Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
3. Flavonoids
3.1. Flavones
3.2. Flavanols
3.3. Flavanones
3.4. Flavanonols
3.5. Anthocyanidins
3.6. Flavan-3-ols
3.7. Chalcones
3.8. Dihydrochalcones
3.9. Isoflavones
3.10. Xanthones
3.11. Biflavonoids
No. | Compounds | Taraxacum Species | Parts | References |
---|---|---|---|---|
1 | chrysin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
2 | 7,4′-dihydroxyflavone | fermented Taraxacum officinale | whole herbs | [68] |
3 | 6,2′-dihydroxyflavone | Taraxacum extractum | aerial parts | [70] |
4 | luteolin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,33,34,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29,40] | ||
Taraxacum mongolicum Hand.-Mazz | flowers | [45] | ||
Taraxacum officinale aggregate | flowers and leaves | [36] | ||
Taraxacum sinicum Kitag. | whole herbs | [38] | ||
Neo-Taraxacum siphonathum | whole herbs | [39] | ||
Taraxacum sect. Ruderalia | flowers and vegetative parts | [47] | ||
Taraxacum coreanum | roots, leaves and flowers | [62] | ||
Taraxacum ohwianum | roots, leaves and flowers | [62] | ||
Taraxacum officinale | roots, leaves and flowers | [62] | ||
5 | luteolin-7-O-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,35,41] |
Taraxacum sinicum Kitag. | whole herbs | [32] | ||
Taraxacum formosanum Kitam | whole herbs | [46] | ||
Taraxacum officinale WEB. ex WIGG. | roots and herbs juice | [48] | ||
Taraxacum sect. Ruderalia | flowers and vegetative parts | [47] | ||
Taraxacum falcilobum | whole herbs | [42] | ||
Taraxacum extractum | aerial parts | [70] | ||
6 | luteolin-7-O-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,33,34,43] |
Taraxacum mongolicum Hand.-Mazz | flowers | [45] | ||
Taraxacum coreanum | roots, leaves and flowers | [62] | ||
Taraxacum ohwianum | roots, leaves and flowers | [62] | ||
Taraxacum officinale | roots, leaves and flowers | [62] | ||
7 | luteolin-7-O-β-D-glucopyranoside | Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] |
Neo-Taraxacum siphonathum | whole herbs | [39,59] | ||
8 | luteolin-7-O-β-D-(6″-acetyl)-glucopyranoside | Taraxacum officinale | leaves | [66] |
9 | luteolin-7-diglucoside | Taraxacum officinale aggregate | flowers and leaves | [36] |
10 | luteolin-7-O-β-D-galactopyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] | ||
11 | luteolin-7-O-rutinoside | Taraxacum formosanum Kitam | whole herbs | [46] |
Taraxacum officinale WEB. ex WIGG. | roots and herbs juice | [48] | ||
Taraxacum officinale | leaves | [65] | ||
Taraxacum sect. Ruderalia | flowers and vegetative parts | [47] | ||
Taraxacum extractum | aerial parts | [70] | ||
12 | luteolin-7-O-β-D-rutinoside | Taraxacum mongolicum Hand.-Mazz | flowers | [26,45] |
13 | luteolin-7-O-β-D-gentiobioside | Taraxacum mongolicum Hand.-Mazz | flowers | [26,45] |
14 | luteolin-7-galacturonide | Taraxacum mongolicum Hand.-Mazz | whole herbs | [86] |
15 | luteolin-7-O-rhamnoside | Taraxacum officinale | leaves | [74] |
16 | lonicerin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
17 | luteolin-6,8-di-C-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [71] |
18 | luteolin-3′-O-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | flowers | [45] |
19 | luteolin-3′-O-β-D-glucopyranoside | Neo-Taraxacum siphonanthum | whole herbs | [60,61] |
20 | luteolin-3′,7-O-diglucoside | Taraxacum officinale | leaves | [74] |
21 | chrysoeriol | Taraxacum officinale aggregate | flowers and leaves | [26,36] |
Taraxacum officinale WEB. ex WIGG. | roots and herbs juice | [48] | ||
22 | luteolin-4′-O-glucoside | Taraxacum officinale WEB. ex WIGG. | roots and herbs juice | [48] |
23 | luteolin-4′-O-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | flowers | [45] |
24 | luteolin-4′-O-β-D-glucopyranoside | Neo-Taraxacum siphonanthun | whole herbs | [59,60] |
25 | apigenin | Taraxacum sinicum Kitag. | whole herbs | [26,27,32] |
26 | apigenin-6-C-glucoside-7-O-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
27 | apigenin-6,8-di-C-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
28 | apigenin-7-O-glucoside | Taraxacum sinicum Kitag. | whole herbs | [26,27,31,32] |
29 | apigenin-7-O-glucuronide | Taraxacum extractum | aerial parts | [70] |
30 | vitexin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
Taraxacum extractum | aerial parts | [70] | ||
31 | isovitexin-3″-O-glucopyranoside | Taraxacum officinale | leaves | [66] |
32 | genkwanin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] | ||
33 | hydroxygenkwanin | Taraxacum kok-saghyz Rodin | roots and leaves | [55] |
34 | genkwanin-4′-O-β-D-lutinoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] | ||
Neo-Taraxacum siphonanthum | whole herbs | [60] | ||
35 | baicalein | Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] |
36 | 5-hydroxy-6,7-dimethoxyflavonoid | Taraxacum kok-saghyz Rodin | aerial parts | [55] |
37 | hispidulin | Taraxacum kok-saghyz Rodin | aerial parts | [55] |
Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] | ||
38 | pedalitin | Fermented Taraxacum officinale | whole herbs | [68] |
39 | diosmetin | Taraxacum sinicum Kitag. | whole herbs | [26,38] |
40 | alquds | Taraxacum mongolicum Hand.-Mazz | aerial parts | [49] |
41 | nobiletin | Taraxaci Herba | roots | [54] |
42 | ladanein | Taraxacum officinale (L.) Weber | stems | [53] |
43 | 5,7,3′-trihydroxy-4′,5′-dimethoxy flavone | Taraxacum officinale F. H. Wigg | not mentioned | [64] |
44 | tricin | Taraxacum officinale F. H. Wigg | not mentioned | [64] |
Taraxacum officinale L. | fruits | [67] | ||
Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] | ||
Taraxacum extractum | aerial parts | [70] | ||
45 | apometzgerin | Taraxacum officinale L. | fruits | [67] |
46 | eupatilin | Taraxacum mongolicum | whole herbs | [71,72] |
47 | jaceosidin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
48 | tangeretin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
49 | isoetin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [29,31,33,43,63] |
aerial parts | [29] | |||
50 | isoetin-7-O-β-D-glucoside-2′-O-α-arabinoside | Taraxacum mongolicum Hand.-Mazz | whole herbs and aerial parts | [63] |
51 | isoetin-7-O-β-D-glucopyranosyl-2′-O-α-L-arabinopyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [31,33] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29,50,51] | ||
52 | isoetin-7-O-β-D-glucoside-2′-O-α-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs and aerial parts | [63] |
53 | isoetin-7-O-β-D-glucopyranosyl-2′-O-α-D-glucopyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29,50,51] | ||
54 | isoetin-7-O-β-D-glucoside-2′-O-β-xyloside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [63] |
Taraxacum formosanum | aerial parts | [63] | ||
55 | isoetin-7-O-β-D-glucopyranosyl-2′-O-β-D-xyloypyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29,50] | ||
56 | homoorientin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69,73,86] |
57 | isoscutellarein | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
58 | tetrahydroxyflavonoe-C-rhamnosyl-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
59 | salcolin A/B | Taraxacum officinale L. | fruits | [67] |
No. | Compounds | Taraxacum Species | Parts | References |
---|---|---|---|---|
60 | 3-hydroxyflavone | Taraxacum officinale | whole herbs | [68] |
61 | fisetin | Taraxacum kok-saghyz Rodin | roots and leaves | [55] |
62 | quercetin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,29,33,34,35,41] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [43,52] | ||
Neo-Taraxacum siphonathum | whole herbs | [39] | ||
Taraxacum mongolicum Hand.-Mazz | flowers | [45] | ||
63 | quercetin-3-O-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,37] |
Taraxacum extractum | aerial parts | [70] | ||
64 | quercetin-3-O-β-D-glucopyranoside | Neo-Taraxacum siphonathum | whole herbs | [39] |
Taraxacum coreanum Nakai | aerial parts | [79] | ||
65 | quercetin-3-O-β-galactoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,37] |
66 | quercetin-3-O-arabinoside | Taraxacum officinale | leaves | [74] |
67 | quercetin-3-O-α-D-arabinofuranoside | Neo-Taraxacum siphonathum | whole herbs | [26,31,39] |
Taraxacum coreanum Nakai | aerial parts | [79] | ||
