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Abstract: A shared hallmark of age-related neurodegenerative diseases is the chronic activation of 
innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer’s 
disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal 
inflammatory response has been reported in Parkinson’s disease, with elevated levels of cytokines 
and other inflammatory intermediates derived from activated glial cells, which promote the pro-
gressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant 
inflammatory response has become a topic of growing interest and research in neurodegeneration, 
with high translational potential. It has been postulated that the phenotypic shift of immune cells 
towards a proinflammatory state combined with the presence of immunogenic cell death fuels a 
vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochon-
dria-generated reactive oxygen species are downstream effectors of different inflammatory signal-
ing pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as im-
portant producers of damage-associated molecular patterns, which can amplify the immune re-
sponse. Here, we review the major findings highlighting the role of mitochondria as a checkpoint 
of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge 
of these processes may help to find new druggable targets to modulate the inflammatory response. 
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1. The Immune System in the Brain and Its Role in Neurodegenerative Disorders 
The ability of our organism to discriminate between harmful and innocuous mole-

cules is not a piece of luck. Self-defense is mediated by a complex, well-organized immune 
system that uses both innate and adaptive mechanisms to recognize and scavenge these 
harmful elements and secrete cytokines in response to damage. The brain was previously 
considered an “immune privileged” organ isolated from the peripheral immune system. 
This statement has been revisited, and the existence of intricate neuroimmune interactions 
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with the involvement of resident and peripheral immunological players that guarantee 
efficient central nervous system (CNS) surveillance is now recognized [1]. Two brain-res-
ident immune populations have been described: parenchymal microglia and CNS-associ-
ated macrophages (CAMs) that are located in specific immunological niches in the CNS 
borders, including the meninges, the choroid plexus, and the perivascular spaces. These 
immunological compartments also harbor adaptive immune cells that support healthy 
brain function, mostly indirectly by releasing cytokines and neurotrophic factors, while 
limiting exposure to peripheral immune challenges [2]. Alternatively, these cells can ac-
cess the CNS parenchyma in response to damage signals and provide additional support 
to resident immune cells [3]. 

Associated with normal aging, there is an increased infiltration of a variety of periph-
eral immune cells, including CD4+, CD8+, and CD3+ lymphocytes, natural killer (NK) 
cells, and myeloid cells, that, together with an abnormal immune response of brain-resi-
dent cells, may contribute to maintaining a proinflammatory environment, which is a 
common feature of all neurodegenerative diseases [4]. The sequence of events that pro-
mote the mobilization of peripheral immune cells to the brain remains under debate; how-
ever, evidence points to age-dependent changes in microglia with the release of chemo-
tactic signals and the blood–brain barrier (BBB)’s integrity loss as crucial factors [5,6]. Ag-
ing has been described as the primary risk factor for most neurodegenerative diseases, 
including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), 
and frontotemporal lobar dementia (FTD) [7]. Hallmarks of cellular aging, such as cellular 
senescence, genomic instability, dysfunctional mitochondria, and defective proteostasis 
mechanisms (macroautophagy, hereafter referred to as autophagy), are shared by all neu-
rodegenerative diseases [8]. Alteration of these cellular pathways results in the accumula-
tion of specific pathogenic proteins, for instance, extracellular amyloid beta (Aβ) plaques 
and intraneuronal tau-containing neurofibrillary tangles (NFTs) in AD or misfolded α-
synuclein (α-syn) in PD, which are ultimately responsible for the clinical and pathological 
diversity of disease phenotypes [9]. Neuroinflammation was initially considered a by-
stander in neurodegeneration; however, there are now growing data highlighting the key 
role of a dysfunctional immune system in the neurodegenerative process. This is further 
supported by the discovery of a high number of immune-related genetic mutations iden-
tified as risk factors for neurodegeneration [10,11]. In this review, we will outline new 
findings addressing the aberrant mechanisms and affected inflammatory signaling path-
ways leading to neuroinflammation. We will mainly focus on reviewing studies that link 
neuroinflammation to AD and PD, the most prevalent age-related neurodegenerative dis-
orders, and discuss the involvement of mitochondria and mitochondrial oxidative stress. 

1.1. The Contribution of the Innate–Adaptive Immunity to Neurodegeneration 
Aging is known to affect the cross-talk between adaptive and innate immunity in the 

brain. Disruption of this relationship has consistently been associated with age-related 
neurodegenerative diseases. In mouse models of AD, an imbalance between type I and 
type II interferons (IFNs) has been reported in the choroid plexus, resulting in defective 
immune surveillance [12]. The role of adaptive immunity in neurodegeneration remains 
poorly understood, exhibiting both beneficial and detrimental functions. Marsh et al. have 
shown that immune-deficient 5xfAD (Rag-5xfAD) mice lacking IgG-producing B cells dis-
play impaired microglial phagocytosis accompanied by increased Aβ deposition [13]. In 
these mice, defective plaque clearance is restored by the administration of non-specific 
IgGs, which are recognized by Fcγ receptors on microglia and activate the phagocytic 
Src/spleen tyrosine kinase (Syk)/phosphatidylinositol 3-kinase signal transduction path-
way [13]. However, IgG influx into the brain is a double-edged sword, potentially leading 
to harmful effects. In the presence of Aβ or α-syn, IgGs can trigger an immune complex-
mediated inflammatory response associated with neuronal death by activating microglia 
through Fcγ receptors [14,15]. Additionally, the genetic loss of B cells, and thus IgGs, in 
various AD mouse models has been shown to reduce Aβ deposition and the presence of 
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reactive microglia, improving disease symptoms [16]. Recent data from postmortem stud-
ies also confirm the presence of monocyte-derived cells in prefrontal cortices affected by 
PD [17] and in the hippocampal parenchyma during advanced stages of AD [18]. Whether 
this infiltration is beneficial or detrimental to the neurodegenerative process remains to 
be fully elucidated. In APPswe/PSEN1dE1 mice, monocyte extravasation into the brain, 
facilitated by peripheral immune modulation, mitigates AD pathology [19]. In contrast, in 
a mouse model of PD, monocyte invasion has been described as required for α-syn-in-
duced inflammation and neuronal death [20]. Growing evidence indicates that excessive 
extravasation of lymphocytes and neutrophils from the bloodstream results in cytotoxicity 
and perpetuates a proinflammatory state in neurodegenerative disorders [21–23]. The 
close connection between innate and adaptive immunity in neurodegeneration is high-
lighted in a study by Chen et al. The study shows that in mice with tauopathy but not 
amyloid, there is a distinct immune response. In this response, T cells actively engage with 
disease-associated microglia subgroups to promote tau-mediated brain atrophy [24]. Fur-
thermore, in these mice, microglia depletion abolishes T cell infiltration, while depletion 
of T cells blocks microglia activation and ameliorates neurodegeneration and cognition. 
Similar dysregulated peripheral immunity has been described in patients with AD, PD, 
and Lewy body dementia, showing clonally expanded peripheral T cells that migrate to 
and accumulate in the CNS parenchyma and cerebrospinal fluid (CSF) and correlate with 
disease progression [25–28]. 

