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Abstract: A growing body of biomedical literature suggests a bidirectional regulatory relationship
between cardiac calcium (Ca2+)-regulating proteins and reactive oxygen species (ROS) that is integral
to the pathogenesis of various cardiac disorders via oxidative stress (OS) signaling. To address the
challenge of finding hidden connections within the growing volume of biomedical research, we de-
veloped a data science pipeline for efficient data extraction, transformation, and loading. Employing
the CaseOLAP (Context-Aware Semantic Analytic Processing) algorithm, our pipeline quantifies
interactions between 128 human cardiomyocyte Ca2+-regulating proteins and eight cardiovascu-
lar disease (CVD) categories. Our machine-learning analysis of CaseOLAP scores reveals that the
molecular interfaces of Ca2+-regulating proteins uniquely associate with cardiac arrhythmias and
diseases of the cardiac conduction system, distinguishing them from other CVDs. Additionally, a
knowledge graph analysis identified 59 of the 128 Ca2+-regulating proteins as involved in OS-related
cardiac diseases, with cardiomyopathy emerging as the predominant category. By leveraging a link
prediction algorithm, our research illuminates the interactions between Ca2+-regulating proteins,
OS, and CVDs. The insights gained from our study provide a deeper understanding of the molec-
ular interplay between cardiac ROS and Ca2+-regulating proteins in the context of CVDs. Such an
understanding is essential for the innovation and development of targeted therapeutic strategies.

Keywords: Ca2+-regulating proteins; oxidative stress; reactive oxygen species; cardiovascular diseases;
text mining; knowledge graph

1. Introduction

Calcium (Ca2+) plays a pivotal role in various biological systems, serving as an es-
sential messenger in numerous cellular processes [1–5]. One such critical system is the
cardiovascular system, where a network of Ca2+-regulating proteins is involved for cardiac
functionality. Proteins such as L-type calcium channel (LTCC); ryanodine receptor 2 (RyR2);
and troponin C—a myofilament protein—engage in a tightly coordinated series of steps
that govern Ca2+ dynamics [6–11]. These dynamics are crucial for the excitation–contraction
cycle (ECC), the process that allows the heart to contract and relax efficiently. In addition to
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their role in the ECC, Ca2+-regulating proteins also have vital roles in cellular energetics. Mi-
tochondrial Ca2+-regulating proteins—including the mitochondrial Ca2+ uniporter (MCU),
mitochondrial sodium/calcium exchanger protein (NCLX), and mitochondrial calcium
uptake 1 and 2 (MCU1 and MCU2)—help maintain Ca2+ homeostasis in the mitochondria.
This is essential not only for normal Adenosine Triphosphate (ATP) generation but also
for the regulation of reactive oxygen species (ROS), highlighting the interconnectedness of
Ca2+-regulatory protein networks in various biomolecular processes [12–14].

The intricate relationship between Ca2+ and ROS is worth noting. These two agents
mutually regulate one another in cellular dynamics. Elevated Ca2+ concentrations within a
cell can lead to an overproduction of ROS, inducing oxidative stress. This stress is essentially
a disruptive imbalance between oxidants, such as ROS, and reductants like antioxidants.
This abnormal surge in ROS levels is notorious for causing damage to proteins, lipids, and
DNA—a chain of events that ultimately causes cell death [15–21]. Conversely, an abundance
of ROS, and by extension OS, can have profound impacts on cellular Ca2+ dynamics. This is
evident as OS can remodel Ca2+-regulating ion channels, disrupt associated pathways, and
alter the functions of regulatory proteins [22–24]. Such perturbations in Ca2+ dynamics are
linked to CVDs like arrhythmia, heart failure, and contractile dysfunction [22,25–27]. Given
the significant overlap in the literature about Ca2+-OS dynamics and CVDs, it becomes
vital to systematically explore these interconnections.

To address this need, we utilized advanced text-mining pipelines, specifically em-
ploying the CaseOLAP pipeline [28,29]. This tool allowed us to categorize publications
into eight distinct CVD categories and score the relevance of 128 cardiac Ca2+-regulating
proteins within these categories. The derived scores were based on two critical components:
“popularity”, measuring the frequency of a given protein in one category versus others in
the same category; and “distinctiveness”, assessing the frequency of the target protein in
one category compared to alternate categories. Impressively, these scores remain robust
even among class imbalances, like varied document counts in CVD categories. A higher
score signifies a stronger protein–disease association.

Furthering our analytical endeavors, we formulated a knowledge graph (KG) [30,31].
This KG integrated the scored protein–disease associations with related datasets, including
protein information; CVD and OS MeSH descriptors; reference articles; and molecular
pathways. The KG analysis provided a comprehensive view, highlighting associations
between cardiac Ca2+-regulating proteins, CVDs, and OS signaling networks. By revealing
these intricate relationships, we aspire that our comprehensive approach will pave the way
for future research, potentially guiding the discovery of novel drug targets and therapeutic
avenues for CVDs.

2. Materials and Methods

This study is designed to elucidate the shared molecular mechanisms between Ca2+-
regulating proteins and oxidative stress molecules in relation to eight CVD categories,
as outlined in Table 1. To achieve this objective, we have established a comprehensive
platform that integrates text mining with knowledge graph (KG) analysis.

2.1. Data Collection
2.1.1. Document Collection

Initially, we curated a comprehensive corpus of biomedical literature until October
2023, focusing on eight CVD categories and their association with oxidative stress. A
total of 1,197,530 unique documents were identified that explored CVDs, with 102,807 of
these also addressing oxidative stress (refer to Table 1). The selection of documents was
guided by relevant CVD and OS Medical Subject Heading (MeSH) descriptors, which are
systematically arranged in a hierarchical framework [32]. This structure facilitated the
retrieval of publications across various levels of specificity concerning the CVD categories
and oxidative stress.
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Table 1. Document statistics per CVD categories.