68 | avicularin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
69 | quercetin-3-O-α-D-arabinopyranoside | Neo-Taraxacum siphonathum | whole herbs | [26,31,39] |
Taraxacum coreanum Nakai | aerial parts | [79] | ||
70 | quercetin-3-O-α-L-rhamnoside | Neo-Taraxacum siphonanthum | whole herbs | [60] |
Taraxacum coreanum Nakai | aerial parts | [79] | ||
71 | quercetin-3-O-α-L-rhamnopyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
72 | myricitrin | Taraxacum officinale | whole herbs | [68] |
73 | myricetin | Taraxacum officinale | leaves | [66] |
74 | quercetin-3-O-arabinose-glucoside | Taraxacum officinale | leaves | [74] |
Taraxacum brevicorniculatum | leaves | [77] | ||
75 | quercetin-3-(malonyl-glucoside)-glucoside | Taraxacum officinale | leaves | [74] |
76 | reynoutrin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
77 | quercetin-3-O-(6″-acetyl-glucoside) | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
78 | quercetin-3-O-glucuronide | Taraxacum extractum | aerial parts | [70] |
79 | quercetin-3,7-O-β-D-diglucopyranoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] | ||
80 | quercetin-3,4′-diglucoside | Taraxacum officinale | leaves | [74] |
81 | quercetin-7-O-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | flowers | [26,45] |
82 | quercetin-7-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside] | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] | ||
83 | quercetin-3′,4′,7-trimethylether | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [40] | ||
84 | rutin | Taraxacum sinicum Kitag. | whole herbs | [26,27,31,32] |
Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] | ||
Taraxacum extractum | aerial parts | [70] | ||
85 | artemetin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,27,29,31,33,34] |
Taraxacum mongolicum Hand.-Mazz | Aerial parts | [29] | ||
86 | isorhamnetin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [56] |
87 | isorhamnetin-3-O-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | flowers | [26,45] |
88 | isorhamnetin-3,7-O-β-D-diglucoside | Taraxacum mongolicum Hand.-Mazz | flowers | [26,45] |
89 | kaempferol | Taraxaci Herba | not mentioned | [44] |
90 | kaempferol-3-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] |
91 | kaempferol-3-O-β-D-glucopyranoside | Taraxacum officinale | leaves | [66] |
92 | kaempferol-3-O-rutinoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69,73] |
Taraxacum extractum | aerial parts | [70] | ||
93 | kaempferol-3-O-neohesperiidoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
94 | kaempferol-3-O-robinobioside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
95 | kaempferol-3-O-rhamnoside | Taraxacum officinale | leaves | [66] |
96 | kaempferol-3-O-α-L-rhamnopyranoside-(1→6)-β-D-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [75] |
97 | nicotiflorin | Taraxacum coreanum Nakai | aerial parts | [79] |
98 | kaempferol-3-O-glucoside-7-O-rhamnoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
99 | kaemperfol-3,7-diglucoside | Taraxacum officinale | leaves | [66] |
100 | kaempferol-3-O-β-D-glucoside-7-O-α-L-arabinofuranoside | Taraxacum officinale | leaves | [66] |
101 | hyperseroside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] |
102 | 3,5,7,3′,4′-pentahydroxy 8-C-methyl flavone | Taraxacum officinale (L.) Weber | stems | [53] |
103 | 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-chromen-4-one | Taraxaci Herba | not mentioned | [78] |
104 | gossypetin | Taraxacum bessarabicum | aerial parts | [76] |
105 | gossypetin-8-O-glucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
106 | 3,5,7,3′,4′-pentahydroxy-8-C-methyl flavone 7-O-β-D-xylopyranosyl (1→4)-O-β-D glucopyranosyl 3′-O-α-L-rhamnopyranoside | Taraxacum officinale (L.) Weber | stems | [31,53] |
No. | Compounds | Taraxacum Species | Parts | References |
---|---|---|---|---|
107 | 5,7-dihydroxyflavanone | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
108 | naringenin | Taraxacum officinale | leaves | [81] |
Taraxacum mongolicum | leaves | [80] | ||
Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] | ||
Taraxacum extractum | aerial parts | [70] | ||
109 | naringenin-7-O-glucoside | fermented Taraxacum officinale | whole herbs | [68] |
110 | hesperetin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [31,33,43] |
111 | hesperidin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [26,29,31,33,43,52] |
Taraxacum mongolicum Hand.-Mazz | aerial parts | [49] | ||
112 | hesperetin-7-glucuronide | Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] |
113 | hesperetin-5′-O-β-rhamnoglucoside | Taraxacum mongolicum Hand.-Mazz | whole herbs | [52] |
114 | 4′,5,7-trihydroxy-3′-methoxyflavanone | Taraxacum mongolicum Hand.-Mazz | aerial parts | [29] |
115 | liquiritigenin | fermented Taraxacum officinale | whole herbs | [68] |
116 | liquiritin | fermented Taraxacum officinale | whole herbs | [68] |
117 | farrerol | fermented Taraxacum officinale | whole herbs | [68] |
118 | garbanzol | Taraxacum officinale | whole herbs | [68] |
119 | toxifolin | Taraxaci Herba | roots | [54] |
Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] | ||
120 | (2R,3R)-(+)-4′-O-methyldihydro-quercetin | Neo-Taraxacum siphonanthum | whole herbs | [60] |
121 | (2R,3R)-(+)-4′,7-di-O-methyldihydro-quercetin | Neo-Taraxacum siphonanthum | whole herbs | [60] |
122 | dihydromyricetin | Fermented Taraxacum officinale | whole herbs | [68] |
123 | silymarin | Taraxaci Herba | roots | [54] |
No. | Compounds | Taraxacum Species | Parts | References |
---|---|---|---|---|
124 | cyanidin | Taraxaci Herba | roots | [82] |
fermented Taraxacum officinale | whole herbs | [68] | ||
125 | cyanidin-3-glucoside | Taraxacum officinale | leaves | [83] |
Taraxacum brevicorniculatum | leaves | [77] | ||
126 | delphinidin-3-O-glucoside | Taraxacum officinale | whole herbs | [68] |
127 | cyanidin-3-(6-malonyl)-glucoside (A-1) | Taraxacum officinale | leaves | [83] |
128 | cyanidin-3-(6-malonyl)-glucoside (A-2) | Taraxacum officinale | leaves | [83] |
129 | peonidin-3-(6-malonyl)-glucoside | Taraxacum officinale | leaves | [83] |
130 | catechin | Taraxaci Herba | extracts | [44] |
131 | (+)-catechin | Taraxacum officinale | whole herbs | [84] |
132 | (−)-epicatechin | Taraxacum officinale | whole herbs | [84] |
133 | (−)-epigallocatechin | Taraxacum officinale | whole herbs | [84] |
134 | (−)-epigallocatechingallate | Taraxacum officinale | whole herbs | [84] |
No. | Compounds | Taraxacum Species | Parts | References |
---|---|---|---|---|
135 | butein | fermented Taraxacum officinale | whole herbs | [68] |
136 | xanthium | fermented Taraxacum officinale | whole herbs | [68] |
137 | loureirin A | Taraxacum kok-saghyz Rodin | roots and leaves | [55] |
138 | isoliquiritigenin | fermented Taraxacum officinale | whole herbs | [68] |
139 | phloretin | Taraxacum mongolicum Hand.-Mazz | whole herbs | [73] |
140 | daidzein | Taraxacum officinale | whole herbs | [68] |
141 | 2′-hydroxyxydaidzein | fermented Taraxacum officinale | whole herbs | [68] |
142 | genistein | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
Taraxacum extractum | aerial parts | [70] | ||
143 | glycitein | Taraxacum mongolicum Hand.-Mazz | whole herbs | [69] |
144 | tectorigenin | Taraxacum kok-saghyz Rodin | roots and leaves | [55] |
Taraxacum extractum | aerial parts | [70] | ||
145 | iristectorigenina | Taraxacum kok-saghyz Rodin | roots and leaves | [55] |
146 | pseudobaptigenin | Taraxacum extractum | aerial parts | [70] |
147 | formononetin | Taraxacum extractum | aerial parts | [70] |
148 | sophoricoside | Taraxacum coreanum Nakai | aerial parts | [79] |
149 | genistin | Taraxacum extractum | aerial parts | [70] |
150 | mangostenone B | Taraxaci Herba | not mentioned | [78] |
151 | philonotisflavone | Taraxacum officinale L. | fruits | [67] |
152 | luteolin-luteolin | Taraxacum officinale L. | fruits | [67] |
153 | luteolin-apigenin | Taraxacum officinale L. | fruits | [67] |
154 | luteolin-chrysoeriol | Taraxacum officinale L. | fruits | [67] |
155 | amentoflavone | Taraxacum officinale | whole herbs | [68] |