The Role of Microglia in the Neurodegenerative Process 
Microglia constitute a heterogeneous population with essential roles in brain devel-

opment and maintenance [29]. Under homeostatic conditions, microglial phagocytosis 
and the secretion of precise neurotrophic factors and cytokines have been shown to regu-
late synaptic plasticity and neuronal activity [30–32]. These resident macrophages are also 
considered the sentinels of the brain, constantly scanning the environment to quickly re-
spond to different insults [33]. Upon immune challenge, microglia tend to adopt an amoe-
boid morphology accompanied by increased phagocytic activity and production of cyto-
kines and reactive oxygen species (ROS) aimed at resolving these threats to homeostasis. 
Microglia were traditionally classified according to peripheral macrophage terminology 
as M1 (proinflammatory and neurotoxic type) and M2 (protective type), a dualistic classi-
fication now recognized as extremely simplistic. Recent advances in single-cell genomic 
technologies support the existence of multiple states of microglial activation with different 
gene expression signatures that are tailored to the stages and severity of a pathological 
process [34]. Indeed, specific genetic profiles have been associated with neurodegenera-
tion. Initial works in AD mouse models identified triggering receptors expressed on my-
eloid cells 2 (TREM2)-dependent transcriptional profiles, termed neurodegenerative mi-
croglial (MGnD) or disease-associated microglia (DAM) signatures, in sub-clusters of mi-
croglia located near Aβ plaques and exposed to neuron or myelin debris [35,36]. These 
DAM-like signatures have later been shown to coexist with other more neurotoxic profiles 
associated with tau pathology [37]. Furthermore, their presence has been extended to 
other neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and mul-
tiple sclerosis (MS) [38]. Similar microglial heterogeneity has been described in PD [39], 
with a midbrain-enriched microglia subset that displays transcriptional features of inflam-
matory and reactive microglia. The key role of microglia in the etiology of age-related 
neurodegenerative diseases is further substantiated by recent genome-wide association 
studies (GWASs) that identify genes mainly expressed in microglia in the genetic risk 
score for AD and related dementias [10,11]. Despite these findings, how the complexity of 
brain immune network responses is regulated and what promotes the gain of neurotoxic 
functions of microglia during pathology is largely unknown. 

Activation of microglial phagocytosis has been shown to slow AD pathology and 
cognitive impairment [40,41]. The protective function of microglia benefits from astrocyte-
sourced interleukin-3 (IL-3) that stimulates its capacity to cluster and eliminate Aβ and 
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tau aggregates [42]. In contrast, inefficient clearance, aggravated by defective autophagy, 
has been shown to facilitate the spreading of Aβ and tau seeds [43,44] and promote senile 
plaque formation [45,46]. Likewise, in mice that express human α-syn, disruption of au-
tophagy in microglia has been shown to favor the accumulation of misfolded α-syn and 
cause midbrain dopaminergic neuron degeneration [47]. Dysfunctional microglia may 
also participate in the intercellular propagation and dissemination of protopathic seeds 
through extracellular vesicle (EV) secretion [48–50]. Concordantly, in PS19 mice that ex-
press mutant human tau, suppression of tau-containing EVs by pharmacological therapy 
significantly reduces tau pathology and improves cognitive impairment [51]. 

Altered microglia phagocytosis in neurodegeneration is part of an aberrant immune 
response, accompanied by the release of proinflammatory cytokines [52–54]. The inflam-
matory response is initiated when pattern-recognition receptors (PRRs) sense danger sig-
nals, which can be categorized into pathogen-associated molecular patterns (PAMPs), im-
mune-responsive molecules from microorganisms, and damage-associated molecular pat-
terns (DAMPs), intracellular molecules released in response to injury [55]. There are mem-
brane-bond PRRs, such as toll-like receptors (TLRs), and cytosol-localized PRRs, such as 
nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs), that as-
semble into inflammasome complexes [56]. Persistent inflammasome activation is thought 
to play a crucial role in creating a chronic inflammatory environment and eventual neu-
rodegeneration. In addition to Aβ and other misfolded or aggregated proteins related to 
neurodegenerative diseases, mitochondrial oxidative stress has been shown to trigger in-
flammasome activation. Recently, Peruzzotti-Jametti et al., using a preclinical model of MS 
disease and a multi-omic approach, have identified a molecular signature that sustains 
microglia activation by inducing complex I-mediated ROS generation coupled with in-
creased expression of inflammasome-related proteins [57]. The mechanisms involved in 
inflammasome assembly and regulation, particularly the role of mitochondria and mito-
chondrial oxidative stress, are becoming better understood. These new insights will be 
summarized in the following sections. 

2. Mitochondrial Control of the Inflammatory Response 
Mitochondria are very dynamic organelles, crucial for cell function and survival [58]. 

In addition to oxidative phosphorylation (OXPHOS) metabolism and energy generation, 
mitochondria are involved in multiple cellular processes, including redox signaling, stress 
response, thermogenesis, and calcium homeostasis. During mitochondrial respiration, the 
electron transport chain (ETC) makes this organelle the central producer of cellular ROS. 
Mitochondrial ROS (mtROS), along with other mitochondrial constituents, such as mito-
chondrial DNA (mtDNA), cardiolipin, and metabolic byproducts released into the cytosol 
or extracellular environment under cellular stress, have been identified as key regulators 
of innate immunity [59]. Accordingly, the term “mito-inflammation” has recently been 
coined to refer to mitochondrial involvement in the inflammatory signaling cascade. Mi-
tochondria are sources of mitochondrial DAMPs but can also act downstream in intracel-
lular signaling pathways triggered by external PAMPs or DAMPs [60]. ROS produced by 
mitochondria activate redox-sensitive transcription factors, such as nuclear factor kappa 
B (NF-κB) and activator protein-1 (AP-1), that increase the expression of genes related to 
inflammation [61]. Mitochondria are also the target of self-generated ROS, especially 
newly synthesized mtDNA before being packaged into nucleoid structures due to its 
proximity to the ETC [62]. Oxidized DNA fragments are more prone to being released and 
triggering a stronger immune response [63]. Cytosolic mtDNA can trigger inflammasome 
assembly [64,65] and the induction of the cyclic GMP–AMP synthase (cGAS)–stimulator 
of interferon genes (STING) pathway [64,66]. 
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The mtDNA as a Danger Signal That Activates the cGAS–STING Signaling Pathway 
The mtDNA can exit mitochondria under cellular stress through different mecha-

nisms, such as the formation of BCL2 antagonist/killer 1 (BAK1) and BCL2-associated X, 
apoptosis regulator (BAX) macropores [67], or the coordinated participation of mitochon-
drial permeability transition pore (PTP) with voltage-dependent anion channel 1 
(VDAC1) [64,68]. The mtDNA leakage is also promoted by abnormal packaging of the 
mtDNA due to transcription factor A, mitochondrial (TFAM), or ATPase family AAA do-
main containing 3A (ATAD3A) deficiency [69–71]. Moreover, under mtDNA replication 
stress conditions, DNA-containing nucleoids have been shown to exit mitochondria into 
endosomes that ultimately become leaky [69]. Cytosolic mtDNA is sensed by cGAS, link-
ing the recognition of misplaced self-DNA to the start of a type I IFN immune response 
[72] (Figure 1). 