CVD Category Abbreviation Major Root Nodes (MeSH) No. of CVD Publications Collected No. of OS-Related
Publications Within CVD

Cardiomyopathies and heart failure CM C14.280.238, C14.280.434 247,436 34,063

Arrhythmias, cardiac ARR C14.280.067 239,060 15,960

Heart defects, congenital CHD C14.280.400 154,992 7183

Heart valve diseases VD C14.280.484 137,197 4127

Myocardial ischemia IHD C14.280.647 473,233 50,435

Cardiac conduction system disease CCS C14.280.123 100,841 6613

Ventricular outflow obstruction VOO C14.280.955 42,942 1003

Other heart diseases (cardiomegaly,
endocarditis, heart arrest, heart
rupture, ventricular dysfunction,
heart neoplasms, and pericarditis)

OHD

C14.280.195, C14.280.282,
C14.280.383, C14.280.470,
C14.280.945, C14.280.459,
C14.280.720

215,416 17,295

Table 1 presents document collection statistics in each CVD category and the OS-CVD interface. We collected a
total of 1,197,530 unique documents, all studying at least one CVD. Each CVD category is broken down by name,
abbreviation, associated MeSH tree numbers, number of documents studying the CVD category, and number of
documents also studying OS.

2.1.2. CVD-MeSH Collection

In this study, we employed eight predefined categories of CVDs, as outlined in
Table 1 [33,34]. We compiled associated MeSHs for these CVD categories, including
both root nodes and their descendant entries, from the MeSH Library of the National
Library of Medicine (NLM) database on 12 June 2023. This comprehensive retrieval re-
sulted in a total of 176 unique CVD-MeSH descriptors. These descriptors are detailed in
Supplementary Materials Table S1. The tree structure visualization is available through
this link (https://caseolap.github.io/IonChannel/plots/CVD_MeSH_tree.html).

2.1.3. Oxidative Stress (OS)-MeSH Collection

Oxidative stress (OS) is an imbalance between oxidants, such as ROS, and reductants,
such as antioxidants, leading to an abnormal increase in ROS levels. In this study, we
manually collected OS-relevant molecules from the literature and mapped them to their
corresponding MeSH descriptors using the NLM MeSH Library. Mapping of OS-relevant
molecules and molecular events into specific, text-mining-applicable MeSH descriptors
enhances the precision of text-mining efforts by structuring OS-related data in a way that
captures meaningful molecular interactions.

We utilized a total of 75 OS-MeSH descriptors, which are grouped into three primary
phases: Initiation of OS (IOS), Modulation of OS (MOS), and Outcome of OS (OOS). This
structured categorization represents distinct phases in the OS pathway, allowing for better
alignment with specific cardiovascular disease (CVD) associations. Each category is briefly
described in the following sections. A detailed classification of OS-MeSH descriptors
is available in Supplementary Materials Table S2 and also presented as a tree structure
visualization. The tree structure visualization is available through this link (https://
caseolap.github.io/IonChannel/plots/oxidative-stress.html).

Initiation of OS (IOS)

IOS includes all OS events involved in producing free radical and non-radical species.
This phase incorporates three subcategories of chemically reactive species: ROS, which
contain oxygen; reactive nitrogen species (RNS), which are derived from nitric oxide; and
reactive aldehydes (RA), which are organic compounds with a carbonyl functional group.
IOS includes 12 MeSH descriptors that represent a group of small molecules (e.g., radicals).

https://caseolap.github.io/IonChannel/plots/CVD_MeSH_tree.html
https://caseolap.github.io/IonChannel/plots/oxidative-stress.html
https://caseolap.github.io/IonChannel/plots/oxidative-stress.html
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Modulation of OS (MOS)

MOS includes events involving the OS process and progression. This phase incor-
porates four subcategories: redox metabolites, which result from oxidation/reduction
reactions removing oxidative radicals; antioxidants, which contain compounds that in-
hibit or eliminate oxidation and free radical release; antioxidant enzymes, which contain
enzymes that catalyze free radical decomposition; and redox regulating proteins, which
contain proteins involved in redox signaling. MOS includes 59 MeSH descriptors that rep-
resent a group of carefully curated metabolic molecules, such as redox-regulating cofactors
(e.g., glutathione and NAD+/NADH), antioxidant enzymes (e.g., glutathione S-transferases
(GSTs)), and other cellularly coexisting antioxidants (e.g., vitamins A, C, and E).

Outcome of OS (OOS)

OOS includes OS events involved in the downstream consequences and products
of OS. This phase incorporates four subcategories: protein oxidation, which contains
protein products following reactions with ROS; lipid peroxidation products, which contain
biochemical products of lipid oxidation; oxidative DNA damage, which contains oxidative
lesions in DNA; and nitrative DNA damage, which contains nitrative lesions in DNA. OOS
includes 6 MeSH descriptors that represent the most well-studied oxidative stress products
(e.g., reactive aldehyde 4-HNE and 4-HNE adducts on proteins) and OS-related events (e.g.,
protein carbonylation and hydroxylation).