No. | Compounds | Methods | Columns | Mobile Phases | Flow Rate (mL/min) | Ionization Modes | References |
---|---|---|---|---|---|---|---|
1 | 62, 89, 130 | HPLC | SCION-C18 (4.6 mm × 250 mm, 0.45 μm) | A: methanol, B: 0.2% formic acid solution | 0.3~1.0 | no mass spectrometry | [44] |
2 | 41, 84, 119, 123 | UPLC-Q-Exactive-Orbitrap MS | Hypersil GOLD aQ (2.1 mm × 100 mm, 1.9 μm) | A: 0.1% formic acid-water, B: 0.1% formic acid-acetonitrile | 0.3 | ESI, positive and negative | [54] |
3 | 4, 33, 36, 37, 61, 89, 144, 145 | UHPLC-Q/Orbitrap HRMS | Waters ACQUITY BEH C18 (2.1 mm × 100 mm, 1.7 μm) | A: 0.1% formic acid-water, B: 0.1% formic acid-acetonitrile | 0.5 | APCI, positive and negative | [55] |
4 | 8, 31, 73, 91, 95, 99, 100 | UHPLC-QTOF-MS/MS | not mentioned | A: 0.1% formic acid water, B: 0.1% formic acid: acetonitrile | 0.8 | ESI, negative | [66] |
5 | 4, 5, 18, 21, 22, 25, 44, 45, 151, 152, 153, 154 | UHPLC-PDA-CAD-ESI-QTOF-MS/MS | HSS C18 (2.1 mm × 100 mm, 1.7 μm) | A: 0.1% formic acid water, B: 0.1% formic acid acetonitrile | 0.4 | ESI, positive and negative | [67] |
6 | 2, 35, 38, 60, 72, 84, 109, 115, 116, 117, 118, 122, 124, 126, 135, 136, 138, 140, 141, 155 | LC-ESI-MS/MS | Waters ACQUITY UPLC HSS T3 C18 (2.1 mm × 100 mm, 1.8 μm) | A: 0.04% acetic acid in water, B: 0.04% acetic acid in acetonitrile | 0.4 | ESI, positive | [68] |
7 | 1, 26, 27, 30, 35, 56, 76, 77, 92, 105, 107, 108, 142, 143 | HPLC-Q-TOF-MS | HPLC ODS C18 (4.6 mm × 250 mm, 5 μm) | A: acetonitrile, B: 0.1% formic acid water | 1.0 | ESI, negative | [69] |
8 | 3, 5, 11, 29, 30, 44, 63, 78, 84, 92, 108, 142, 144, 146, 147, 149 | UHPLC-HRMS/MS | Accucore UHPLC Column C18 (2.1 mm × 150 mm, 2.6 μm) | A: ultrapure water containing 500 µL/L formic acid (pH 2.5), B: methanol with 500 µL/L formic acid | 0.3 | ESI, negative | [70] |
9 | 4, 6, 13, 25, 39, 46, 62, 63, 87, 88 | HPLC-DAD-MS/MS | Agilent ZORBAX Eclipse Plus C18 (4.6 mm × 250 mm, 5 μm) | A: 0.1% formic acid water, B: methanol | 1.0 | negative | [71] |
10 | 16, 37, 44, 47, 48, 56, 57, 58, 68, 71, 92, 93, 94, 98, 119, 139 | UPLC-MS/MS | ACQUITY UPLC HSS T3 C18 (2.1 mm × 100 mm, 1.8 μm) | A: 0.04% acetic acid water, B: 0.04% acetic acid acetonitrile | 0.4 | not mentioned | [73] |
11 | 103, 150 | UPLC-QTOF MS | ACQUITY UPLC BEH C18 (2.1 mm × 100 mm, 1.7 μm) | A: 0.1% formic acid water, B: 0.1% formic acid: acetonitrile | 0.4 | ESI, positive and negative | [78] |
12 | 4, 6, 64, 67, 69, 70, 97, 148 | UHPLC-ESI-MS | Waters Cortex T3 (2.1 mm × 150 mm, 1.6 μm) | A: 0.1% formic acid water, B: 0.1% formic acid: acetonitrile | 0.25 | ESI, positive | [79] |
13 | 125, 127, 128, 129 | LC-ESI-HR-QTOF-MS | Zorbax Eclipse Plus C18 (2.1 mm × 50 mm, 1.8 μm) | A: 0.1% formic acid water, B: 0.1% formic acid acetonitrile | 0.5 | ESI, positive | [83] |
14 | 131, 132, 133, 134 | HPLC | Symmetry C18 (4.6 mm × 250 mm, 5 μm) | A: 50 mM ammonium phosphate monobasic (NH4H2PO4), pH 2.6; B: 80:20 (v/v) acetonitrile/50 mM pH 2.6; C: 200 mM phosphoric acid (H3PO4), pH 1.5 | 1.0 | no mass spectrometry | [84] |
15 | 4, 62, 64, 67, 69, 70 | HPLC-ESI-MS/MS | Zorbax SB C18 (4.6 mm × 250 mm, 5 μm) | A: methanol, B: 0.1% acetic acid solution | 1.0 | ESI, negative | [85] |
4. Antioxidant Activities and Mechanisms
4.1. In Vitro Antioxidant Activities and Mechanisms
4.1.1. Free Radical Scavenging
DPPH Radical Scavenging
ABTS Radical Scavenging
Hydroxyl Radical Scavenging
Superoxide Anion Radical Scavenging
4.1.2. Ion-Reducing Power Determination
4.1.3. Antioxidant Assay Kits
4.1.4. Lipid Peroxidation Inhibition
4.1.5. Cell Experiments
4.1.6. Density Functional Theory Method
No. | Extracts/Compounds | Sources | Assays | Results | References |
---|---|---|---|---|---|
1 | Dandelion flavonoids | Research office of natural drug research center, school of pharmacy, Jilin University * | DPPH, ABTS | Both total flavonoids from dandelion stems and leaves showed good antioxidant capacity with EC50 values of 54.88 μg/mL and 123.50 μg/mL for DPPH, 229.41 μg/mL and 559.07 μg/mL for ABTS. | [96] |
2 | Probiotic synergistic dandelion fermentation | Taraxacum mongolicum Hand.-Mazz. | DPPH | The DPPH clearance rate after fermentation was 90.7%, which was 1.28 times higher than before fermentation. | [97] |
3 | Dandelion flavonoids | Shanxi Guanchen Biotechnology Co., Ltd. (Xi’an, China) * | DPPH | After 60 days of silage, different amounts of dandelion flavonoids significantly increased the DPPH free radical scavenging ability of Caragana korshinshii. The antioxidant activity of Caragana korshinshii silage was the best when the addition of dandelion flavonoids was 2.0%. | [14] |
4 | Different fractions of dandelion flowers extracts | Taraxacum mongolicum Hand.-Mazz. | DPPH, ·OH, O2•− | Different fractions of dandelion flower extracts had different antioxidant effects, and the order was as follows: ethyl acetate fraction > n-butanol fraction > water fraction > petroleum fraction. | [98] |
5 | Dandelion total flavonoids | Taraxaci Herba | DPPH, ·OH | When the concentration of flavonoids extract was 0.7 mg/mL, the clearance rates of DPPH and ·OH were 50.11% and 59.00%, respectively. | [99] |
6 | Dandelion total flavonoids | Taraxacum mongolicum Hand.-Mazz. | DPPH, ·OH | The IC50 value of DPPH free radical and ·OH scavenging rate was 0.8492 mg/mL and 1.0717 mg/mL, respectively. | [100] |
7 | Dandelion total flavonoids | Taraxacum mongolicum Hand.-Mazz. | DPPH, ABTS, ·OH, O2•− | The DPPH radical scavenging ability of dandelion alcohol extract showed a trend of first increasing and then decreasing as the light intensity decreases. The scavenging ability was highest in the 80% transmittance treatment, and lowest in the 20% transmittance treatment, with no significant difference from the 40% transmittance treatment. There was no significant difference in the ability of scavenging ABTS free radicals between the natural light group and the 80% and 60% light transmittance treatments. The ability of scavenging ABTS free radicals was high under 60% light transmittance treatment. The ability of scavenging ·OH showed a trend of first increasing and then decreasing. The ability of scavenging ·OH was highest in the 60% transmittance treatment. And the ability of scavenging ·OH in the 60% transmittance treatment, which was significantly higher than other treatments. There was no significant difference in the ability of scavenging O2•− among different transmittance treatments. | [89] |
8 | 95% Methanol extracts from dandelion different plant parts (total flavonoids) | Taraxacum officinale F. H. Wigg. | DPPH | The antioxidant activities of the methanol extracts from all the plant parts dose-dependently increased. DPPH free radical scavenging activity was highest in flower extracts (IC50 = 624.3 mg/kg), and followed by leaves, roots, and stalks extracts. | [4,107] |
9 | 95% Ethanol and subsequent water extracts from dandelion roots (total flavonoids) | Taraxacum officinale L. Weber ex F.H. Wigg. | DPPH, FRAP | The subsequent water extracts of roots from the Parvomay location demonstrated the highest antioxidant activity (DPPH, 83.1 ± 3.2 mg TE/g dw; FRAP, 46.9 ± 1.3 mg TE/g dw), while water extracts from Plovdiv location showed high activity defined only by FRAP assay: 52.9 ± 0.3 mg TE/g dw. | [4,90] |
10 | 80% Methanol extracts (total flavonoids) | Taraxacum obovatum (Willd.) DC., Taraxacum marginellum H. Lindb., Taraxacum hispanicum H. Lindb., Taraxacum lambinonii Soest and Taraxacum lacistrum Sahlin | DPPH, O2•− | Taraxacum lambinoni had the highest total phenolic and flavonoid contents, and the strongest DPPH free radical scavenging activity, with an IC50 value of 0.083 ± 0.006 mg/mL; Taraxacum obovatum had the strongest scavenging activity for O2•−, with an IC50 value of 0.199 ± 0.015 mg/mL. | [4,93] |
11 | Dandelion leaf extract (total flavonoids) | Taraxacum officinale Weber | DPPH | The EC50 value for DPPH radical scavenging was 207 ± 0.84 µg/mL. | [87] |
12 | Dandelion flavonoids, rutin, quercetin | Taraxacum mongolicum Hand.-Mazz. | O2•−, ·OH | The activities of dandelion total flavonoids in scavenging O2•− and ·OH were stronger than that of rutin, quercetin, and positive control vitamin E. Dandelion flavonoids had strong activity in scavenging ROS. | [92] |