 
Figure 1. Activation of the cGAS–STING signaling pathway by cytosolic mtDNA. Mitochondrial 
oxidative stress favors the release of mtDNA. In the cytosol, mtDNA is recognized by cGAS, which 
then assembles into dimers and catalyzes the synthesis of cGAMP from ATP and GTP. cGAMP ini-
tiates the signaling cascade by binding to the ER-associated adaptor protein STING, which translo-
cates to the Golgi apparatus, where it recruits and activates TBK1. TBK1 phosphorylates IRF3, 
which, in turn, targets the nucleus and transcribes interferon-stimulated genes. TBK1 can also re-
lieve the inhibition of NF-κB, triggering the transcription of gene-encoding proinflammatory cyto-
kines [72]. Abbreviations: ER, endoplasmic reticulum; cGAMP, cyclic 2′,3′-cyclic guanosine mono-
phosphate; cGAS, cyclic GMP–AMP synthase; IRF3, interferon regulatory factor 3; NF-κB, nuclear 
factor kappa B; STING, stimulator of interferon genes; TBK1, TANK-binding kinase. 

The induction of the c-GAS–STING pathway is controlled by the ER-resident three 
prime repair exonuclease 1 (TREX1), which breaks down unwanted cytosolic DNA [73]. 
Remarkably, oxidized DNA has been found to resist degradation by TREX1, leading to its 
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accumulation in the cytosol and the activation of cGAS [74]. Similarly, a mtDNA-mediated 
induction of the cGAS-dependent immune response has been observed when mitophagy 
is disrupted [75]. 

The cGAS–STING signaling pathway has been postulated as a critical driver of aging-
related inflammation, which could be therapeutically targeted to halt the neurodegenera-
tive processes in the aged brain [76,77]. Activation of cGAS–STING signaling has been 
reported in AD mouse brains and human AD fibroblasts [78]. Furthermore, administra-
tion of a STING inhibitor ameliorates pathogenesis in 5xfAD mice [79]. Increased cGAS–
STING activity has also been associated with neurodegeneration arising from α-synucle-
inopathies, including PD [80]. cGAS-initiated signaling contributes to the microglial in-
flammatory response in the mouse model of PD induced by the mitochondrial toxin 1-
methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) [81]. Notably, a study by Sliter et 
al. shows that the combination of mtDNA mutational stress with the absence of mitoph-
agy-related proteins leads to dopaminergic neurodegeneration and motor defects that are 
rescued by genetic inactivation of STING, thus linking mito-inflammation and the cGAS–
STING pathway with the onset of PD-like pathology [75]. 

3. Inflammasome Signaling in Neuroinflammation 
First described by Martinon et al. [82], inflammasomes are multiprotein complexes 

that act as cytosolic scaffolds to recruit and oligomerize the cysteine protease caspase 1 
(CASP1). The function of inflammasomes is best characterized in myeloid lineages where 
CASP1 catalyzes the maturation of inflammatory cytokines, which are released into the 
extracellular space and promote both local and systemic immune responses (Figure 2). 
Alternatively, inflammasome activation can cleave the pore-forming protein gasdermin D 
(GSDMD), the executor of a lytic mode of cell death termed pyroptosis (Figure 2). Inflam-
masome proteins have been observed in the CNS, usually in monocytes and microglia 
responding to acute infection or cell loss, as occurs during neurodegeneration. Although 
less understood, activated inflammasome signaling has also been reported in neurons 
linked to pyroptosis [83], providing a mechanism through which neurons may initiate or 
influence inflammation. 

Inflammasomes are constituted by three main components: a sensor consisting of a 
PRR with a pyrin domain (PYD) and/or a caspase recruitment domain (CARD), the adap-
tor apoptosis-associated speck-like protein containing a CARD (PYCARD, also known as 
ASC), and the zymogen of CASP1 (pro-CASP1) (Figure 2). CASP1 consists of an N-termi-
nal CARD, a CARD domain linker, the p20 subunit containing the catalytic sides, an inter-
domain linker (IDL), and the p10 subunit involved in dimerization. Mechanistically speak-
ing, it has been proposed that PRR clustering promotes a nucleation-induced polymeriza-
tion of pro-CASP1 into filaments, facilitating the protease zymogens to undergo proxim-
ity-induced autoactivation [84]. The autocatalytic cleavage of pro-CASP1 results in two 
subunits that form an active p10/p20 tetramer [85], which has been proposed as responsi-
ble for the processing of pro-IL-1β and pro-IL-18 [86] and GSDMD (Figure 2). Addition-
ally, CASP1 may also induce NF-κB-mediated pathways [87,88]. Recently, using a biotin-
labeled probe that covalently binds to active CASP1, Boucher et al. have questioned the 
catalytic role of the p20/p10 tetramer under physiological conditions [89]. The study 
demonstrates that CASP1 clustering on inflammasomes produces active p46 dimers that 
self-process at the IDL to generate a second active species (p33/p10), which remains asso-
ciated with the inflammasome. The activity of p33/p10 is blocked by a second self-cleavage 
event, which removes the CARD domain, releasing a highly unstable dimer (p20/p10) that 
terminates CASP1 signaling. Notably, the full-length dimeric p46 can effectively process 
GSDMD but not IL-1β, while p33/p10 can cleave both GSDMD and IL-1β. 

Pyroptotic death and cytokine secretion are often simultaneous outcomes of inflam-
masome activation. However, these events may be uncoupled under certain circum-
stances [90]. GSDMD sublytic pore formation or GSDMD-independent pathways involv-
ing unconventional secretion could result in predominant cytokine uncoupling, whereas 
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regulation of CASP1 cleavage dynamics, which can generate active species with different 
activities in terms of GSDMD or IL-1β processing, could lead to pyroptosis uncoupling. 
Recently, in macrophages, the expression of the Toll-1L-1R protein SARM has been iden-
tified as a key regulatory player [91]. Nonetheless, the underlying mechanisms of uncou-
pling remain mostly elusive. 

 
Figure 2. Inflammasome induction. Inflammasome assembly can be triggered by a repertoire of 
PPRs that detect and bind microbial ligands (PAMPs) and endogenous molecules exposed under 
stress conditions (DAMPs). The activated sensor then oligomerizes with the adapter protein ASC 
through PYD interactions and recruits the CASP1 zymogen, which undergoes auto-proteolysis to 
generate catalytically active CASP1. Mature CASP1 then cleaves and activates the inflammatory cy-
tokines pro-IL-1β and pro-IL-18 and the pore-forming protein GSDMD. Abbreviations: ASC, asso-
ciated speck-like protein containing a CARD; CASP1, caspase 1; DAMPs, damage-associated mo-
lecular patterns; GSDMD, gasdermin D; PAMPs, pathogen-associated molecular patterns; PPRs, 
pattern recognition receptors; PYD, pyrin domain. 