2.1.4. Assembly of Cardiac Ca2+-Regulating Protein List

Initially, we undertook an advanced search on UniProt using targeted keywords like
“Ca2+ ion channels”, “heart”, and “human”. This search yielded 105 reviewed proteins
linked to cardiac Ca2+ dynamics. Further, manual curation was conducted by our team to
focus exclusively on proteins that hold functional significance and play a direct, pivotal role
in ensuring Ca2+ homeostasis in the cardiac cell based on the GO terms, cardiac proteome
data, and relevant literature search [35]. After rigorous curation, such as excluding certain
tissue-specific proteins, we compiled 128 Ca2+-regulating proteins, each associated with a
distinct UniProt ID. The comprehensive classification of these proteins is presented in a
tabulated format in Supplementary Materials Table S3, detailing protein names, alongside
their UniProt IDs. The tree structure visualization is available through this link (https:
//caseolap.github.io/IonChannel/plots/Ion-channels.html).

2.1.5. Pathway Collection

All pathways associated with the 128 Ca2+-regulating proteins were extracted from
Reactome knowledgebase.

2.2. Workflow Design

We implemented a text-mining and knowledge-graph platform to better understand
the underlying molecular mechanisms of Ca2+-regulating proteins involved in 8 CVDs and
OS. We executed the CaseOLAP score to reveal the association between Ca2+-regulating
proteins and 8 CVD categories. We analyzed those protein–disease association scores with
unsupervised machine-learning techniques (PCA and hierarchical clustering) [36,37] to
gain further insight into the shared roles of proteins. We then constructed a KG graph
by incorporating scored proteins, their pathways, CVD and OS MeSH descriptors, and
PubMed documents related to CVDs and OS. The workflow (Figure 1) illustrates this
process. We further explored the knowledge graph using smart queries and a link prediction
algorithm to reveal and propose hidden relationships between the Ca2+-regulating proteins,
OS, and CVDs.

https://caseolap.github.io/IonChannel/plots/Ion-channels.html
https://caseolap.github.io/IonChannel/plots/Ion-channels.html


Antioxidants 2024, 13, 1420 5 of 17

Antioxidants 2024, 13, x FOR PEER REVIEW 5 of 18 
 

gain further insight into the shared roles of proteins. We then constructed a KG graph by 
incorporating scored proteins, their pathways, CVD and OS MeSH descriptors, and 
PubMed documents related to CVDs and OS. The workflow (Figure 1) illustrates this 
process. We further explored the knowledge graph using smart queries and a link 
prediction algorithm to reveal and propose hidden relationships between the Ca2+-
regulating proteins, OS, and CVDs. 

 
Figure 1. Overview of the workflow. This workflow illustrates the process of extracting, 
transforming, loading, and analyzing the relevant data sources. The leftmost column represents the 
data sources: UniProt for the Ca2+-regulating proteins, MeSH for oxidative stress (OS) concepts and 
8 categories of cardiovascular diseases (CVDs), PubMed (https://pubmed.ncbi.nlm.nih.gov/) for 
documents, and Reactome (https://reactome.org/) for relevant pathways. Two text cubes were 
assembled for collections of relevant documents studying OS and CVDs respectively. CaseOLAP 
scores were computed to quantify the relevance with respect to the CVD categories for every 
relevant protein. This information was integrated via the construction of a knowledge graph, along 
with documents, MeSH descriptors, and pathways. 

2.3. Knowledge Graph Construction 
We constructed a heterogeneous KG from our protein–disease association scores and 

other biomedical data sources (UniProt, PubMed, MeSH, and Reactome). Our KG 
included four node types (protein, document, MeSH, and pathway) and three edge types 
(document–assigns–MeSH, document–mentions–protein, and pathway–contains–
protein). Figure 2 shows the KG schema, and Tables 2 and 3 list node and edge statistics, 
respectively. 
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Figure 1. Overview of the workflow. This workflow illustrates the process of extracting, transforming,
loading, and analyzing the relevant data sources. The leftmost column represents the data sources:
UniProt for the Ca2+-regulating proteins, MeSH for oxidative stress (OS) concepts and 8 categories
of cardiovascular diseases (CVDs), PubMed (https://pubmed.ncbi.nlm.nih.gov/) for documents,
and Reactome (https://reactome.org/) for relevant pathways. Two text cubes were assembled for
collections of relevant documents studying OS and CVDs respectively. CaseOLAP scores were
computed to quantify the relevance with respect to the CVD categories for every relevant protein.
This information was integrated via the construction of a knowledge graph, along with documents,
MeSH descriptors, and pathways.

2.3. Knowledge Graph Construction

We constructed a heterogeneous KG from our protein–disease association scores
and other biomedical data sources (UniProt, PubMed, MeSH, and Reactome). Our KG
included four node types (protein, document, MeSH, and pathway) and three edge types
(document–assigns–MeSH, document–mentions–protein, and pathway–contains–protein).
Figure 2 shows the KG schema, and Tables 2 and 3 list node and edge statistics, respectively.

Table 2. Node statistics.

Nodes Total Unique Nodes

Document nodes 1,197,530

MeSH nodes 251 (75 are OS, 176 are CVD)

Protein nodes 128

Pathway nodes 496
The total number of nodes in our knowledge graph is provided in this table.

Table 3. Edge statistics.

Edges Edge Name Count

Document to protein Mentions 13,211

Document to MeSH Assigns 1,698,233

Protein to pathway Contains 1542
The total number of edges in our knowledge graph is provided in this table.

https://pubmed.ncbi.nlm.nih.gov/
https://reactome.org/
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Figure 2. Knowledge-graph data schema. This data schema represents the knowledge graph (KG)’s
structure, its node, and edge types. There are 4 nodes (MeSH, document, protein, and pathway), as well
as 3 edges (document–assigns–MeSH, document–mentions–protein, and pathway–contains–protein).