13 | Dandelion total flavonoids, rutin | Taraxacum mongolicum Hand.-Mazz. | O2•− | 1 mg flavonoid extract was equivalent to 21.41 SOD active units, and 1 mg rutin was equivalent to 13.89 SOD active units. Both dandelion flavonoid extracts and rutin had strong ability to scavenge O2•− in vitro. | [105] |
14 | Hesperetin-5′-O-β-rhamnoglucoside, hesperetin-7-glucuronide, kaempferol-3-glucoside, baicalein, hyperseroside | Taraxacum mongolicum Hand.-Mazz. | DPPH, DFT | The IC50 value of DPPH scavenging activity of hesperetin-5′-O-β-rhamnoglucoside was 8.72 mg/L, DPPH radical scavenging activity sequence: quercetin (8.07 ± 0.67 mg/L) > hesperetin-5′-O-β-rhamnoglucoside (8.72 ± 0.88 mg/L) > kaempferol-3-glucoside (13.49 ± 1.02 mg/L) > baicalein (15.5 ± 0.98 mg/L) > hesperetin-7-glucuronide (22.1 ± 0.76 mg/L) > hysperoside (31.39 ± 0.65 mg/L) > rutin (31.54 ± 0.79 mg/L). | [52] |
15 | Isoetin-7-O-β-D-glucopyranosyl-2′-O-α-D-glucopyranoside, quercetin, isoetin-7-O-β-D-glucopyranosyl- 2′-O-β-D-xyloypyranoside | Taraxacum mongolicum Hand.-Mazz. | DPPH | The IC50 values were 21.57 ± 2.53 µmol/L, 5.53 ± 0.76, and 19.76 ± 2.83 µmol/L, respectively. | [29] |
16 | Quercetin, luteolin, rutin | Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China) * | ABTS, reducing power | The antioxidant activities of quercetin alone significantly decreased at 65 °C, 75 °C, and 90 °C, while the antioxidant activities of β-LG-quercetin complex was significantly higher than that of quercetin alone at 25 °C, 65 °C, 75 °C, and 90 °C. Therefore, β-LG slowed down the decrease of antioxidant activities of quercetin. Luteolin showed no significant changes in antioxidant activities within the range of 25 °C, 65 °C, 75 °C, and 90 °C, while β-LG-luteolin showed the greatest decrease compared with luteolin alone at 75 °C. The antioxidant activities of rutin increased as the temperature increasing, and the antioxidant activities of β-LG-rutin significantly decreased at 75 °C compared with rutin alone. | [15] |
17 | Dandelion flavonoids | Shanxi Guanchen Biotechnology Co., Ltd. * | Antioxidant assasy kits provided by Nanjing Jiancheng Bioengineering Institute | Compared with 0% dandelion flavonoids addition group, different amounts of dandelion flavonoids could improve the antioxidant activity of C. silage. During the whole silage process, T-AOC decreased first and then stabilized. The activity of GSH-Px increased first and then stabilized. SOD activity didn’t change much during the whole silage process. After 60 days of silage, different amounts of dandelion flavonoids significantly increased the T-AOC and GSH-Px activity of Caragana korshinshii silage. The T-AOC of 2.0% dandelion flavonoids addition group was the highest (2.90 mmol/g), and the SOD activity of 2.0% dandelion flavonoids addition group was significantly higher than that of 0% dandelion flavonoids addition group. The antioxidant of Caragana korshinshii silage was the best when the addition of dandelion flavonoids was 2.0%. | [14] |
18 | Dandelion total flavonoids | Shanxi Guanchen Biotechnology Co., Ltd. * | Antioxidant assay kits provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China) | After 60 days of Caragana korshinshii silage, the T-AOC, SOD, and CAT activities of 2% dandelion flavonoids addition group were higher than that of 0% dandelion flavonoids addition group and 1% dandelion flavonoids addition group, and the T-AOC and CAT activities of 1% dandelion flavonoids addition group were higher than that of 0% dandelion flavonoids addition group. The GSH-Px activities of 1% dandelion flavonoids addition group and 2% dandelion flavonoids addition group were higher than that of 0% dandelion flavonoids addition group. | [88] |
19 | 80% Methanol extracts (total flavonoids) | Taraxacum obovatum (Willd.) DC., Taraxacum marginellum H. Lindb., Taraxacum hispanicum H. Lindb., Taraxacum lambinonii Soest and Taraxacum lacistrum Sahlin | ROS measurement in HepG2 cells | The antioxidant activities of 5 dandelion extracts were dose-dependent. The response patterns were different for each species, three of them being unable to reverse the ROS concentration increase generated by the oxidizing agent (H2O2): Taraxacum obovatum, Taraxacum hispanicum and Taraxacum lacistrum. Taraxacum marginellum was the most efficient extract reducing intracellular ROS levels. | [4,93] |
20 | Dandelion, rutin, quercetin | Taraxacum mongolicum Hand.-Mazz. | H2O2 and UV induced hemolysis test | The activity of dandelion total flavonoids in H2O2 induced hemolysis test was stronger than that of rutin, quercetin, and positive control vitamin E. The activity of dandelion total flavonoids in UV induced hemolysis test slightly weaker than that of positive control vitamin E. Dandelion flavonoids had strong activity in scavenging ROS. | [92] |
21 | Total flavonoids (TOFs) | Taraxacum officinale | DPPH, ABTS, CB, FTC | In the DPPH assay, the IC50 values of TOFs, BHT, and vitamin C were 180.11 ± 7.85, 69.13 ± 4.32, and 77.98 ± 3.68 μg/mL, respectively. In the ABTS assay, the IC50 values of TOFs, BHT, and vitamin C were 10.18 ± 1.07, 2.02 ± 0.18, and 1.92 ± 0.04 μg/mL, respectively. In the CB assay, the lipid peroxidation inhibitions of TOFs, BHT, and vitamin C were 55.78%, 96.37%, and 4.30%, respectively. In the FTC assay, TOFs presented a strong antioxidant activity, but it was less efficient than BHT. | [101] |
22 | 70% Ethanol extracts | Taraxacum officinale | O2•−, TBA | The hydroalcoholic extract of T. officinale exhibited the most effective radical scavenging ability at 830.78 µM TE/g, dw. And it was effective in protecting liposomes from lipid peroxidation with the IC50 value of 98.49 ± 6.67 µg/mL. | [91] |
23 | Methanolic extract | Taraxacum offcinale (L.) | DPPH, TRP, TAC | The methanolic extract revealed the highest DPPH activity (IC50, 32.80 ± 9.66 µg/mL), reducing potential (0.53 ± 0.02 mg/g), and TAC (19.42 ± 0.97 mg/g) as compared to the acetone and n-hexane extracts. | [102] |
24 | Water extract formula (WEF) derived from three TCM herbs | Taraxacum officinale | DPPH, ABTS, FRAP | In the DPPH assay, the IC50 values of water extract from T. officinale and WEF were 0.41 ± 0.02 and 0.39 ± 0.02 mg/mL, respectively. In the ABTS assay, Trolox equivalent antioxidant capacities of water extract from T. officinale and WEF were 276.7 ± 45.8 and 454.2 ± 15.7 mM/mg, respectively. In the FRAP assay, ascorbic acid equivalent antioxidant capacities of water extract from T. officinale and WEF were 536.1 ± 49.0 and 485.1 ± 50.9 mM/mg, respectively. | [103] |
25 | 70% Ethanol extracts | Taraxacum officinale | DPPH, ABTS, FRAP | The extract of leaves showed higher antioxidant potential compared to the extract of roots for all parameters measured. The extract of leaves possessed a significantly (p < 0.01) higher DPPH (EC50 0.37 compared to 1.34 mg/mL), ABTS (407.5 ± 0.14 compared to 171.5 ± 1.01 µM TE/mg of extract) and FRAP (156 ± 5.28 compared to 40 ± 0.3 µg VC/mg extract) capacities than the extract of roots. | [104] |
26 | Methanol extracts | Taraxacum officinale | TBA, O2•− | Leaves and petals 50% methanol fractions could be a new source of natural compounds showing cooperative activities: antioxidant, anti-platelet and anticoagulant, beneficial in the prevention and treatment of cardiovascular diseases, which are often associated with changes of hemostasis and oxidative stress. | [106] |
4.2. In Vivo Antioxidant Activities and Mechanisms
4.2.1. Regulating mRNA Levels of Antioxidant Genes to Improve Antioxidant Capacity
No. | Extracts/Compounds | Sources | Experimental Subjects | Results | References |
---|---|---|---|---|---|
1 | 95% Dandelion flavonoids | Nanjing Daosifu Biotechnology Co., Ltd. (Nanjing, China) * | 5-Week-old SPF ICR male mice | Dandelion flavonoids could make the activities of SOD, GSH-Px, and T-AOC in mouse serum and liver tissue significantly increased, the content of MDA reduced significantly and the expression of SOD-1, SOD-2, GPX-1, GPX-4 mRNA increased significantly. Dandelion flavonoids could improve the antioxidant capacity of mice and had anti-aging effects. | [111] |