3.1. Inflammasome Scaffold Proteins 
The NLR family members were the first sensor proteins identified in inflammasome 

formation (Figure 3). Recently, other families of inflammasome-associated PRRs have 
been described. These last include absent in melanoma 2 (AIM2)-like receptors (ALRs) 
that respond to self and pathogen double-stranded (ds)DNA molecules and pyrin recep-
tors (also known as tripartite motif-containing (TRIM) 20), which assemble in response to 
perturbations of cytoplasmic homeostasis and cytoskeletal dynamics caused by infection 
(Figure 3). Nonetheless, the majority of inflammasomes rely on NLR proteins for patho-
gen sensing and scaffold assembly. All NLR sensors contain a central nucleotide-binding 
domain (NBD/NACHT) responsible for their self-oligomerization, a leucine-rich repeats 
(LRRs) domain crucial in the recognition of ligands (PAMPs and DAMPs), and signaling 
domains (PYR and CARD) that enable the recruitment of pro-CASP1 [92] (Figure 3). Major 
inflammasome-forming members are NLRP1, NLRP3, and NLRC4. Other atypical mem-
bers of the family are NLRP2, NLRP6, NLRP7, NLRP12, and NLRC5, which, although less 
characterized, can also form an inflammasome complex [93]. Pro-CASP1 can directly in-
teract with NLRC4 and mouse (m)NLRP1, through the CARD motifs, while in PYD-con-
taining members, such as NLRP3 and human (h)NLRP1, the cysteine protease is recruited 
indirectly through homotypic interactions with the bipartite PYD/CARD adaptor ASC 
[94]. 
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Figure 3. Inflammasome components and their domain architecture. Members of the NLR receptor 
family contain NBD and LRR motifs. NLR family members may be further subdivided into NLRP 
(with a PYD motif) and NLRC (with a CARD motif). The AIM2 receptor is composed of a PYD and 
a dsDNA-binding Hin-200/HIN domain. Finally, the inflammasome scaffold protein pyrin consists 
of PYD, BBOX, and CC domains that are followed by a carboxy-terminal B30.2 domain in the human 
but not its murine ortholog. NLRP3, human (h)NLRP1, AIM2, and pyrin, containing a PYD, bind to 
the PYD of ASC, allowing the ASC to activate CASP1 by interacting with the CARD of pro-CASP1. 
Card-containing sensors such as mouse (m)NLRP1 and NLRC4 activate CASP1 by directly binding 
the CARD of pro-CASP1 without ASC or binding the paired ASC scaffold. Abbreviations: AIM2, 
absent in melanoma 2; ASC, associated speck-like protein containing a CARD; BBOX, B-Box-type 
zinc finger; CASP1, caspase 1; CARD, caspase recruitment domain; CC, coiled coil; HIN/Hin-200, 
hematopoietic interferon-inducible nuclear protein with a 200 amino acid repeat; NBD, nucleotide-
binding domain; NLR, nucleotide-binding domain and leucine-rich repeat; LRR, leucine-rich repeat; 
PYD, pyrin domain. 

The NLRP3 is the most extensively studied inflammasome. Canonical activation of 
the NLRP3 inflammasome requires a priming step with the transcriptional upregulation 
of NLRP3, CASP1, and IL-1β/IL-18 pro-forms [95,96]. The activation of the NLRP3 inflam-
masome is thought to be tightly associated with the regulator never in mitosis A (NIMA)-
related kinase 7 (NEK7) [97]. Additionally, recent research indicates that post-transla-
tional modifications of NLRP3, such as acetylation and phosphorylation, are necessary for 
full activation of the complex [95,98,99]. These priming mechanisms may serve as a check-
point to prevent accidental activation of NLRP3, which is the sensor that responds to a 
wide spectrum of infection and stress-associated signals [100]. The exact molecular mech-
anism that triggers NLRP3 activation in response to such diverse signals is still under in-
vestigation. Muñoz-Planillo et al. proposed K+ efflux through purinergic receptor P2X 7 
(P2RX7) channels as a universal requirement for NLRP3 activation [101], which is 
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accompanied by the loss of lysosomal integrity [102]. This view has been challenged later 
by studies showing that NLRP3 activation can be triggered independently of K+ efflux by 
small-molecule TLR7 agonists that target mitochondrial complex I and produce mtROS 
[103]. 

3.2. Dysfunctional Mitochondria and Mitochondrial ROS as Drivers of Inflammasome 
Activation 

NLRP3 inflammasome signaling has been consistently related to mitochondrial dys-
function and oxidative stress (Figure 4). Accordingly, mitophagy induction prevents in-
flammasome assembly [104], while mtROS serves as a priming signal [61]. On the other 
hand, the increase in mtROS promotes the binding of NEK7 with NLRP3 [97,103] and 
facilitates the formation of the complex in mitochondria-associated membranes (MAMs) 
of dysfunctional mitochondria [105]. This process is suppressed when mitophagy is stim-
ulated or when VDAC2, an isoform of the mitochondrial carrier linked to mtROS regula-
tion, is silenced [105–107]. Additionally, it has been described that Ca2+ mobilization from 
the endoplasmic reticulum (ER) enhances inflammasome activation by inflicting damage 
to mitochondria [108]. Furthermore, optimal NLRP3 inflammasome signaling has been 
shown to require the interaction between NLRP3 and thioredoxin-interacting protein 
(TXNIP), a nuclear protein that relocates to mitochondria during oxidative stress 
[109,110]. In cerebral ischemia-reperfusion injury, the NLRP3-TXNIP binding and subse-
quent inflammasome activation are prevented by NFE2-like bZIP transcription factor 2 
(NFE2L2, also known as NRF2), a master regulator of the cellular antioxidant system, 
which upregulates the expression levels of thioredoxin 1 (TRX1), a binding partner of 
TXNIP [111]. On the other hand, ROS-mediated externalization of cardiolipin to the outer 
membrane has been reported to promote the binding between NLRP3 and CASP1, which 
assemble upon ASC recruitment to the mitochondrial surface [112,113]. Externalized car-
diolipin can also bind inflammasome-activated GSDMD, a necessary event for pyroptosis 
to proceed [114]. GSDMD permeabilizes the mitochondrial membranes, facilitating 
mtROS generation and the release of mitochondrial proteins and DNA. In turn, as indi-
cated previously, the NLRP3 inflammasome can be activated by ox-mtDNA released into 
the cytosol [64,65] and is downregulated by autophagy and mitochondrial integrity 
preservation [115]. Zhong et al. described that NLRP3 priming relies on the induction of 
new mtDNA synthesis, downstream of TLR4 engagement, which ultimately triggers an 
interferon regulatory factor 1 (IRF1)-dependent expression of the mitochondrial nucleo-
side cytidine/uridine monophosphate kinase 2 (CMPK2) [116] (Figure 4). The resulting 
increase in CMPK2 levels regulates mtDNA replication by supplying the required deoxy-
ribonucleotides. Cytosolic mtDNA also enables AIM2 inflammasome assembly [117]. No-
tably, while the NLRP3 inflammasome shows a preferential response to oxidized DNA 
[65], AIM2-containing counterparts have been suggested to primarily recognize non-oxi-
dized DNA [116]. 
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Figure 4. NLRP3 inflammasome induction by mtROS. The mtROS generated in complexes I and III 
of the electron transport chain confer the priming signal necessary for the NLRP3 inflammasome 
activation. The cytosolic spread of mtROS activates redox-sensitive transcription factors, such as 
NF-κB, which stimulate the expression of inflammasome-related genes. Additionally, excessive pro-
duction of mtROS causes oxidative modifications of mitochondrial proteins, mtDNA, and mem-
brane lipids such as cardiolipin, which favor inflammasome assembly. ox-mtDNA release requires 
a TLR-dependent priming signal that triggers mtDNA replication through IRF1-mediated induction 
of CMPK2, an enzyme responsible for dNTPs supply. Dysfunctional mitochondria also engage the 
NRF2-ARE signaling pathway and mitophagy, which inhibit inflammasome assembly. Abbrevia-
tions: ARE, antioxidant response element; CMPK2, cytidine/uridine monophosphate kinase 2; IRF1, 
interferon regulatory factor 1; NF-κB, nuclear factor kappa B; NRF2, nuclear factor-erythroid 2 
(NFE2) p45-related factor 2; dNTPs, deoxynucleotide triphosphates; TLR, toll-like receptor. 