2.4. Software and Tools Utilized for Data Management and Analysis

We employed two widely recognized open-source software tools to manage and
analyze our data. The first, Elasticsearch, version 7.14.0, is a powerful indexing, search,
and analytics engine renowned for its scalability and speed. It is developed by Elastic
and accessible at https://www.elastic.co/. The headquarters of Elastic is located in San
Francisco, CA 94108, USA. The second tool used is Neo4j, version 5.18.1, a leading graph
database management system known for its efficient management of highly connected
data. Further details about Neo4j can be found on its website at https://neo4j.com/, and
its offices are based at 400 Concar Dr, San Mateo, CA 94402, USA. These tools were integral
to the data handling and analysis phases of our research, providing robust and reliable
platforms for our computational needs.

3. Results

3.1. Interaction Among Ca2+-Regulating Proteins and both CVD and OS Categories

We systematically examined the interaction among Ca2+-regulating proteins and
both CVD and OS categories from a quantitative perspective, as depicted in Figure 3A,B.
Specifically, Figure 3A elucidates the number of shared documents across distinct CVD
and OS categories, while Figure 3B delineates the overlap of proteins across CVD and
OS categories.
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documents associated with each OS phase and CVD category; the chord thickness is defined by the
proportion of documents shared between each OS-CVD pair. An interactive version of this plot is
also available online (https://caseolap.github.io/IonChannel/rcodes/docs-intersection.html). The
bottom panel shows the detailed document counts for the Sankey diagram above. (B) The top panel is
a Sankey diagram representing the molecular-level interaction between OS and CVD categories that
are specifically relevant to Ca2+-regulating proteins. The column height represents the total number
of proteins related to each OS phase and CVD category, and the thickness of the chord represents
the number of proteins shared among each OS phase and CVD category. The interactive version is
available online (https://caseolap.github.io/IonChannel/rcodes/protein-intersection.html). The
bottom panel provides the numbers that went into the Sankey diagram above.

3.1.1. Documents in OS-CVD Categories

We collected 102,807 unique documents studying CVDs and OS. A pronounced volume
of publications was observed at the nexus of modulation of oxidative stress (MOS) with
both ischemic heart disease (IHD) and cardiomyopathy (CM). Although the distribution of
publications in pairwise OS-CVD categories was disproportionate, each OS-CVD category
contained at least some publications. This encouraged us to explore the protein-level
interaction (e.g., proteins behind the OS-CVD associations) by identifying the proteins in
each OS-CVD category.

3.1.2. Proteins in OS-CVD Categories

Inspired by the interaction seen at the document level (see Figure 3A), we further
quantified protein-level interaction among the CVD and OS categories (see Figure 3B).
The strength of the interaction is calculated based on the shared proteins with a non-zero
CaseOLAP score. Although the documents were disproportionately represented in the
OS-CVD categories, the proteins were more uniformly distributed. This suggests that,
despite the disproportionate studies in the OS-CVD categories (as represented by the
disproportionate number of publications), we can obtain useful biological information:
Ca2+-regulating proteins serve biological functions in each stage of OS in each major
CVD category.

3.2. CaseOLAP Score Analysis

In our analysis of the corpus, a notable 78 out of the 128 identified Ca2+-regulating pro-
teins acquired a CaseOLAP score in relation to at least one CVD category. This indicates an
association of these proteins with one or more of the eight delineated CVDs. A comprehen-
sive representation of all scoring proteins across CVD categories is illustrated in Figure 4A.
The association patterns of proteins within individual CVDs seem heterogeneous; these
proteins exhibit varied relationships across the eight CVDs. Notably, cardiomyopathy
(CM) is linked with 67 of the 78 scoring proteins, underscoring its significant correlation
with Ca2+-regulating protein functionality. Similarly, ischemic heart disease (IHD) and
arrhythmias (ARR) have associations with 55 and 52 proteins, respectively. By utiliz-
ing CaseOLAP scores, we further implemented dimensionality reduction and clustering
methods to discern the scoring patterns of these proteins.

3.2.1. Principal Component Analysis (PCA)

PCA is a machine-learning technique for dimensionality reduction [37]. We utilized
PCA to transform the eight-dimensional protein score vectors into a more understandable
two-dimensional space, as depicted in Figure 4B. Within the PCA plot, each dot symbolizes
a distinct protein, whereas each arrowhead vector provides a 2D projection corresponding
to a specific CVD category. A notable observation from this analysis is the distinct posi-
tioning of two CVDs, ARR and CCS, which are differentiated from the other six categories
based on their respective CaseOLAP scores. Figure 4C showcases the factor loadings of
the principal components. PC1 comprises a relatively even combination of all CVDs, while
PC2 is dominated by CCS and ARR.

https://caseolap.github.io/IonChannel/rcodes/docs-intersection.html
https://caseolap.github.io/IonChannel/rcodes/protein-intersection.html


Antioxidants 2024, 13, 1420 8 of 17

Antioxidants 2024, 13, x FOR PEER REVIEW 8 of 18 
 

Ca2+-regulating proteins serve biological functions in each stage of OS in each major CVD 
category. 

3.2. CaseOLAP Score Analysis 
In our analysis of the corpus, a notable 78 out of the 128 identified Ca2+-regulating 

proteins acquired a CaseOLAP score in relation to at least one CVD category. This 
indicates an association of these proteins with one or more of the eight delineated CVDs. 
A comprehensive representation of all scoring proteins across CVD categories is 
illustrated in Figure 4A. The association patterns of proteins within individual CVDs seem 
heterogeneous; these proteins exhibit varied relationships across the eight CVDs. Notably, 
cardiomyopathy (CM) is linked with 67 of the 78 scoring proteins, underscoring its 
significant correlation with Ca2+-regulating protein functionality. Similarly, ischemic heart 
disease (IHD) and arrhythmias (ARR) have associations with 55 and 52 proteins, 
respectively. By utilizing CaseOLAP scores, we further implemented dimensionality 
reduction and clustering methods to discern the scoring patterns of these proteins. 