2 | Dandelion flavonoids extracts | Research office of natural drug research center, school of pharmacy, Jilin university * | COPD induced by cigarette smoke (female SPF-grade BALB/c mice) | Dandelion total flavonoids could upregulate the mRNA levels of antioxidant genes (Nrf2 and SOD1), could regulate the expression levels of proteins related to the Nrf2 signaling pathway, might play a protective role in COPD induced by cigarette smoke by regulating Nrf2 antioxidant signaling pathway. | [96] |
3 | Anti-aging dandelion health product composition (include dandelion flavonoids) | Jiangsu Yichao Biotechnology Co., Ltd. (Huaian, China) * | Aging mice caused by D-galactose | The active ingredient composition of the health product could significantly reduce the content of MDA in aging mice caused by D-galactose, and could significantly improve the activities of CAT, SOD, T-AOC, GSH-Px enzymes in serum and brain tissue of aging mice. The health product composition could be used as anti-aging drugs or anti-aging health products. | [108] |
4 | Dandelion total flavonoids | Xian Aoruite Biotechnology Co., Ltd. (Xi’an, China) * | CCl4 induced liver injury in Wistar rats | Dandelion total flavonoids could increase the levels of SOD and GSH-Px, and reduce the levels of MDA in rat liver tissue, and improve pathological damage in rat liver tissue. | [109] |
5 | Dandelion leaf extracts (total flavonoids) | Taraxacum officinale Weber | Sodium dichromate-induced liver injury in rats | The levels of SOD, CAT, GSH-Px in the liver of sodium dichromate-induced liver injury rats increased after adding dandelion leaf extract, while the levels of MDA significantly decreased. | [87] |
6 | Dandelion flavonoids | Shanxi Jinkangtai Biotechnology Co., Ltd. (Xixianxinqu, China) * | LPS-induced Channa argus | Adding 50 mg/kg or 100 mg/kg dandelion flavonoids to the diet could significantly increase T-AOC, CAT, and ASA levels in the intestine of LPS induced C. argus, as well as T-AOC, SOD, CAT, GSH-Px, GR, and ASA levels in the liver and pancreas, and significantly reduce MDA and PC levels. Adding 100 mg/kg dandelion flavonoids to the diet could significantly upregulate the expression of antioxidant related genes (nrf2, gpx, gst, cat) and heat shock proteins (hsp70, hsp90). Dandelion flavonoids could protect C. argus from lipopolysaccharide induced inflammatory damage, improve antioxidant status, and suggest that dandelion flavonoids can be added as an antioxidant to aquatic animal feed. | [110] |
7 | Dandelion extract (polysaccharides 5.09%, flavonoids 2.15%) | A certain biotechnology company (batch number: BWPGY20210907) * | Male Kebao-500 broilers | The activity of GSH-Px in 21-day-old broilers treated with dandelion extract significantly increased. Adding 0.1% dandelion extract alone to the diet could enhance the immune function, improve antioxidant capacity, and thus improve growth performance of broilers. Moreover, the simultaneous addition of danshen extract and dandelion extract was more effective than adding them alone. | [112] |
8 | Water extract formula (WEF) derived from three TCM herbs | Taraxacum officinale | CCl4 induced hepatic damage in rats | The animal experiments revealed that the WEF administration could lower MDA and GSH levels, and reform or resume SOD content as well as improve GSH-Px, GR and CAT activities in CCl4 induced rats. | [103] |
9 | 70% Ethanol extracts | Taraxacum officinale | Nω-nitro-L-arginine methyl ester induced hypertensive rats | The extract of leaves and the extract of roots significantly reduced MDA levels in targets organs. | [104] |
4.2.2. Regulating Antioxidant Enzyme Activities to Improve Antioxidant Capacity
5. Potential Application
No. | Flavonoids-Containing Extracts | Major Flavonoids Identified from Extracts | Potential Application | Effects | References |
---|---|---|---|---|---|
1 | 50% ethanol extract of dandelion | 4, 6, 12, 62, 87, 111 | medicine | anticancer | [28] |
2 | dandelion extract | 103, 150 | medicine | anticancer | [78] |
3 | not mentioned | 4, 21, 43, 44 | medicine | α-glucosidase inhibitory | [64] |
4 | 60% hydroethanolic extract of dandelion | 8, 31, 73, 91, 95, 99, 100 | medicine | antioxidant, anti-obesity | [66] |
5 | dandelion extract | 3, 5, 11, 29, 30, 44, 63, 78, 84, 92, 108, 142, 144, 146, 147, 149 | medicine | antioxidant, hepatoprotective | [70] |
6 | hydro-methanolic extract of dandelion | 49, 89, 108, 111 | medicine | antimicrobial | [80] |
7 | hydromethanolic extract of dandelion | 49, 89, 108, 111 | medicine | antidepressant | [81] |
8 | dandelion leaf extract | not mentioned | medicine | hepatoprotective | [87] |
9 | total flavonoids from dandelion | 4, 6, 12, 21, 28, 62, 83, 84 | medicine | antioxidant | [96] |
10 | dandelion methanolic extract | not mentioned | medicine | antioxidant, cytotoxic, and phytotoxic | [102] |
11 | formula derived from Maydis stigma, Nelumbo nucifera and dandelion | not mentioned | medicine | antioxidant and hepatoprotective | [103] |
12 | dandelion leaf extract | not mentioned | medicine | antioxidant | [104] |
13 | dandelion leaves and petals 50% methanol fractions | not mentioned | medicine | antioxidant and anticoagulant | [106] |
14 | anti-aging dandelion health product | not mentioned | drug or health product | anti-aging | [108] |
15 | dandelion flavonoids | not mentioned | medicine | hepatoprotective | [109] |
16 | dandelion fermented stock solution | 4, 62, 84 | beverage | antioxidant | [15] |
17 | crude extract from dandelion and fermented dandelion | 2, 35, 38, 60, 72, 84, 109, 115, 116, 117, 118, 122, 124, 126, 135, 136, 138, 140, 141, 155 | food additive | antioxidant | [68] |
18 | 95% ethanol and subsequent water extracts from dandelion roots | not mentioned | food additive | antioxidant | [90] |
19 | dandelion water extract added in basic feed | not mentioned | feed | increase milk production, milk protein content, and milk fat content in cows, reduce somatic cell count in milk, increase fecal microbial diversity and relative abundance, and positively regulate the body’s antioxidant capacity and immune function | [3] |
20 | dandelion grass powder added in basic feed | not mentioned | feed | reduce the incidence rate and mortality of broilers | [12] |
21 | dandelion flavonoids added in basic feed | not mentioned | feed | antioxidant, enhance the immune function and improve growth performance of broilers | [112] |
22 | dandelion flavonoids add in Caragana korshinskii silage | not mentioned | feed | antioxidant, improve nutritional and quality and fermentation quality, optimize the microbial community structure, promote the growth of beneficial bacteria, and inhibit the growth of bad bacteria | [14] |
23 | 2% total flavonoids from dandelion | not mentioned | feed | promote the fermentation quality and antioxidant activity of Caragana korshinskii Kom. silage | [88] |
24 | flavonoids from fermented dandelion | 16, 37, 44, 47, 48, 56, 57, 58, 68, 71, 92, 93, 94, 98, 119, 139 | feed additive | antioxidant | [73] |
25 | dandelion flavonoids | not mentioned | feed additive | antioxidant, anti-inflammatory | [110] |
26 | complexes of dandelion extract and Salvia miltiorrhiza volatile oil | not mentioned | cosmetic | antioxidant, antibacterial, no obvious cytotoxicity, better skin permeability | [13] |
5.1. Potential Application in Medicine
5.2. Potential Application in Functional Foods
5.3. Potential Application in Feed
5.4. Potential Application in Cosmetics
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- National Pharmacopoeia Commission. Pharmacopoeia of the Peoples Republic of China; Section 1; China Medical Science Press: Beijing, China, 2020; pp. 367–368. [Google Scholar]
- Yu, J.B.; Yue, T.J.; Xue, J. Nutritional and functional characteristics of dandelion and its product development status. Spec. Econ. Anim. Plants 2024, 27, 164–167+177. [Google Scholar]
- Li, Z.J.; Meng, R.; Yang, W.J.; Feng, W.; Li, M.X.; Chen, Z.Y.; Wang, X.P.; Mao, L.J.; Chen, N. Effects of dandelion water extract on milk production performance, serum biochemical indexes, milk somatic cell count and fecal microbial diversity of dairy cows under heat stress. Chin. J. Anim. Nutr. 2024, 36, 1003–1019. [Google Scholar]