3.3. GSDM-Mediated Inflammatory Cell Death: Pyroptosis 
As part of the innate immune response, inflammasomes can also trigger a caspase-

dependent cell death that prevents pathogen replication and activates phagocytic immune 
cells. First coined by Cookson and Brennan [118], this type of programmed necrosis called 
pyroptosis is featured by cell swelling and the appearance of protrusions on the plasma 
membrane before its rupture. Pyroptosis initiates after CASP1-mediated cleavage of 
GSDMD. The proteolytic processing of GSDMD generates a 31 kDa N-terminal domain, 
which aggregates to form 10–15 nm diameter pores in the cell membrane [119]. The py-
roptotic pore enables the release of the proinflammatory cytokines matured by the inflam-
masome [120] and causes the loss of osmotic gradient, which ultimately leads to cell death, 
with or without cell lysis [121]. Remarkably, recent research has revealed that the pore-
forming activity of GSDM is redox-sensitive [122], highlighting the crucial role of ROS in 
regulating inflammasome-mediated inflammatory response at multiple levels. The 
mtROS-mediated oxidative modification of specific cysteine residues promotes GSDMD 
cleavage by CASP1 [123]. Additionally, mitochondrial oxidative stress, induced by the 
mechanistic target of rapamycin kinase (MTOR) signaling pathway, has been shown to 
stimulate pore formation downstream of GSDM cleavage [124]. Likewise, it has been de-
scribed that mtROS controls the palmitoylation of C191, which is crucial for GSDMD oli-
gomerization [125]. On the other hand, cleaved GSDM can also permeabilize the mito-
chondrial membrane, resulting in increased mtROS and release of mtDNA, which, in turn, 
can trigger GSDM oligomerization [126,127]. 
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Pyroptosis has been implicated in the inflammatory pathogenesis of multiple neuro-
logical diseases. Preclinical and clinical data provide evidence of GSDMD-mediated py-
roptosis in age-related neurodegenerative diseases [54,83,128]. On the other hand, recent 
research using experimental autoimmune encephalomyelitis (EAE) models indicates that 
pyroptosis in peripheral myeloid cells may contribute to MS pathogenesis by providing 
essential signals to engage a T cell immune response [129]. Furthermore, GSDMD inhibi-
tors have been shown to alleviate inflammation and disrupt EAE development [130]. The 
occurrence of GSDMD-mediated pyroptosis has also been documented in glial and brain 
microvascular endothelial cells across different ischemic brain injury models [131,132]. 
There is also evidence that pyroptosis-induced inflammation plays a role in secondary 
damage in CNS injuries, such as traumatic brain injury and spinal cord injury, resulting 
in prolonged neuroinflammation and functional decline. Studies indicate that inhibiting 
pyroptosis, particularly by targeting the NLRP3/CASP1 pathway, could provide neuro-
protective effects in these conditions [133]. 

3.4. Inflammasome-Mediated Neuroinflammation in Alzheimer’s and Parkinson’s Disease 
Genetic and pharmacologic evidence demonstrates the involvement of the NLR-de-

pendent regulation of inflammation in the progression of different neurodegenerative dis-
eases [134]. In 2008, Halle et al. described the NLRP3 inflammasome activation by fibrillar 
Aβ in primary microglia cultures [135], which was replicated later using soluble Aβ oli-
gomers [136] and tau seeds [137]. Notably, in cultured cortical neurons, Aβ exposure 
causes an NLRP1-mediated pyroptosis [83]. Activated microglia can, in turn, release ASC 
specks that interact with extracellular Aβ, showing cross-seeding and inflammatory 
boosting activities [45,138]. Similarly, α-syn aggregates in microglia serve as a priming 
signal via TLR2 ligation and trigger NLRP3 inflammasome assembly associated with ROS 
production and impaired lysosomal function [139,140]. Conversely, blockage of the 
NLRP3-mediated signaling pathway restores microglial phagocytosis of the toxic aggre-
gates [137,139]. 

Markers of inflammasome activation, such as cleaved CASP1 and GSDMD, have 
been found in brain and CSF samples from AD individuals and transgenic mice [54,128]. 
Likewise, increased expression of inflammasome-related proteins has been reported in the 
substantia nigra of patients with PD [52,141]. Inflammasome activation is also observed 
in the blood cells and correlates with disease progression [142], which has led to their 
consideration as potential early biomarkers of PD [143]. 

The involvement of the NLRP3 inflammasome in promoting chronic brain inflamma-
tion and neurodegeneration is further supported by preclinical studies, which show that 
NLRP3 ablation in APPswe/PSEN1dE1 mice induces a microglial shift toward an anti-
inflammatory phenotype, associated with lower Aβ deposition and improvement in cog-
nitive decline [54]. A similar reduction in Aβ pathology has been reported in Nlrp1 knock-
out mice [83,144]. Along the same lines, pharmacological inhibition of NLRP3 [145] and 
GSDMD [146] attenuates pathological symptoms in PD mice. Consistently, mice lacking 
Nlrp3 or Casp1 are resistant to developing PD-like neurodegeneration evoked by neuro-
toxins that target mitochondria [147–150]. Moreover, the NLRP3-mediated inflammatory 
response is blunted when classical PD mitochondrial neurotoxicants are combined with 
mitochondria-targeted antioxidants [151]. Strong evidence for the role of mitochondria in 
regulating neuroinflammation is further provided by our recent study showing a differ-
ential inflammatory response in microglia and neuronal cells that depends on their mito-
chondrial antioxidant capacity [152]. In early works, using APPswe/PSEN1dE1 mice over-
expressing the sterol regulatory element-binding transcription factor 2 (SREBF2), we 
demonstrated that elevated brain cholesterol levels accelerate and worsen the pathological 
features of Alzheimer’s disease, including neuroinflammation [153]. We next have shown 
that intracellular cholesterol enrichment in microglia triggers a neuroprotective profile 
mediated by the NLRP3 inflammasome assembly [152]. After the bacterial toxins chal-
lenge, cholesterol-enriched microglia display an enhanced release of neurotrophic factors 
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such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), higher 
phagocytic capacity, and increased release of encapsulated Il-1β. Moreover, conditioned 
media from these cells significantly blunt the loss of viability of neuronal cells exposed to 
Aβ. In contrast, in neuronal cells, increased cholesterol levels compromise the mitochon-
drial antioxidant defense [152]. In these cells, the exacerbated oxidative stress after Aβ 
exposure leads to pyroptosis. Pyroptotic neurons, in turn, can inhibit microglia phagocy-
tosis, potentially establishing a proinflammatory vicious cycle. 

4. Role of Immunogenic Cell Death as a Contributor to Neurodegeneration 
There is a close relationship between inflammation and cell death. When necrotic 

cells lose their cell membrane integrity, they release DAMPs that can be recognized by 
different cellular receptors, leading to a sterile inflammatory response. In recent decades, 
different types of regulated necrosis-like death have been described [154]. Understanding 
the mechanisms that regulate this proinflammatory cell death in neurodegeneration has 
become a field of intense study. As mentioned earlier, inflammasome induction can trig-
ger pyroptosis, a process regulated by mitochondrial oxidative stress. In the following 
sections, we will review recent data showing how dysfunctional mitochondria can control 
different types of immunogenic cell death relevant to neurodegeneration, such as necrop-
tosis and metal ion-induced cell death. 