 
Figure 4. Analysis of top-scoring proteins and PCA results: (A) demonstrates the top-scoring 
proteins across all cardiovascular disease (CVD) categories, visualized as a stacked bar chart; and 
(B) illustrates the results of the protein�s principal component analysis (PCA) within the 8-
dimensional vector space corresponding to the CVD categories. This is subsequently projected onto 
a 2-dimensional plane defined by the primary principal components (PC1 and PC2). Individual dots 
signify distinct proteins, while the arrow-headed vectors represent the eight CVD categories in 
relation to PC1 and PC2. This illustration helps in comparing the behavior of the CVD categories 
based on the scoring proteins, providing insights into potential groupings of proteins operating via 
analogous molecular mechanisms. Notably, cardiac conduction system disease (CCS) and 
arrhythmias, cardiac (ARR), emerge as distinct from the remaining CVDs. (C) indicates the 

Figure 4. Analysis of top-scoring proteins and PCA results: (A) demonstrates the top-scoring proteins
across all cardiovascular disease (CVD) categories, visualized as a stacked bar chart; and (B) illustrates
the results of the protein’s principal component analysis (PCA) within the 8-dimensional vector
space corresponding to the CVD categories. This is subsequently projected onto a 2-dimensional
plane defined by the primary principal components (PC1 and PC2). Individual dots signify distinct
proteins, while the arrow-headed vectors represent the eight CVD categories in relation to PC1 and
PC2. This illustration helps in comparing the behavior of the CVD categories based on the scoring
proteins, providing insights into potential groupings of proteins operating via analogous molecular
mechanisms. Notably, cardiac conduction system disease (CCS) and arrhythmias, cardiac (ARR),
emerge as distinct from the remaining CVDs. (C) indicates the contribution of each CVD within the
PCA dimensions. Considering the first two dimensions (i.e., PC1 and PC2), the first dimension is the
positive superposition of all diseases, and ARR and CCS dominate the second dimension. The color
bar in (A–C) represents different CVD categories.

3.2.2. Clustering Behavior of Ca2+-Regulating Proteins

Using an Euclidean distance metric, we applied hierarchical clustering [36] to the
proteins under study based on their eight-dimensional CaseOLAP scores across the eight
CVD categories. This clustering technique groups proteins with similar scores, reflecting
their potential biomedical relevance within specific CVDs. Our analysis recognized distinct
protein clusters corresponding to specific CVDs based on their CaseOLAP scores, as shown
in Figure 5. For instance, proteins enclosed within the red boundary predominantly
influence the ARR and CCS categories in contrast to other CVDs. Similarly, a cluster of
proteins enclosed within the yellow square shows a pronounced association with CM, IHD,
and CCS. These insights guided us for the subsequent knowledge-graph analyses.
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Figure 5. Clustering behaviors of CVD proteins. The cluster image demonstrates the hierarchical
clustering of protein scores into a two-dimensional cluster plot. The cluster is formed based on the
Euclidean distance metric in 8-dimensional protein vector space. The distance scores obtained are
distributed in a cluster plot ranging from −0.8 to 1.0, as shown in the color legend. A darker intensity
indicates closely clustered proteins. The results demonstrated two significant clusters. The cluster
enclosed with a red square represents a group of proteins associated with arrhythmias, cardiac (ARR),
and cardiac conduction system disease (CCS). The cluster enclosed with a yellow square represents a
group of proteins related to cardiomyopathies and heart failure (CM), myocardial ischemia (IHD),
and other heart diseases (OHDs). The bar plot on the right is the visualization of the CaseOLAP
scores of proteins rearranged based on the clustering.

3.3. KG Analyses

We analyzed the KG using cypher queries (cypher query information can also be
found on the Neo4j webpage) and a link prediction algorithm.

3.3.1. KG Analysis: Queries

Implementing queries, we searched for the Ca2+-regulating proteins in the document
corpus mentioned, together with OS molecules. Our findings reveal that 59 out of the
128 examined Ca2+-regulating proteins demonstrate associations with at least one oxidative
stress molecule and a CVD. Notably, these 59 proteins display a diverse range of CaseOLAP
scores across the different categories of cardiovascular diseases. Of particular interest,
55 of these proteins are involved in cardiomyopathy, the most prevalent disease category
linked to calcium regulation and oxidative stress interplay. Ischemic heart disease follows
closely, with 50 proteins demonstrating associations, underscoring it as the second most
prevalent condition in this context. We have provided a comprehensive breakdown of the
interconnections between Ca2+-regulating proteins and oxidative stress molecules across
each cardiovascular disease category in Supplementary Table S4.