- Fan, M.; Zhang, X.; Song, H.P.; Zhang, Y.K. Dandelion (Taraxacum genus): A review of chemical constituents and pharmacological effects. Molecules 2023, 28, 5022. [Google Scholar] [CrossRef] [PubMed]
- Hu, C. Taraxacum: Phytochemistry and health benefits. Chin. Herb. Med. 2018, 10, 353–361. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.J.; Zou, J.B.; Zhang, X.F.; Zhai, B.T.; Guo, D.Y.; Sun, J.; Luan, F. Extraction, purification, structural features, biological activities, modifications, and applications from Taraxacum mongolicum polysaccharides: A review. Int. J. Biol. Macromol. 2024, 259, 129193. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.F.; Li, W.; Xu, G.Y.; Wang, K.R.; Li, L.; Luo, H.; Zou, L.; Wu, J.S. Updates and advances on pharmacological properties of Taraxacum mongolicum Hand.-Mazz and its potential applications. Food Chem. 2022, 373, 131380. [Google Scholar] [CrossRef]
- Li, R.T. Research progress on development and vtilization of dandelion. For. By-Prod. Spec. China 2024, 2, 85–88. [Google Scholar]
- Ma, X.H.; Li, X. Research progress in dandelion food. Food Ind. 2023, 44, 156–160. [Google Scholar]
- Li, L.B.; Meng, D.J. Biological function of dandelion extract and its application in livestock and poultry production. Feed Res. 2023, 46, 146–149. [Google Scholar]
- Guo, S.; Wang, Y.Y.; Wang, X.; Fu, X.; Wei, H.; Wang, H. Application of Taraxacum in healthy breeding of livestock and poultry. Sci. Technol. Tianjin Agric. For. 2022, 6, 33–35. [Google Scholar]
- Liu, G.W.; Duan, X.F.; Zhao, P.; Zhang, Y.N.; Liu, H.J.; Man, D.Q.; Ma, F.Y.; Liu, X.P. Study on nutrient components and feeding performance of cultivated Taraxacum mongolicun in arid area. Chin. Feed 2022, 20, 107–111. [Google Scholar]
- Wu, Y.; Liu, Q.; Tang, W.; Wang, J.Q.; Wang, S.D.; Hou, F.R. Application of complexes of Salvia miltiorrhiza volatile oil and dandelion extract in cosmetics. Fine Chem. 2022, 39, 562–568. [Google Scholar]
- Gao, L.F. Effects of Dandelion Flavonoids on Antioxidant Activity, Fermentation Quality, and Microbial Community Structure of Caragana korshinskii Silage. Master Dissertation, Ningxia University, Ningxia, China, 2023. [Google Scholar]
- Li, K.X. Protective Mechanism of β-Lactoglobulin on the Stability of Dandelion Flavonoids and Preparation of Fermented Beverage. Master Dissertation, Nanchang University, Nanchang, China, 2023. [Google Scholar]
- Sharma, G.N.; Gupta, G.; Sharma, P. A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit. Rev. Eukaryot. Gene. Expr. 2018, 28, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox. Biol. 2020, 33, 101544. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Oh, Y.; Kim, Y.M.; Chin, Y.W.; Cho, J. Inhibition of oxidative neurotoxicity and scopolamine-induced memory impairment by γ-mangostin: In vitro and in vivo evidence. Oxid. Med. Cell. Longev. 2019, 2019, 3640753. [Google Scholar] [CrossRef]
- Chang, K.H.; Chen, C.M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020, 9, 597. [Google Scholar] [CrossRef]
- Li, J.; O, W.; Li, W.; Jiang, Z.G.; Ghanbari, H.A. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 2013, 14, 24438–24475. [Google Scholar] [CrossRef]
- Arroyave-Ospina, J.C.; Wu, Z.M.; Geng, Y.; Moshage, H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef]
- Delli Bovi, A.P.; Marciano, F.; Mandato, C.; Siano, M.A.; Savoia, M.; Vajro, P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front. Med. 2021, 8, 595371. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Ren, H.; Zheng, S.J.; Zhang, X.L.; Lu, K.K.; Wu, S.R.; Ming, J. Research progress on the structure-activity relationship of flavonoid compounds based on different antioxidant mechanism. Sci. Technol. Food Ind. 2016, 37, 384–388. [Google Scholar]
- Li, Y.Z.; Hu, W.Z.; Saren, G.W.; Long, Y.; Lao, Y. Research progress on antioxidant components and antioxidant mechanism of flavonoids. In Proceedings of the 15th Annual Meeting of the China Food Science and Technology Society, Qingdao, China, 7–8 November 2018. [Google Scholar]
- Ren, H.S.; Zhu, W.Q.; Zheng, Y.Y.; Zheng, Z.J. Research progress on functional components and biological activities of Taraxaci. Herba Food Drug 2022, 24, 1–10. [Google Scholar]
- Yang, W.Z.; Du, Y.Z.; Gao, Y.; Wang, A.J.; Wang, M.Z. The research progress of dandelion flavonoids. Ginseng. Res. 2017, 1, 53–55. [Google Scholar]
- Li, X.H.; He, X.R.; Zhou, Y.Y.; Zhao, H.Y.; Zheng, W.X.; Jiang, S.T.; Zhou, Q.; Li, P.P.; Han, S.Y. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells. J. Ethnopharmacol. 2017, 206, 55–64. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhao, Y.; Zhou, H.H.; Zhang, Y.P.; Jiang, X.Y.; Huang, K.L. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radical-scavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J. Chromatogr. A 2008, 1209, 145–152. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D.D. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol. Cell Biochem. 2004, 265, 107–113. [Google Scholar] [CrossRef]
- Wang, Y.R.; Li, Y.M.; Yang, N.; Zhou, B.S.; Chen, F.; Liu, J.P.; Li, P.Y. Research progress on chemical compositions and pharmacological actions of Taraxacum. Spec. Wild. Econ. Anim. Plant. Res. 2017, 39, 67–75. [Google Scholar]
- Ling, Y.; Zhang, Y.L.; Cai, S.Q.; Zheng, J.H. A study on flavonoids and sterols in dandelion. Chin. J. Med. Chem. 1998, 8, 46–48. [Google Scholar]
- Shi, S.Y.; Zhou, C.X.; Xu, Y.; Tao, Q.F.; Bai, H.; Lu, F.S.; Lin, W.Y.; Chen, H.Y.; Zheng, W.; Wang, L.W.; et al. Studies on the chemical constituents from herbs of Taraxacum mongolicum. Chin. J. Chin. Mater. Med. 2008, 33, 1147–1157. [Google Scholar]
- Yao, W.; Lin, W.Y.; Zhou, C.X.; Zhao, Y. Studies on constituents from Taraxacum mongolicum. Chin. J. Chin. Mater. Med. 2007, 10, 926–929. [Google Scholar]
- Ling, Y.; Bao, Y.Y.; Zhang, Y.L.; Cai, S.Q.; Zheng, J.H. Studies on chemical constituents of dandelion. Transl. Med. J. 1998, 11, 167–169. [Google Scholar]
- Williams, C.A.; Goldstone, F.; Greenham, J. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 1996, 42, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Bao, Y.Y.; Guo, X.F.; Xu, Y.; Cai, S.Q.; Zheng, J.H. Isolation and identification of two flavonoid glycosides in Taraxacum mongolicum Hand.-Mazz. Chin. J. Chin. Mater. Med. 1999, 24, 223–225. [Google Scholar]
- Ling, Y.; Zhang, Y.L.; Cai, S.; Xu, Y.; Cai, S.Q.; Zheng, J.H. Studies on chemical constituents from Taraxacum sinicum Kitag. Chin. J. Chin. Mater. Med. 1998, 24, 232–233. [Google Scholar]
- Shi, S.Y.; Zhou, H.H.; Zhang, Y.P.; Huang, K.L.; Liu, S.Q. Chemical constituents from Neo-Taraxacum siphonathum. Chin. J. Chin. Mater. Med. 2009, 34, 1002–1004. [Google Scholar]
- Shi, S.Y.; Zhou, H.H.; Zhang, Y.P.; Zhao, Y.; Huang, K.L.; Liu, S.Q. A high-speed counter-current chromatography-HPLC-DAD method for preparative isolation and purification of two polymethoxylated flavones from Taraxacum mongolicum. J. Chromatogr. Sci. 2009, 47, 349–353. [Google Scholar] [CrossRef]
- Ling, Y.; Bao, Y.Y.; Zhu, L.L.; Zheng, J.H.; Cai, S.Q.; Xiao, Y. Chemical constituents of Taraxacum mongolicum. Chin. Pharm. J. 1997, 32, 584–585. [Google Scholar]
- Ling, Y.; Bao, Y.Y.; Zhang, Y.L.; Xiao, Y.; Zheng, J.H. Studies on chemical constituents from Taraxacum falcilobum Kitag. Transl. Med. J. 1999, 12, 233–235. [Google Scholar]
- Shi, S.Y. Chemical Constituents of Ligularia atroviolacea and Taraxacum mongolicum and Studies on the Preparation of Isocholorogenic Acids from Laggera pterodonta. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2007. [Google Scholar]
- Li, J.H.; Huang, J.B. Determination of 10 active substances in dandelion extract by high-performance liquid chromatography. Chem. Anayl. Meterage 2022, 31, 49–53. [Google Scholar]
- Xie, S.Y.; Yang, X.Y.; Ding, Z.G.; Li, M.G.; Zhao, J.Y. Chemical constituents and pharmacological effects of Taraxacum mongolicum Hand.-Mazz. Nat. Prod. Res. Dev. 2012, 24, 141–151. [Google Scholar]
