosis through GPx4 inhibition has
emerged as a novel strategy to promote tumor cell death and enhance immune system
activation. Together, these strategies aim to reprogram the TME, enhance immune cell
infiltration, and sensitize tumors to checkpoint inhibitors, potentially overcoming the bar-
riers that have hindered the effective treatment of PDAC. Further clinical investigation
is needed in the field of GPx4 inhibition, alone or in combination with gemcitabine, and
immune checkpoint blockade. This is essential to unlock new therapeutic avenues for
patients with PDAC.

8. Conclusions and Future Perspectives

The role of GPx proteins, particularly GPx4, in PDAC therapy has garnered significant
attention due to their involvement in redox homeostasis and ferroptosis. GPx4 is critical
to protect cells from lipid peroxidation; therefore, the inhibition of GPx4 leads to the
accumulation of toxic lipid peroxides that trigger ferroptosis. Studies have shown that
certain cancer cells, especially those resistant to traditional apoptosis-inducing therapies,
are highly dependent on GPx4 for survival.

The future treatment perspectives of GPx proteins are rather hopeful and multifaceted.
As GPx4 is crucial for preventing lipid peroxidation and ferroptosis, its inhibitors (such as
RSL3 and ML162) are being explored as potential therapeutic agents. Future treatments
may combine GPx4 inhibitors with existing cancer therapies, such as immune checkpoint
inhibitors or tyrosine kinase inhibitors. This approach could enhance the overall response
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rate of treatments by the exploitation of the increased oxidative stress within the TME.
Synthetic lethality, where two non-lethal gene defects result in cell death, is also a propitious
avenue. For example, the combination of GPx4 inhibition with drugs targeting mutations
in TP53 or RAS genes could selectively kill cancer cells without affecting normal cells.
This approach is particularly relevant for cancers with known genetic mutations that
already predispose them to oxidative stress. With the implementation of genetic screenings,
treatments could be tailored to identify PDAC patients with specific mutations that make
them more susceptible to GPx4 inhibition, which may improve outcomes.

Since many cancers develop resistance to standard treatments, GPx4 inhibition could
potentially reverse resistance in cancers that rely on redox balance for survival, making
resistant cancers more susceptible to treatment. In this concern, future research will likely
focus on developing more specific and potent inhibitors of GPx proteins. These new drugs
would need to selectively target cancer cells to minimize damage to healthy tissues, which
would enhance their therapeutic index. Innovations in drug delivery, including the use of
nanotechnology, may improve the delivery and efficacy of GPx inhibitors, ensuring that
they reach tumor cells more effectively and minimizing systemic toxicity. The inhibition of
GPx proteins could make cancer cells more susceptible to therapies that increase oxidative
stress, such as radiation therapy or certain chemotherapies, thus overcoming resistance.
Although preclinical studies have shown satisfactory results, GPx4 inhibition in routine
clinical practice may require careful consideration to ensure the selective eradication of
cancer cells while limiting toxicity to normal tissues. Early-phase clinical trials are expected
to explore the safety and efficacy of GPx4 inhibitors, particularly in combination with
existing cancer therapies, focusing on treatment-refractory tumors. Therefore, translation
of the preclinical efficacy of GPx inhibitors, either alone or in combination with other
therapies, to clinical practice will be key only by keeping acceptable toxicity rates.

In summary, the future perspectives for GPx proteins in PDAC treatment revolve
around the selective inhibition of GPx4 to induce ferroptosis, the potential of synthetic
lethality strategies, and the development of novel inhibitors that can be used in combina-
tion with existing therapies to overcome drug resistance and improve patient outcomes.
These approaches are still in their early stages but hold significant promise to boost the
effectiveness of the PDAC standard treatment.
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