To further dissect the molecular mechanism of these associations, we delved into
our knowledge graph, employing cypher queries to elucidate shared oxidative stress
molecules and pathways that cluster within the ARR and CCS disease categories. The
following subsections present the most relevant OS molecules and pathways corresponding
to those proteins.
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Significant OS Molecules in ARR and CCS Cluster

In our analysis, we have identified a pivotal interplay between specific OS molecules
and Ca2+-regulating proteins within the cluster of ARR and CCS diseases. Utilizing cypher
queries within our knowledge graph, we systematically isolated proteins that co-occur
with OS molecules within the same literature sources. This allowed us to calculate an
average CaseOLAP score for these OS molecules across each CVD category, as defined by
Equation (1):

OS molecule score = mean (protein’s CaseOLAP score in each CVD category) (1)

The findings are visually represented through an interactive sunburst chart (Figure 6A),
which displays all the significant OS molecules in an ARR-CCS cluster based on the
hierarchical relationship of OS molecules through the series of circles moving outwards
according to their hierarchy. The inner, middle, and outer circles represent the category,
subcategory, and individual molecules, respectively. The significant OS molecules are at the
outermost circumference, where the thickness of the arc represents their collective scores in
ARR and CCS categories. Circumference of concentric inner cords is calculated based on
the total score of their descendants.
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Figure 6. Significant OS molecules and pathways in an ARR-CCS cluster: This figure presents
sunburst visualizations illustrating significant oxidative stress (OS) molecules (A) and pathways
(B) linked to the proteins identified in the arrhythmias, cardiac (ARR), and cardiac conduction
system disease (CCS) clusters. Quantitative assessments of these OS molecules and pathways
were conducted by calculating their respective scores based on the CaseOLAP scores of proteins
within each cardiovascular disease (CVD) category. For OS molecules, scores were determined
using the formula inside the parenthesis (OS molecule score = mean (protein’s CaseOLAP score
in each CVD category)). For pathways, the score was computed utilizing the formula inside the
parenthesis (pathway score = mean (protein’s score in each CVD category ∗ (1 − p-value)). In
both (A,B), the arc thickness symbolizes the cumulative score for each molecule and pathway
across the eight CVD categories. The outermost ring of the sunburst represents individual OS
molecules (A) and pathways (B), with the arc width reflecting the score magnitude. The successive
inner rings are organized hierarchically, with (A) categorizing candidate molecules and (B) sorting
pathways based on their classification. An interactive version of these visualizations is available at
https://caseolap.github.io/IonChannel/plots/os.html and https://caseolap.github.io/IonChannel/
plots/os-cvd-pathways.html. For a more detailed and enhanced examination, you may zoom in on
these interactive figures via the provided links.

https://caseolap.github.io/IonChannel/plots/os.html
https://caseolap.github.io/IonChannel/plots/os-cvd-pathways.html
https://caseolap.github.io/IonChannel/plots/os-cvd-pathways.html
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Our analysis shows that from a total of 75 OS molecules analyzed, 31 exhibit a signifi-
cant association with the proteins under study. Dissected by OS phase, 5 molecules belong
to the initiation phase, 23 to the modulation phase, and 3 to the outcome phase. All of those
OS molecules are provided in Supplementary Table S5.

Highlighted OS molecules in our study, such as hydroxyl radicals, superoxides, and
hydrogen peroxide, have been found in increased amounts in failing myocardium [38–40].
Experimental evidence has shown that an increased concentration of these ROS molecules
causes calcium overload in the cardiomyocytes by modulating the properties of Ca2+-
regulating channels, ultimately causing contractile dysfunction and arrhythmias [40,41].
For example, exposure to hydroxyl radicals causes Ca2+ overload in the cardiomyocytes by
increasing the open probability of cardiac ryanodine receptors, which control Ca2+ release
from the sarcoplasmic reticulum to the cytoplasm [42,43]. Increased calcium influx through
voltage-gated calcium channels is observed experimentally by brief exposure to hydrogen
peroxide in ventricular myocytes [44,45].

Conversely, the antioxidants highlighted by our results (e.g., glutathione, glutathione
peroxidase, superoxide dismutase, thioredoxins, vitamin A, and ascorbic acid) [46,47]
are essential for cardiovascular health [46]. Cells synthesize antioxidant compounds and
enzymes to maintain redox homeostasis and mitigate ROS-induced damage. For example,
superoxide dismutase utilizes superoxide to generate hydrogen peroxide, which catalase
further metabolizes to water and oxygen [48].

Significant Pathways in an ARR and CCS Cluster

To elucidate the molecular mechanisms of protein clusters within the ARR and CCS
categories, we collected associated molecular pathways using queries in KG. We scored rele-
vant molecular pathways by using Equation (2), which calculates the pathway score by inte-
grating both the protein associations and the significance levels (p-values) of the pathways.

Pathway score = mean (protein’s score in each CVD category ∗ (1 − p-value)) (2)

Initially, we collected all associated pathways tied to each protein. Since multiple
proteins are associated with a single pathway, we utilized reverse mapping and collected
all the proteins involved in the specific pathways. Next, we incorporated the p-value of the
pathway into the CaseOLAP score of associated proteins. We further took their means to
create the final score for a pathway.

All the significant pathways in an ARR and CCS cluster are visualized in the inter-
active sunburst visualization (Figure 6B) following the hierarchical relationship of the
pathways through the series of circles moving outwards according to their hierarchy. The
pathway hierarchy is based on the Reactome knowledgebase. The significant pathways are
distributed across the circles based on their hierarchy, where the thickness of the arc repre-
sents their collective scores in ARR and CCS, added to the total score of their descendants.
There is a total of 50 significant pathways, and they are also provided in table format in
Supplementary Table S6.

Some notable pathways highlighted by our exploration are gap junction trafficking
and regulation and their descendant pathways. The descendant pathways include gap
junction assembly, gap junction degradation, oligomerization of connexins into connexons,
transport of connexins along the secretory pathway, transport of connexons to the plasma
membrane, microtubule-dependent trafficking of connexons from Golgi to the plasma
membrane, and so on.