- Chen, H.J.; Inbaraj, B.S.; Chen, B.H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 2012, 13, 260–285. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect Ruderalia. Food. Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid. Commun. Mass Spectrom. 2004, 19, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Y.; Huang, K.L.; Zhang, Y.P.; Liu, S.Q. Preparative isolation and purification of two flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography. Sep. Purif. Technol. 2008, 60, 81–85. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhang, Y.P.; Zhao, Y.; Huang, K.L. Preparative isolation and purification of three flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography. J. Sep. Sci. 2008, 31, 683–688. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhou, Q.; Peng, H.; Zhou, C.X.; Hu, M.H.; Tao, Q.F.; Hao, X.J.; Stöckigt, J.; Zhao, Y. Four new constituents from Taraxacum mongolicum. Chin. Chem. Lett. 2007, 18, 1367–1370. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.H.; Fang, C.; Zheng, X.X.; Liu, C.; Huang, Q. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci. Rep. 2023, 13, 2166. [Google Scholar] [CrossRef]
- Yadava, R.N.; Khan, S. A new flavonoidal constituent from Taraxacum officinale (L.) Weber. Asian J. Chem. 2013, 25, 4117–4118. [Google Scholar] [CrossRef]
- Cui, W.H.; Deng, X.L.; Chen, C.Y. Rapid identification of chemical constituents in Taraxaci Herba roots based on UPLC-Q-exactive-orbitrap MS. Henan Sci. 2023, 41, 978–984. [Google Scholar]
- Kong, J.Q.; Meng, X.S.; Shang, Y.H.; Dong, Y.Y.; Ma, Q. Identification of chemical components in Taraxacum kok-saghyz Rodin and investigation of mass spectrometrie fragmentation pathways. J. Chin. Mass. Spectrom. Soc. 2022, 43, 278–286. [Google Scholar]
- Liu, Z.W.; Ren, Y.R.; Liu, Y.F.; Liu, Y. Exploring the active components and action mechanism of Taraxacum mongolicum in improving hyperlipidemia using UHPLC-LTQ-Orbitrap-MS/MS and network pharmacology. Drugs Clin. 2023, 38, 2133–2145. [Google Scholar]
- Jiang, X.Y.; Shi, S.Y.; Zhang, Y.P.; Chen, X.Q. Excellent combination of HPLC-RSD-DAD-ESI/MS and HSCCC experiments to screen and identify radical scavengers from Neo-Taraxacum siphonanthun. J. Braz. Chem. Soc. 2010, 21, 1524–1529. [Google Scholar] [CrossRef]
- Xu, Y. Studies on the Chemical Constituents of Two Medicinal Plants and Their Biological Activities. Master Dissertation, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Jiang, X.Y.; Shi, S.Y.; Zhang, Y.P.; Chen, X.Q. Activity-guided isolation and purification of three flavonoid glycosides from Neo-Taraxacum siphonanthum by high-speed counter-current chromatography. Sep. Sci. Technol. 2010, 45, 839–843. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhang, Y.P.; Zhou, H.H.; Huang, K.L.; Jiang, X.Y. Screening and identification of radical scavengers fromneo-Taraxacum Siphonanthum by online rapid screening method and nuclear magnetic resonance experiments. J. Immunoass. Immunochem. 2010, 31, 233–249. [Google Scholar] [CrossRef]
- Lee, S.; Han, S.; Kim, H.M.; Lee, J.M.; Mok, S.Y.; Lee, S. Isolation and identification of phytochemical constituents from Taraxacum coreanum. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 73–78. [Google Scholar] [CrossRef]
- Lee, S.; Han, S.; Kim, H.M.; Lee, J.M.; Kim, J.; Park, C.-G.; Lee, S. Simultaneous determination of luteolin and luteoloside in dandelions using HPLC. Hortic. Environ. Biote. 2011, 52, 536–540. [Google Scholar] [CrossRef]
- Zidorn, C. Isoetin and its derivatives: Analytics, chemosystematics, and bioactivities. Biochem. Syst. Ecol. 2015, 61, 402–412. [Google Scholar] [CrossRef]
- Choi, J.; Yoon, K.D.; Kim, J. Chemical constituents from Taraxacum officinale and their α-glucosidase inhibitory activities. Bioorg. Med. Chem. Lett. 2018, 28, 476–481. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef]
- Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-obesity attributes; UHPLC-QTOF-MS/MS-based metabolite profiling and molecular docking insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Lis, B.; Jedrejek, D.; Rywaniak, J.; Soluch, A.; Stochmal, A.; Olas, B. Flavonoid preparations from Taraxacum officinale L. fruits-A phytochemical, antioxidant and hemostasis studies. Molecules 2020, 25, 5402. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Song, M.; Wang, N.F.; Wang, Y.; Wang, R.F.; An, X.P.; Qi, J.W. The effects of solid-state fermentation on the content, composition and in vitro antioxidant activity of flavonoids from dandelion. PLoS ONE 2020, 15, e0239076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Li, C.; Gu, W.; Qiu, R.L.; Chao, J.G.; Pei, L.F.; Ma, L.J.; Guo, Y.F.; Tian, R. Metabolomics analysis of dandelions from different geographical regions in China. Phytochem. Anal. 2021, 32, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Costea, L.; Chițescu, C.L.; Boscencu, R.; Ghica, M.; Lupuliasa, D.; Mihai, D.P.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; Luță, E.-A.; et al. The polyphenolic profile and antioxidant activity of five vegetal extracts with hepatoprotective potential. Plants 2022, 11, 1680. [Google Scholar] [CrossRef]
- Liu, F.J.; Yang, J.; Chen, X.Y.; Yu, T.; Ni, H.; Feng, L.; Li, P.; Li, H.J. Chemometrics integrated with in silico pharmacology to reveal antioxidative and anti-inflammatory markers of dandelion for its quality control. Chin. Med. 2022, 17, 125. [Google Scholar] [CrossRef]
- Wu, P.; Ben, T.T.; Zou, H.; Chen, Y.L. PARAFAC modeling of dandelion phenolic compound fluorescence relation to antioxidant properties. J. Food Meas. Charact. 2022, 16, 2811–2819. [Google Scholar] [CrossRef]
- Yin, N.; Wang, Y.; Ren, X.R.; Zhao, Y.; Liu, N.; An, X.P.; Qi, J.W. Isolation and characterization of flavonoids from fermented dandelion (Taraxacum mongolicum Hand.-Mazz.), and assessment of its antioxidant actions in vitro and in vivo. Fermentation 2022, 8, 306. [Google Scholar] [CrossRef]
- Wójciak, K.; Materska, M.; Pełka, A.; Michalska, A.; Małecka-Massalska, T.; Kačániová, M.; Čmiková, N.; Słowiński, M. Effect of the addition of dandelion (Taraxacum officinale) on the protein profile, antiradical activity, and microbiological status of raw-ripening pork sausage. Molecules 2024, 29, 249. [Google Scholar] [CrossRef]
- Liu, H.Q.; Wang, T.L. Study on water-soluble chemical constituents of Taraxacum mongolicum. J. Chin. Med. Mater. 2014, 37, 989–991. [Google Scholar]
- Sari, A.; Keçeci, Z. Phytochemical investigations on chemical constituents of Taraxacum bessarabicum (Hornem.) Hand.-Mazz. subsp. bessarabicum (Hornem.) Hand.-Mazz. Iran. J. Pharm. Res. 2019, 18, 400–405. [Google Scholar]
- Qiu, J.; Sun, S.Q.; Luo, S.Q.; Zhang, J.C.; Xiao, X.Z.; Zhang, L.Q.; Wang, F.; Liu, S.Z. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Rep. 2014, 33, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Wu, L.J.; Han, P.; Hao, Y.; Li, J.Y.; Gao, Z.B.; Wang, J.; Yang, W.J.; Tian, Y.M. Revealing the metabolic mechanism of dandelion extract against A549 cells using UPLC-QTOF MS. Biomed. Chromatogr. 2021, 36, e5272. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Lee, H.D.; Lee, S.; Lee, A.Y. Taraxacum coreanum Nakai extract attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier dysfunction in Caco-2 cells. J. Ethnopharmacol. 2024, 319, 117105. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.D.; Wang, Y.; Zhang, X.M. Taraxacum mongolicum extract exhibits antimicrobial activity against respiratory tract bacterial strains in vitro and in neonatal rats by enhancing systemic Th1 immunity. Trop. J. Pharm. Res. 2018, 17, 1833–1838. [Google Scholar] [CrossRef]
- Gao, C.Y.; Kong, S.L.; Guo, B.Y.; Liang, X.J.; Duan, H.F.; Li, D.H. Antidepressive effects of Taraxacum officinale in a mouse model of depression are due to inhibition of corticosterone levels and modulation of mitogen-activated protein kinase phosphatase-1 (Mkp-1) and brain-derived neurotrophic factor (Bdnf) expression. Med. Sci. Monit. 2019, 25, 389–394. [Google Scholar] [CrossRef]
- Zhao, L.J.; Gao, W.Y.; Gu, X.R.; Wang, H.J.; Zhao, H.Y.; Bian, B.L. Identification and attribution of chemical compounds of Pudilan Antiphlogistic Oral Liquid. China J. Chin. Mater. Med. 2019, 44, 1573–1587. [Google Scholar]