4.1. Necroptosis 
Necroptosis is a form of programmed necrosis mediated by the combined action of 

the receptor-interacting protein kinase 3 (RIPK3) and the pseudo-kinase mixed lineage 
kinase domain-like (MLKL) protein, with the participation of RIPK1 when death receptors 
are engaged [155]. The necroptotic molecular pathway has been most thoroughly studied 
in the context of the tumor necrosis factor receptor 1 (TNFR1) complex [156], although 
other members of the death receptor family, such as CD95/Fas and TRAILR, have also 
been implicated [157] (Figure 5). 

 
Figure 5. TNFR1-mediated survival and cell death pathways. Cell death signaling engaged by TNFα 
initiates with the adaptor TRADD protein that binds TNFR1 by its death domain and, in turn, serves 
as a signal to recruit RIPK1. Then, RIPK1 is polyubiquitinated by the combined action of TRAFs 
with c-IAPs and triggers the translocation of different ubiquitin-associated proteins and kinases, 
including OPTN, TAK1, and the serine/threonine-protein kinase TBK1. This signaling cascade pro-
motes the stabilization of RIPK1 in complex I and the activation of pro-survival NF-κB and MAPK 
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pathways. Conversely, inhibition of c-IAPs permits the removal of polyubiquitin chains of RIPK1 
by the ubiquitin carboxyl-terminal hydrolase CYLD. RIPK1 is released from complex I and binds 
FADD and pro-CASP8 in complex IIa. TRAIL/TNFSF10 and FASL-mediated signaling can also par-
ticipate in the assembly of complex IIa. Then, activated CASP8 can cleave the kinase domain of 
RIPK1, thereby triggering apoptosis; however, when CASP8 is deficient, RIPK1 remains active, and 
the signaling pathway is switched from apoptosis to necroptosis. Under necroptotic permissive con-
ditions, RIPK1 interacts with RIPK3 through their RHIMs motifs, leading to the formation of a sig-
naling platform, named necrosome (complex IIb). Upon necrosome assembly, RIPK3 forms homodi-
mers, which leads to activating cis-autophosphorylation of T231/S232 in mouse and S227 in human 
RIPK3. Then, the kinase domain of RIPK3 binds to the C-terminal domain of MLKL and phosphor-
ylates S345 in mice and T357/S358 in human MLKL, allowing the assembly of MLKL into oligomers. 
Ultimately, these MLKL polymers form pores in the plasma membrane that drive lytic cell death 
[156]. Abbreviations: CASP8, caspase 8; c-IAPs, cellular inhibitors of apoptosis; CYLD, CYLD lysine 
63 deubiquitinase; FADD, Fas-associated death domain; FASL, Fas ligand; MAPK, mitogen-acti-
vated protein kinases; MLKL, mixed lineage kinase domain-like; NF-κB, nuclear factor kappa B; 
OPTN, optineurin; RIPK, receptor-interacting protein kinase; TAK1, transforming growth factor-β-
activated kinase 1; TBK1, TANK-binding kinase; TRADD, TNFR1-associated death domain protein; 
TRAF, TNFR-associated factor; TRAIL/TNFSF10, TNF superfamily member 10; RHIM, RIP homo-
typic interaction motifs. 

Activation of RIPK3 has also been described independently of RIPK1, by binding to 
TIR-domain-containing adapter-inducing interferon-β (TRIF), a downstream mediator of 
TLRs [158], or the cytoplasmic viral DNA sensor Z-DNA binding protein 1 (ZBP1), which 
allows a rapid necrotic response upon viral infection [159] (Figure 5). Remarkably, acti-
vated RIPK3 and MLKL in immune cells have been shown to induce an inflammatory 
response independently of cell death by triggering the assembly of the NLRP3 inflam-
masome [160–163]. Subsequently, CASP8 has been indicated to directly cleave GSDMD 
and cause pyroptosis [164], thus further reinforcing the concept that different modes of 
inflammatory cell death display a considerable degree of interconnectivity. 

Like other forms of programmed cell death, necroptosis is tightly regulated, with 
transcriptional changes, post-translational modifications, and elimination of necrosome 
members [165]. The autophagy machinery has been proposed as a molecular platform for 
necrosome assembly [166]. Additionally, autophagy controls the availability of RIPK1 and 
RIPK3 [167,168], and robust RIPK- and ROS-dependent necroptosis is observed after au-
tophagy flux is chemically inhibited or when the lysosomal capacity is compromised 
[167,169,170]. Likewise, the ubiquitin E3 ligase Parkin, whose loss-of-function mutations 
are linked to autosomal PD, was recently identified as a negative regulator of necroptosis 
by leading to K33-linked polyubiquitination of RIPK3 and its proteasomal degradation 
[171]. Additionally, cellular extrusion of phospho-MLKL within extracellular vesicles has 
been proposed as a mechanism to downregulate MLKL activity and prevent necroptosis 
[172]. 

The occurrence of necroptosis has also been linked to mitochondrial function. Despite 
initial studies showing that mitochondrial depletion by mitophagy does not affect the ki-
netics of necroptosis [173], further works indicate that necrosome formation requires the 
production of mtROS [174,175]. Zhang et al. have identified three cysteine residues (C257, 
C268, and C586) in RIPK1 that can sense mtROS during necrosome execution [176]. These 
oxidative modifications activate RIPK1 autophosphorylation on S161, enabling RIPK1 to 
recruit RIPK3 and form a functional complex. Remarkably, at least in TNF-induced 
necroptosis, mitochondrial oxidative stress is exacerbated by RIPK3-dependent induction 
of the pyruvate dehydrogenase complex, resulting in enhanced aerobic respiration and 
high mtROS as a byproduct [177]. MLKL activity is also subjected to redox control by the 
thiol oxidoreductase thioredoxin-1, which maintains the monomeric MLKL in a reduced 
inactive state, thereby preventing disulfide bond-dependent polymer formation [178]. On 
the other hand, recent reports have confirmed the key role of mtROS in triggering necrop-
tosis in experimental acute pancreatitis by a mechanism that requires p53-induced down-
regulation of the mitochondrial antioxidant enzymes sulfiredoxin and peroxiredoxin III 
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[179]. In contrast, the mitochondrial membrane protein phosphoglycerate mutase family 
member 5 (PGAM5), whose deficiency impairs PINK1-mediated mitophagy and leads to 
a PD-like phenotype [180], has been reported to downregulate necroptosis by promoting 
mitophagy and reducing mtROS [181]. Interestingly, inflammasome activation, normally 
associated with GASDMD-dependent pyroptotic death, has been shown to shift toward 
necroptotic cell death in leucine-rich repeat kinase 2 (Lrrk2) G2019S mutant macrophages 
[182]. The presence of the disease-associated gain-of-function allele Lrrk2G2019S (a common 
genetic cause of PD) impairs mitochondrial function, resulting in high mtROS, which di-
rects GSDMD to the mitochondria and activates the necroptotic pathway [182]. 