Gap junctions are clusters of intercellular channels connecting neighboring cells,
facilitating the direct exchange of ions and small molecules. They are composed of con-
nexins (six transmembrane protein units) that are transported to the plasma membrane
after oligomerizing into hexameric assemblies called connexons. The activity of these
intercellular channels is regulated, particularly by intramolecular modifications such as
phosphorylation, which appears to regulate connexin turnover, gap junction assembly, and
the opening and closure (gating) of gap junction channels. Excessive OS leads to reduced
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gap junction protein connexin (Cx43), a protein critical for normal cardiac conduction
function. Reduced connexin levels may slow conduction and facilitate the proarrhythmic
mechanism [49–51].

3.3.2. KG Analysis: Link Prediction Algorithm

We applied a link prediction algorithm to identify new biomedical knowledge from the
patterns in the data [52]. In our case, we used link prediction to propose undiscovered rela-
tionships between (i) Ca2+-regulating proteins and OS molecules and (ii) Ca2+-regulating
proteins and CVDs (Figure 7). It was implemented on our KG-graph data from Neo4j’s
Graph Data Science Library. The algorithm uses a graph’s topology to compute scores
based on the closeness of a pair of nodes. These scores are then used to predict missing
relationships. A higher score suggests a higher likelihood of an undiscovered node–node
relationship.
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Figure 7. Link prediction analysis implementing graph algorithm: The heatmap depicts the predictive
association scores derived from link prediction algorithms between oxidative stress (OS) molecules
and Ca2+-regulating proteins (A), as well as between Ca2+-regulating proteins and cardiovascular
diseases (CVDs) (B). The color intensity within the heatmap corresponds to the strength of the
predicted association, with darker shades indicating a higher likelihood of connection between entities.
Notably, proteins such as cardiac troponin I, nitric oxide synthase, matrix metalloproteinase-9, and
gap junction alpha-1 protein, which play a role in calcium regulation, are identified with a high degree
of probability as being associated with both OS molecules and CVD, underscoring their potential
relevance in the underlying molecular mechanisms.

Link Prediction Between Ca2+-Regulating Proteins and OS-MeSH Descriptors

The link prediction algorithm ranked possible protein–OS relationships, highlighting
significant proteins–OS pairs. The top predicted protein–OS pair was cardiac troponin I,
and nitric oxide. In fact, it predicts that troponin I links with all OS molecules and that nitric
oxide links with all proteins with a significant link prediction score (see Figure 7A). Both
are essential and responsible for the heart’s excitation–contraction mechanism. Cardiac
troponins are Ca2+-regulatory proteins accountable for the heart’s excitation–contraction
mechanism [53–55]. NO influences the Ca2+ channels, facilitates the cGMP and PKG-
dependent phosphorylation of troponin I, and attenuates myofilament response to calcium.



Antioxidants 2024, 13, 1420 13 of 17

Moreover, nitric oxide produced by endothelial cells regulates the excitation–contraction
cycle of the heart by promoting vascular relaxation [56–59].

The other significant proteins were Matrix metalloproteinase-9, Nitric oxide synthase,
endothelial, and gap junction alpha-1 protein, and their association with Nitric Oxide is
significantly higher than other OS-MeSH descriptors. The table of the link prediction score
is also provided in Supplementary Table S7.

Link Prediction Between Ca2+-Regulating Proteins and CVD-MeSH Descriptors

The link prediction analysis between proteins and CVD-MeSH descriptors predicted
the notable protein–CVD pair. The top predicted protein–CVD pair was myocardial infarc-
tion and troponin I, indicating a strong possible connection between them (see Figure 7B).
The other top four proteins associated with myocardial infarction with higher link predic-
tion scores were nitric oxide synthase, endothelial, matrix metalloproteinase-9, gap junction
alpha-1 protein, and ryanodine receptor 2. These proteins were also strongly associated
with the OS-MeSH descriptors (see Figure 7A), such as nitric oxide, carrier proteins, super-
oxide dismutase, and other CVD-MeSH descriptors specifying the interconnection between
the proteins, OS, and CVDs. For example, our results highlighted a triangular association
between myocardial infarction, troponin I, and nitric oxide. The table of the link prediction
score is also provided in Supplementary Table S8.

4. Discussion

The findings of this study reveal significant correlations between cardiac Ca2+-regulating
proteins and OS in the pathogenesis of various cardiovascular diseases. This interaction is rele-
vant given the established role of ROS in disrupting Ca2+ homeostasis, which can lead to func-
tional and structural changes in essential proteins involved in cardiac excitation–contraction
coupling. The insights gained here underscore the complex molecular interplay that fosters
disease progression in CVD, opening avenues for targeted therapeutic intervention.

Our study adopts a novel, granular approach by using specific molecular entities
and their MeSH-mapped descriptors to define oxidative stress at a molecular level rather
than relying on broad, oversimplified OS concepts. This strategy allows for a more precise
characterization of ROS, making it possible to text-mine oxidative stress in a nuanced
manner that captures detailed molecular interactions. By mapping oxidative stress in this
way, we can extract associations at a more tangible molecular level, thereby improving the
specificity of text-mining results and enhancing the biological relevance of our findings.

Our results highlight the detrimental impact of ROS, such as hydroxyl radicals, super-
oxide, and hydrogen peroxide, on Ca2+-regulating proteins, with pronounced associations
in multiple CVD categories, notably arrhythmias, cardiac conduction system diseases, and
cardiomyopathy. Elevated ROS levels induce Ca2+ overload by altering Ca2+-regulating
channels and ion transport mechanisms, establishing a self-sustaining feedback loop that
exacerbates oxidative stress and fosters a pathological environment. An example of this is
the OS molecules highlighted by our study, such as hydrogen peroxide, whose exposure
increases the open probability of cardiac ryanodine receptors, leading to excessive Ca2+

release from the sarcoplasmic reticulum, a mechanism associated with arrhythmias and
functional degradation in patients with impaired cardiac conduction. A critical protein in
this context is the cardiac ryanodine receptor RyR2, which is predominantly expressed in
cardiac muscle and plays a central role in cardiac Ca2+ signaling.

