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Abstract: We previously reported that maternal alcohol use increased the risk of sepsis in premature
and term newborns. In the neonatal mouse, fetal ethanol (ETOH) exposure depleted the antioxidant
glutathione (GSH), which promoted alveolar macrophage (AM) immunosuppression and respiratory
syncytial virus (RSV) infections. In this study, we explored if oral liposomal GSH (LGSH) would
attenuate oxidant stress and RSV infections in the ETOH-exposed mouse pups. C57BL/6 female
mice were pair-fed a liquid diet with 25% of calories from ethanol or maltose–dextrin. Postnatal
day 10 pups were randomized to intranasal saline, LGSH, and RSV. After 48 h, we assessed oxidant
stress, AM immunosuppression, pulmonary RSV burden, and acute lung injury. Fetal ETOH exposure
increased oxidant stress threefold, lung RSV burden twofold and acute lung injury threefold. AMs
were immunosuppressed with decreased RSV clearance. However, LGSH treatments of the ETOH
group normalized oxidant stress, AM immune phenotype, the RSV burden, and acute lung injury.
These studies suggest that the oxidant stress caused by fetal ETOH exposure impaired AM clearance
of infectious agents, thereby increasing the viral infection and acute lung injury. LGSH treatments
reversed the oxidative stress and restored AM immune functions, which decreased the RSV infection
and subsequent acute lung injury.

Keywords: fetal ethanol exposure; alveolar macrophage; respiratory syncytial virus; oxidant stress;
liposomal glutathione

1. Introduction

In clinical studies, we previously reported that maternal alcohol use during pregnancy
was associated with an increased risk of sepsis in both premature and term newborns [1,2].
Furthermore, in premature newborns weighing ≤ 1500 g at birth, maternal admittance of
alcohol ingestion during pregnancy occurred in one third of pregnancies. In utero alcohol
exposure in these low-birthweight premature newborns was associated with significantly
increased odds of developing neonatal late-onset sepsis and bronchopulmonary dyspla-
sia [1,2]. In addition to fetal alcohol spectrum disorder, other studies have demonstrated
that alcohol consumption during pregnancy is associated with a range of adverse outcomes
for the newborn, including spontaneous abortions [3], stillbirths [4,5], preterm birth [6,7],
and low birthweight [8,9]. Despite these outcomes, our understanding of in utero alcohol’s
detrimental effects on the developing lung remain limited. Studies to further understand
the mechanisms underlying the risks of in utero alcohol exposure for the premature new-
born, specifically in pulmonary health, are needed.

Using experimental animal models, we showed that ethanol (ETOH) exposure results
in chronic oxidant stress in both the neonatal and the adult lung, which resulted in impaired
cellular immune defenses of the resident alveolar macrophage (AM) against infectious
agents. It is the decreased availability of glutathione (GSH), the primary antioxidant in
the airspace, that is one key to the ETOH-induced immune dysfunctions of both newborn
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and adult AM [10,11]. Over time, the ETOH-induced decreases in GSH and subsequent
chronic oxidant stress promote the release of immune suppressors like transforming growth
factor β1 (TGFβ1) that subsequently result in compromised immune cells that are critical
in determining disease outcomes [12]. These studies also demonstrated that strategies to
improve GSH availability subsequently improved the immune responses of newborn and
adult AM, including both viral and bacterial clearance.

For infants, respiratory syncytial virus (RSV) is the most common etiologic agent for
acute respiratory infections, infections in the lower respiratory tract such as bronchiolitis
and pneumonia, and the leading cause of hospitalization for infants less than 2 years
of age [13–16]. Newborns at the greatest risk for severe infections include the premature
newborn and infants with chronic respiratory diseases such as bronchopulmonary dysplasia
related to prematurity [17]. When compared to adults, the newborn’s antioxidant status
is low, but the generation of reactive oxygen species and lipid peroxidation products that
occurs during a viral infection exacerbates their limited antioxidant availability, results in
chronic oxidant stress, and contributes to the pathogenesis [18]. In premature newborns,
their immature immune responses [19] also contribute to their risk of increased incidence
and severity of viral infections such as RSV [20,21]. Indeed, lower respiratory tract infections
with viruses such as RSV result in extended hospital stays, readmission to the pediatric
intensive care unit, an increased need for oxygen and mechanical ventilation, and increased
mortality [22]. Although airway epithelial cells are the primary site for RSV infection,
innate immune responses by the mononuclear phagocytic system, including phagocytosis
and the release of cytokines, chemokines, and other immune mediators, are critical for the
resolution of pulmonary viral diseases [19,23]. As the resident mononuclear phagocytic
cell in the lung and airspace, the AM is the key modulator of the local pulmonary immune
response that is essential for RSV clearance [23,24].

The key role of antioxidant availability as a modulator of the pathogenic process was
demonstrated in mouse models where antioxidant treatments attenuated RSV-induced
oxidant stress as well as the viral burden [25,26]. In adult animal models, chronic alcohol
exposure impairs multiple arms of immune defense mechanisms against respiratory viruses
such as RSV [27,28]. In fetal lambs, in utero ETOH exposure predisposes the developing
lung to RSV by altering host defenses via deranged surfactant proteins [29,30]. We recently
demonstrated in our established fetal ETOH mouse model that in utero ETOH exposure
impaired AM cellular capacity to defend against experimental RSV from the lung [31]. This
impairment may potentially be modulated through the upregulation of the immunosup-
pressant TGFβ1, since we also observed that TGFβ1 directly impairs the capacity of AM to
clear RSV [12].