Necroptosis and Aging-Related Neurodegenerative Diseases 
Emerging evidence underscores the significance of necroptosis in neurodegenerative 

processes [183]. In cell cultures and genetically engineered mouse models that recapitulate 
AD and PD, treatment with necrostatin-1, an inhibitor of RIPK1, has shown promise in 
reducing neuronal loss and improving cognitive functions [184–187]. Similar results have 
been obtained in subsequent studies inhibiting MLKL activity [188,189]. This aligns with 
observations of active necrosomes in the substantia nigra pars compacta of PD patients 
and in postmortem AD brains [187,190,191]. In AD, necrosome components tend to accu-
mulate in granulovacuolar degeneration bodies [192], which are linked to tau-associated 
lysosomal disturbances [193]. Salvadores et al. described that neuronal necroptosis induc-
tion is triggered by Aβ-stimulated microglia [194]. Recently, using a human–mouse chi-
meric AD model, Balusu et al. found that human neuronal progenitor cells, when differ-
entiated and transplanted into an Aβ-producing mouse, develop tau pathology and un-
dergo necroptosis [195]. Their findings suggest a human-specific response to Aβ plaques, 
linked to the upregulation of the long non-coding RNA maternally expressed gene 3 
(MEG3), which ultimately activates the necroptotic pathway. Hyperphosphorylated tau 
and Aβ oligomers have both been described to facilitate the formation of the necrosome 
complex [196–198], with the participation of mitochondria and the production of mtROS 
[199]. Moreover, activation of the necroptotic pathway has been consistently shown in 
preclinical models of PD, using toxins such as 1-methyl 4-phenylpyridinium (MPP+) and 
6-hydroxydopamine (6-OHDA) that interfere with the activity of mitochondrial complex 
I of the respiratory chain [184,185,190], which further supports a key role of mitochondria 
in this process and underscores the potential of targeting mitochondrial pathways as a 
therapeutic strategy to mitigate necroptosis and neuroinflammation in neurodegenera-
tion. 

4.2. Metal Ion-Induced Cell Death: Ferroptosis and Cuproptosis 
Transition metal ions, including iron (Fe), copper (Cu), zinc (Zn), and manganese 

(Mn), are involved in many biochemical processes essential for cell survival, and therefore, 
their levels are tightly regulated. However, under some conditions, excess redox-active 
essential metals such as Fe and Cu can induce hydroxy radical (·OH) via Fenton or Fenton-
like reactions, causing cell damage and inflammation. 

4.2.1. Ferroptosis 
Dysregulation of iron metabolism and redox systems leads to the accumulation of 

intracellular lipid hydroperoxides, ultimately causing ferroptosis (Figure 6). Lipid perox-
idation may kill cells directly by affecting cellular membrane integrity or indirectly 
through the generation of aldehydes, such as 4-hydroxynonenal (4-HNE) and malondial-
dehyde (MDA), which form adducts with different biomolecules and can act as a signal to 
drive cell death [200,201]. Mitochondria play a crucial role in the regulatory network of 
ferroptosis. Dysfunctional mitochondria-related alterations, including mitochondrial 
membrane depolarization, mtROS overproduction, and mtDNA release, can favor this 
type of cell death [202,203]. In particular, recent studies point to mtROS as an essential 
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step in the activation of the ferroptotic pathway when the cystine–glutamate antiporter 
solute carrier family 7 member 1 (SLC7A11, also known as the xCT system) that supplies 
cystine for glutathione (GSH) synthesis or the glutathione peroxidase 4 (GPX4) are inhib-
ited [202]. Concordantly, the inhibition of NRF2, which controls the expression levels of 
an array of antioxidant response element (ARE)-dependent genes, enhances the pathway, 
while mtROS scavengers prevent ferroptosis [202–204]. 

 
Figure 6. Core mechanisms of ferroptosis. TF and LCN2 transport extracellular iron into the cell 
through their respective receptors. Meanwhile, ferroportin is responsible for exporting intracellular 
iron to maintain iron balance. Inside the cells, HMOX1 breaks down heme to release free Fe2+, while 
ferritin, the iron storage protein, regulates intracellular iron levels to prevent iron overload. Ferrous 
iron (Fe2+) converts peroxides into free radicals through the Fenton reaction. This process leads to 
excessive lipid peroxidation and ultimately triggers ferroptosis. Ferroptosis can be prevented by 
two main antioxidant systems. One involves GPx4, which reduces lipid peroxides in a GSH-depend-
ent reaction. The other is mediated by FSP1, which regenerates ubiquinone (CoQ10) to act as a trap 
for lipid peroxyl radicals. The cystine–glutamate antiporter SLC7A11 (xCT system) mediates the 
uptake of cystine, which is used for GSH synthesis. Abbreviations: CoQ10, coenzyme Q10; FSP1, 
ferroptosis suppressor protein 1; GPX4, glutathione peroxidase 4; HMOX1, heme oxygenase 1; 
LCN2, lipocalin 2; (PL-PUFA) phospholipids PUFA; SLC7A11, solute carrier family 7 member 1; TF, 
transferrin. 

Ferroptosis has been described in many inflammation-related diseases, closely con-
nected with the activation of NF-κB-driven inflammatory signaling pathways [205,206]. 
In a retinal degeneration mouse model, increased lipid peroxidation and ferroptosis have 
also been associated with a cGAS–STING-mediated inflammasome activation due to the 
autophagy and lysosomal dysfunction induced by iron homeostasis deregulation [207]. 
Likewise, NLRP3 inflammasome induction has been reported in a rat model of pulmonary 
hypertension after high mobility group box 1 (HMGB1) was released from ferroptotic 
cells, a critical DAMP that binds to TLR4 [208]. Both the lipophilic radical scavenger fer-
rostatin-1 and specific GPX4 activators can downregulate NF-κB signaling and suppress 
inflammatory conditions [209–211]. Furthermore, GPX4 and its ability to reduce lipid per-
oxides have been shown to downregulate GSDMD-mediated pyroptosis [212,213]. 



Antioxidants 2024, 13, 1440 16 of 30 
 

Iron overload is a pathological feature shared by multiple neurodegenerative dis-
eases, including AD and PD [214–216]. Although the precise mechanism of iron-driven 
toxicity is unclear, there is evidence for the activation of the ferroptotic pathway. Increased 
endogenous levels of α-syn have been reported to sensitize dopamine neurons to ferrop-
tosis [217]. A similar susceptibility to ferroptosis is displayed by cells carrying AD causal 
mutations of presenilins (PSEN) [218]. Astrocytes from AD patients and 
APPswe/PSEN1dE1 mice display elevated levels of aldehydes associated with high levels 
of NADPH oxidase 4 (NOX4) [219]. Upregulation of NOX4 in human astrocyte cultures 
promotes ferroptosis by affecting mitochondrial metabolism [219]. The role of mitochon-
dria is further supported by different studies showing that strategies aimed at preserving 
mitochondrial function are effective against neuronal ferroptosis [220,221]. Interestingly, 
a recent work by Ryan et al. shows that iron overload causes an early shift in the microglial 
transcriptional state that overlaps with the transcriptomics displayed by microglia from 
postmortem PD brains [222]. The study further identifies SEC24 homolog B, COPII coat 
complex component (SEC24B), a protein involved in cargo packaging and intracellular 
trafficking, as the regulator of microglial ferroptosis and points to microglia as the main 
cause of ferroptosis-driven neurodegeneration [222]. The induction of ferroptosis as a trig-
gering factor for neurodegeneration is gaining increasing interest and is beginning to be 
recognized as a bona fide target for future development of treatment and prevention strat-
egies [223]. 