The KG analysis further elucidates shared molecular pathways and associations be-
tween Ca2+-regulating proteins and oxidative stress across eight CVD categories. Distinct
protein clusters, particularly those associated with cardiac arrhythmias and conduction
disorders, reveal a specific vulnerability to ROS-mediated damage. These proteins are often
linked with ROS-related pathways, such as gap junction trafficking and redox signaling,
pointing to an integrated role of OS within cardiac signaling networks. For example, gap
junctions, particularly those involving connexin 43 (Cx43), are critical for electrical conduc-
tion in the heart. OS-induced reduction of Cx43 impairs intercellular communication, a
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mechanism linked to increased arrhythmogenic risk, demonstrating how OS exacerbates
conduction abnormalities.

A key aspect of the link prediction analysis is the identification of potential novel asso-
ciations between Ca2+-regulating proteins and oxidative stress molecules, with particular
emphasis on nitric oxide (NO) and cardiac troponins. Nitric oxide, primarily synthesized
by nitric oxide synthase 3 (NOS3, also known as endothelial nitric oxide synthase), plays
a dual role in cardiovascular health and disease. While NO is essential for maintaining
vascular tone and promoting blood flow, excessive NO production during ischemic reper-
fusion injury contributes to myocardial infarction and cardiac damage. During reperfusion,
NOS3 generates high levels of NO that react with superoxide, forming peroxynitrite, a
highly reactive molecule known to cause oxidative damage to lipids, proteins, and DNA.
This contributes to the pathophysiology of ischemic reperfusion injury, exacerbating my-
ocardial cell death and inflammation. Our analysis shows a strong association of NOS3
with ischemic heart disease, underscoring its potential as both a therapeutic target and a
biomarker for myocardial infarction and ischemic damage.

Cardiac troponins, especially the isoforms cardiac troponin I (cTnI) and troponin
T (cTnT), are also well-established biomarkers for several CVDs, including myocardial
infarction and heart failure. Their increased expression in CVD patients reflects myocardial
injury or stress, thus explaining their association with certain CVD categories in our anal-
ysis. The interaction between NO and cardiac troponin I, a critical regulatory protein in
excitation–contraction coupling, suggests that NO may modulate Ca2+ sensitivity, influ-
encing cardiomyocyte contractility. This interaction aligns with previous findings that NO
facilitates cGMP-mediated phosphorylation of troponin I, modifying myofilament Ca2+

responsiveness. Together, these interactions underscore the complexity of redox signaling
in the heart and highlight NOS3 as a critical player in oxidative damage during ischemic
reperfusion, suggesting new pathways for redox-based therapeutic strategies in ischemic
heart disease.

Applying CaseOLAP scoring allowed for the quantification of protein–disease asso-
ciations, revealing that cardiomyopathy has the highest incidence of OS-related protein
involvement. This is likely due to the chronic nature of cardiomyopathy, where sustained
oxidative stress continually remodels Ca2+ signaling pathways, leading to progressive car-
diac dysfunction. The prevalence of oxidative damage in cardiomyopathy underscores the
therapeutic potential of antioxidants in disrupting the OS-Ca2+ feedback loop, potentially
mitigating disease severity.

In summary, this study employs a text-mining approach combined with a knowledge
graph to delineate associations between cardiac Ca2+-regulating proteins and oxidative
stress across eight categories of CVDs. By integrating fragmented pieces of data pertaining
to proteins, OS-MeSH, and CVD-MeSH from an extensive corpus of PubMed articles, we
provide new insights into the shared molecular pathways underpinning these associations.
This strategy, grounded in the co-occurrence of highly specific molecular entities, synthe-
sizes a vast array of knowledge, enabling the discovery of novel connections. These findings
contribute to a deeper understanding of the molecular interplay between Ca2+-regulating
proteins and oxidative stress, with implications for early detection tools and therapeutic
strategies in CVDs.

5. Conclusions

Mutual interaction between the Ca2+-regulating proteins and OS has been associated
with cellular processes in cardiovascular health and disease. In the present study, we
investigated the impact of OS on cardiac Ca2+-regulating proteins with respect to the eight
major CVD categories by utilizing a text-mining algorithm combined with a knowledge
graph. The key findings are as follows: (1) Ca2+-regulating proteins are distinctly associated
with cardiac arrhythmias (ARR) and cardiac conduction system diseases (CCS) compared to
other CVD categories. (2) In total, 59 out of the 128 Ca2+-regulating proteins are found in OS-
associated CVDs. (3) Cardiomyopathy is the highest-occurring disease category associated
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with the mutual effect of OS and Ca2+-regulating proteins. (4) Utilizing a link prediction
algorithm, hidden and possible relationships were emphasized among Ca2+-regulating
proteins, OS molecules, and CVDs. Our informatics study on the participation of Ca2+-
regulating proteins in OS-associated cardiac diseases should help find novel early-detection
tools and therapeutic strategies.
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//www.mdpi.com/article/10.3390/antiox13111420/s1, Table S1: CVD-MeSH descriptors; Table S2:
Oxidative stress MeSH descriptors; Table S3: Ca2+-regulating proteins; Table S4: Ca2+-OS-CVD
interface; Table S5: OS molecules associated with proteins in ARR and CCS; Table S6: Pathways
associated with proteins in ARR and CCS; Table S7: OS–protein link prediction score; Table S8:
CVD–protein link prediction score.
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