- Gomez, M.K.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Identification and quantification of phytochemicals, antioxidant activity, and bile acid-binding capacity of garnet stem dandelion (Taraxacum officinale). J. Food Sci. 2018, 83, 1569–1578. [Google Scholar] [CrossRef]
- Yoo, K.M.; Hwang, I.K.; Moon, B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79-4 Cells. J. Food Sci. 2009, 74, 419–425. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zhang, Y.P.; Zhou, H.H.; Huang, K.L. Study on fast screening and identification of potential antitumor compounds from Neo-Taraxacum siphonathum. Chin. J. Pharm. Anal. 2011, 31, 471–475. [Google Scholar]
- Zhang, S.B.; Kong, L.J.; Gu, W. Chemical composition analysis of Taraxacum mongolicum based on HPLC-Q-TOF-MS/MS and network pharmacology study on its anticancer mechanism. Nat. Prod. Res. Dev. 2022, 34, 305–314. [Google Scholar]
- Hfaiedh, M.; Brahmi, D.; Zourgui, L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ. Toxicol. 2016, 31, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ke, W.C.; Lu, Q.; Gao, L.F.; Zhou, X.D.; Ma, C.Y. Effects of total flavonoids from Taraxacum mongolicum Hand.-Mazz. on fermentation quality, antioxidant status and microbial community of Caragana korshinskii Kom. silage. Fermentation 2023, 9, 949. [Google Scholar] [CrossRef]
- Jiang, X.M.; Zhang, X.; Cheng, Y.; Mao, J.Y.; Lei, B.; He, X.X.; Liu, X.B.; Li, P.X.; Pan, K. Effects of light intensity on growth, accumulation of active constituents and antioxidant activities of Taraxacum mongolicum Hand.-Mazz. J. Northeast Agric. Univ. 2023, 54, 26–34. [Google Scholar]
- Petkova, N.; Ivanov, I.; Topchieva, S.; Denev, P.; Pavlov, A. Biologically active substances and in vitro antioxidant activity of different extracts from dandelion (Taraxacum officinale) roots. Sci. Bull. Ser. F Biotechnol. 2015, XIX, 190–197. [Google Scholar]
- Aazza, S.; El-Guendouz, S.; Miguel, M.D.G. Screening for acetylcholinesterase inhibition, lipid peroxidation inhibition and antioxidant activity of medicinal plants from Morocco. Bol. Latinoam. Caribe. Plant. Med. Aromat. 2023, 22, 1–18. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wu, G.R.; Wang, X.D.; Liu, H.; Wang, J.A.; Shen, Q. Antioxidation of Taraxacum mongolicum Hand.-Mazz flavonoids. J. Nanjin Norm. Univ. (Nat. Sci.) 2005, 28, 84–87. [Google Scholar]
- Mingarro, D.M.; Plaza, A.; Galán, A.; Vicente, J.A.; Martínez, M.P.; Acero, N. The effect of five Taraxacum. species on in vitro and in vivo antioxidant and antiproliferative activity. Food Funct. 2015, 6, 2787–2793. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Flamminii, F.; Pittia, P.; Caponio, F.; Mattia, C.D. Radical scavenging activity of olive oil phenolic antioxidants in oil or water phase during the oxidation of O/W emulsions: An oxidomics approach. Antioxidants 2020, 9, 996. [Google Scholar] [CrossRef]
- Chen, X. Synergistic Antioxidant Effects and Mechanism of Flavonoids (Quercetin, Lutelin) and Carotenoids (Lycopene, Lutein). Ph.D. Dissertation, Nanchang University, Nanchang, China, 2022. [Google Scholar]
- Wang, C.; Chen, F.; Hu, K.S.; An, Y.M.; Zheng, W.X.; Zhang, J.Q.; Chen, K.; Wang, G.Q.; Zheng, J.T.; Liu, J.P.; et al. Antioxidant protective effect and mechanism of total flavonoids from dandelion on cigarette smoke-induced chronic obstructive pulmonary disease. Int. J. Geriatr. 2023, 44, 257–264. [Google Scholar]
- Eziz, S.; Zhang, Z.; Jiang, S.L.; Xie, Q.G. Promoting effect of probiotics and dandelion fermentation on its antioxidant function. For. By.-Prod. Spec. Chin. 2022, 6, 1–7. [Google Scholar]
- Yang, R.J.; Qiao, H.; Liu, W.; Wang, H.J.; Sun, T.J. Antioxidant activity in vitro of fractions of dandelion flower. Chin. Rem. Clin. 2016, 16, 9–11. [Google Scholar]
- Zhu, Q.L.; Wang, J.Y.; He, W.; Chai, J.; Jiang, H.Y.; Zhou, W. Study on the extraction process and antioxidant activity and antibacterial activity in vitro of flavonoids from dandelion. J. JinLing Inst. Technol. 2022, 38, 86–92. [Google Scholar]
- Liu, S.L.; Gao, Y.; Wu, X.Y.; Xu, D.; Chen, Z.X. Optimization of extraction process and evaluation of antioxidant activity of total flavonoids from dandelion. Chem. Eng. 2024, 1, 88–91. [Google Scholar]
- Sun, Z.X.; Su, R.Q.; Qiao, J.W.; Zhao, Z.Q.; Wang, X.S. Flavonoids extraction from Taraxacum officinale (Dandelion): Optimisation using response surface methodology and antioxidant activity. J. Chem. 2014, 2014, 956278. [Google Scholar] [CrossRef]
- Akhtar, W.; Ali, G.; Ashraf, N.; Fatima, I.; Kayani, W.K.; Shaheen, H.; Ghoneim, M.M.; Abdelgawad, M.A.; Khames, A. Efficiency of multiple extraction solvents on antioxidant, cytotoxic, and phytotoxic potential of Taraxacum officinale (L.) Weber ex F.H. Wigg. from Poonch Valley, Azad Kashmir, Pakistan. Evid.-Based. Compl. Alt. Med. 2022, 2022, 118553. [Google Scholar] [CrossRef]
- Yang, S.H.; Chen, Y.Z.; Wang, L.T.; Wang, T.; Yang, C.C. Antioxidant characteristics and hepatoprotective effects of a formula derived from Maydis stigma, Nelumbo nucifera and Taraxacum officinale against carbon tetrachloride-induced hepatic damage in rats. Pak. J. Pharm. Sci. 2020, 33, 2131–2142. [Google Scholar]
- Aremu, O.O.; Oyedeji, A.O.; Oyedeji, O.O.; Nkeh-Chungag, B.N.; Rusike, C.R.S. In vitro and in vivo antioxidant properties of Taraxacum officinale in Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Antioxidants 2019, 8, 309. [Google Scholar] [CrossRef]
- Chen, J.Y.; Gong, Z.N.; Zai, X.M.; Liu, H.; Chang, J. Determination of antioxidative activation and distillation of total flavonoid rutin and quercetin in Taraxacum mongolicum Hand.-Mazz. Chin. Wild. Plant Resour. 2001, 20, 22–23. [Google Scholar]
- Lis, B.; Jędrejek, D.; Stochmal, A.; Olas, B. Assessment of effects of phenolic fractions from leaves and petals of dandelion in selected components of hemostasis. Food Res. Int. 2018, 107, 605–612. [Google Scholar] [CrossRef]
- Chon, S.U.; Bae, C.H.; Lee, S.C. Antioxidant and cytotoxic potentials of methanol extracts from Taraxacum officinale F. H. Wigg. at different plant parts. Korean J. Plant. Resour. 2012, 25, 232–239. [Google Scholar] [CrossRef]
- Wang, X. Application of supercritical extraction technology in extracting anti-aging components of dandelion. Chem. Ind. Times 2022, 36, 15–16. [Google Scholar]
- Zhu, Z.W.; Fu, S.N.; Xue, N.; Ma, R.X.; Guo, H.B.; Miao, M.S.; Zhu, P.S. The protective effect of total flavonoids of dandelion on CCl4 induced liver injury in rats. Chin. Tradit. Pat. Med. 2022, 44, 3680–3686. [Google Scholar]
- Du, J.H.; Xu, M.Y.; Wang, Y.; Zhao, L.; Yu, Z.; Li, M.Y. Evaluation of Taraxacum mongolicum flavonoids in diets for Channa argus based on growth performance, immune responses, apoptosis and antioxidant defense system under lipopolysaccharide stress. Fish Shellfish Immunol. 2022, 131, 1224–1233. [Google Scholar] [CrossRef]
- Liu, J.R.; Xu, X.J.; Kang, W.J.; Zhang, W.W.; Shao, S.L. Effects of dandelion flavonoids on antioxidant enzyme activity and related gene expression in ICR mice. Genom. Appl. Biol. 2022, 41, 41–48. [Google Scholar]
- Guo, M.Y.; Sun, H.X.; Han, S.Y.; Liu, J.; Wang, X.J.; An, S.Y.; Liu, G.Z. Effects of salvia miltiorrhiza extract, dandelion extract and their compound on growth performance, immune function and antioxidant ability of broilers. Chin. J. Anim. Nutr. 2023, 35, 2230–2240. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, X.; Shi, W.; Shen, T.; Cheng, X.; Wan, Q.; Fan, M.; Hu, D. Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants 2024, 13, 1449. https://doi.org/10.3390/antiox13121449
Zhuang X, Shi W, Shen T, Cheng X, Wan Q, Fan M, Hu D. Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants. 2024; 13(12):1449. https://doi.org/10.3390/antiox13121449
Chicago/Turabian StyleZhuang, Xiaocui, Wei Shi, Tao Shen, Xiaoyang Cheng, Qilin Wan, Minxia Fan, and Dongbao Hu. 2024. "Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities" Antioxidants 13, no. 12: 1449. https://doi.org/10.3390/antiox13121449
APA StyleZhuang, X., Shi, W., Shen, T., Cheng, X., Wan, Q., Fan, M., & Hu, D. (2024). Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants, 13(12), 1449. https://doi.org/10.3390/antiox13121449