4.2.2. Cuproptosis 
Copper is an important cofactor of several mitochondrial respiration complexes. 

Therefore, cells heavily dependent on mitochondrial respiration are especially vulnerable 
to mitochondrial copper accumulation. In physiological conditions, copper homeostasis 
is tightly regulated by chaperones (ATOX1), storage proteins (CuL), export mechanisms 
(ATP7A/B), and mitochondrial antioxidant defense or mitophagy [224]. Deregulation of 
these mechanisms can cause copper accumulation in mitochondria, which ultimately trig-
gers a type of cell death known as cuproptosis. This type of cell death is regulated by 
ferredoxin 1 (FDX1), which reduces cupric (Cu2+) to cuprous (Cu+) ions. Cu+ binds to mi-
tochondrial lipoylated proteins that participate in the tricarboxylic acid (TCA) cycle, spe-
cifically dihydrolipoyl transacetylase (DLAT), an enzyme involved in the formation of the 
pyruvate dehydrogenase (PDH) complex. The lipoyl moiety enables direct copper binding 
to these proteins, favoring their aggregation and loss of function. Also, Cu+ disrupts the 
synthesis of iron–sulfur (Fe-S) clusters, redox-active cofactors in the ETC [225] (Figure 7). 

Cuproptosis has been related to cognitive impairment in mice exposed to copper 
overload [226]. Additionally, using integrated bioinformatics analyses and machine learn-
ing algorithms, recent studies have identified dysregulated cuproptosis-related genes 
(CRGs) linked to specific immune infiltration patterns in the substantia nigra of PD pa-
tients, suggesting that CRGs participate in PD progression through regulating immune 
cell infiltration and activity [227–229]. Similarly, two cuproptosis-related molecular clus-
ters were defined in AD [230]. Functional analysis showed that cluster-specific and differ-
entially expressed genes were closely related to various immune responses [230]. Aberrant 
intracellular copper accumulation may also modulate the microglial inflammatory re-
sponse. Microglia cells exposed to Cu display an increased presence of inflammatory me-
diators such as NF-kB, fueled by elevated levels of mtROS [231–233]. Furthermore, it has 
been shown that the redox activity of Cu is necessary to properly activate the NLRP3 in-
flammasome [233,234]. In AD, mitochondrial oxidative stress elicited by chronic Cu over-
load exacerbates the impact of Aβ on microglial activation [235,236], promoting a shift 
toward degenerative gene expression signatures [237]. 
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Figure 7. Molecular mechanisms of Cuproptosis. Extracellular copper can be transported within the 
cell via a copper ionophore (elesclomol, disulfiram, etc.). FDX1 reduces Cu2+ to Cu+, facilitating the 
release of copper ions in the mitochondrial matrix. FDX1 also binds to LIAS to promote lipoyl moi-
ety generation. Then, LIPT1 transfers the LA to target proteins, such as DLAT. Lipoylated mitochon-
drial proteins (specifically DLAT) exhibit a high affinity for Cu+ binding, which causes their aggre-
gation and loss of function. Moreover, excess of Cu+ reduces Fe-S cluster biosynthesis, destabilizes 
Fe-S cluster-containing proteins and contributes to overload Cu-mediated mitochondrial dysfunc-
tion and cell death. Copper importer SLC31A1 and exporters ATP7A/B can regulate the degree of 
cuproptosis sensitivity by controlling the intracellular concentration of copper ions. Also, GSH can 
serve as an endogenous copper chelator and protect against cuproptosis. Abbreviations: ATP7A/B, 
ATPase copper transporting alpha and beta; DLAT, dihydrolipoyl transacetylase; FDX1, ferredoxin 
1; GSH, glutathione; LA, lipoic acid; LIAS, lipoic acid synthase; LIPT1, lipoyltransferase 1; SLC31A1, 
solute carrier family 31 member 1. 

In recent years, several metal-chelating agents have been proposed as a potential 
therapeutic approach to restore metal ion balance in the brain and treat neurodegenerative 
diseases [238]. Prominent among them is a new generation of weaker chelating agents, 
known as metal protein-attenuating compounds (MPACs), which downregulate abnor-
mal metal ion levels without causing damage to other essential metal-dependent pro-
cesses. However, further research is still needed to improve their ability to cross the 
blood–brain barrier (BBB), understand their mode of action, and enhance their specificity, 
among other aspects. 

5. Concluding Remarks and Future Perspectives 
Collectively, there is compelling evidence that links an aberrant inflammatory re-

sponse with the onset and progression of neurodegeneration. Immune system changes 
are particularly relevant in age-related neurodegenerative diseases where other altera-
tions associated with aging, such as defective proteostasis and mitochondrial dysfunction, 
converge and may fuel neuroinflammation. 

Preclinical studies have demonstrated the benefits of blocking NLRP3 inflammasome 
signaling. Inflammasome inhibitors reduce misfolded protein aggregates associated with 
neurodegenerative diseases and alleviate cognitive decline, suggesting that targeting the 
NLRP3 inflammasome could represent a novel therapeutic approach for neurodegenera-
tive disorders. Various strategies to block this complex are under investigation, ranging 
from RNA-targeted therapies, nanobodies, and novel small molecule inhibitors [239]. 
However, a challenge for the field is the ability to translate findings from cellular and 
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animal models of neurodegeneration into effective drug development for clinical use. Our 
recent studies have emphasized the importance of neuro–glia crosstalk in regulating in-
flammasome-mediated immune response [152], which should also be taken into consid-
eration. Additionally, it is crucial to note that inflammasomes are necessary for a proper 
innate immune defense system. Therefore, finding a way to reduce NLRP3 activity with-
out harming the immune system presents a significant challenge. 

Beyond NLRP3 inhibitors, new therapeutic strategies focused on microglial modula-
tion or cGAS–STING inhibitors are emerging to treat neurodegenerative diseases 
[240,241]. Most microglial interventions aim to shift their phenotype from proinflamma-
tory or cytotoxic to more protective profiles, enhancing their phagocytic capacity, modu-
lating their metabolism, or reducing the synthesis and secretion of exosomes and proin-
flammatory cytokines [240]. Recent results from preclinical and phase I clinical trials using 
AL002c, a TREM2 agonist antibody, have demonstrated good brain penetrance and toler-
ability, and its efficacy is currently being tested in early AD [242]. On the other hand, the 
type I IFN response can be ameliorated by using inhibitors of cGAS, STING, or TBK1 [243]. 
Although there are currently no clinical trials of cGAS–STING inhibitors in neurological 
diseases, a recent phase I trial with a cGAS antagonist (VENT-03) is ongoing, with the 
further aim of testing it in autoimmune diseases like lupus [244]. This new clinical ap-
proach, along with its extended use in preclinical studies in neurological disorders [241], 
positions modulators of the type I IFN pathway as potential therapeutic targets for con-
trolling neuroinflammation. 

One plausible therapeutic intervention could involve antioxidant supplementation, 
given the prominent role of oxidative stress in regulating neuroinflammation at different 
levels. In this sense, many efforts have been focused on exploring the properties of natural 
and synthetic antioxidant compounds. However, despite their potential, the clinical use 
of antioxidants is still limited due to issues such as low bioavailability, easy degradation, 
and poor solubility in water. To address these problems, nanomedicine has been proposed 
as an innovative approach to deliver antioxidants to the brain [245]. Nanoparticles can 
encapsulate the drug, protecting it from degradation and increasing its bioavailability and 
pharmacokinetic properties. In addition, nanoparticles can be functionalized with specific 
ligands to target particular organelles, such as mitochondria [246–248]. The rapid ad-
vancement of nanomedicine offers the possibility of designing tailored nanocarriers for 
targeted antioxidant delivery to the brain, paving the way for innovative therapeutic so-
lutions. 
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