Supplementation with an oral liposomal formulation of GSH (LGSH) has been shown
to improve intracellular delivery of GSH and decrease oxidant stress in HIV subjects
and patients with type 2 diabetes [32–34]. In addition, these studies demonstrated that
LGSH treatments improved the immune responses of peripheral blood monocytes cells
when treated in vitro with Mycobacterium tuberculosis, including improved bacterial clear-
ance [33,34]. In ventilated preterm infants, a single intratracheal dose of LGSH increased
pulmonary GSH pools and decreased oxidative stress [35]. The possibility that in vivo
LGSH administration to the neonate exposed to ETOH in utero may improve immune
defenses against viruses such as RSV is attractive, but has not been investigated. In the
current study, we hypothesized that strategies such as LGSH treatment would augment
the antioxidant GSH in the neonatal lung exposed to ETOH in utero, decrease AM oxidant
stress, attenuate cellular immunosuppression, and improve neonatal AM immune defenses
against an experimental RSV infection. The goals of the current study were to use an
established mouse model of in utero ETOH exposure to (1) determine if a clinically relevant
intervention, such as enteral LGSH, could protect against an experimental pulmonary RSV
infection and (2) explore the potential mechanisms by which LGSH improved AM innate
immune defenses against RSV.
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2. Materials and Methods

Mouse model of fetal ethanol (ETOH) exposure. Our established mouse model of
fetal ETOH exposure uses a continuous exposure of ETOH during pregnancy through a
maternal Lieber-DeCarli liquid diet containing ETOH (BioServ, Frenchtown, NJ, USA) [31].
Female C57BL/6 mice were shipped from the vendor (Charles River, Burlington, MA, USA)
and acclimated in the Emory Pediatrics animal facilities for one week. After breeding,
the experimental liquid diet was started one day after visualization of the vaginal mucus
plug. Pregnant dams were randomized to receive an isocaloric liquid diet ±25% ETOH-
derived calories. For the ETOH group, the ETOH content of the diet was incrementally
ramped up over a 1-week timeframe from 0% to 12.5% and then 25% of ETOH-derived
calories. Food consumption was recorded daily and the liquid food was changed daily.
The control group was pair-fed to the ETOH group with 25% of the calories obtained
from maltose–dextrin. The only access to food during the experimental period was the
assigned experimental liquid diet. The diet was continued throughout pregnancy and after
spontaneous term delivery. Pups were kept with their respective dams and allowed to
nurse ad libitum. All animals were used with protocols reviewed and approved by the
Emory University Institutional Animal Care Committee (PROTO201800128) in accordance
with NIH guidelines (Guide for the Care and Use of Laboratory Animals).

Respiratory syncytial virus (RSV) and RSV Plaque Assay. RSV clone rA2|19F was a
generous gift from Martin L. Moore, PhD [36]. As we previously reported [12,31], RSV was
propagated in Hep-2 (CCL-23) cells in minimum essential medium supplemented with 10%
fetal bovine serum, penicillin (100 U/mL) and streptomycin (100 µg/mL) (Sigma, St. Louis,
MO, USA). RSV was then harvested 6–7 days after the Hep-2 cell inoculation and sonicated
on ice and centrifuged (500× g, 10 min at 4 ◦C). Plaque assays were performed to determine
RSV titers (plaque forming units (PFUs)) by serially diluting the supernatant, infecting
24-well plates of Hep-2 cells (6 days at 37 ◦C and 5% CO2) and visualizing immunostaining.

Liposomal glutathione (LGSH) treatments and experimental Respiratory syncytial
virus (RSV) in the neonatal mouse. To investigate a potential therapeutic role for LGSH
during an in vivo RSV infection, we incorporated LGSH into our established in vivo mouse
model of inhaled RSV [31]. LGSH (ReadiSorb Liposomal Glutathione) was a generous gift
from Dr. Frederick T. Guilford (Your Energy Systems, Palo Alto, CA, USA). This preparation
of LGSH contained reduced GSH (422.7 g/5 mL) plus purified water, glycerin, lecithin, and
potassium sorbate. On day of life 10 (P10), mice pups (±in utero ETOH exposure) were
treated with an oral gavage containing either LGSH (20 µL, 1.7 mg of L-glutathione) or
saline (20 µL). Mouse pups were then given intranasal injections of RSV (Nanoliter Injector;
20 µL; each nasal nare; 2 × 105 PFU) before they were returned to their respective dams.
After 24 h, pups received an additional dose of ±LGSH (or saline) by oral gavage. All pups
were then euthanized for analyses after 48 h.

Alveolar macrophage (AM) isolation. After euthanasia with intraperitoneal sodium
pentobarbital, the pup trachea was identified under a dissecting microscope and cannulated
with a 27 G catheter. The lungs were then serially lavaged via the catheter with 40 µL sterile
saline (5 times) to remove the bronchoalveolar fluid lining the airspace. The initial lavage
from each pup in a litter was pooled and centrifuged (402× g; 8 min) and the cell-free
supernatant lavage fluid was saved for further analysis (noted below). The subsequent
bronchoalveolar lavages (BALs) from each pup within the same litter were also pooled
and similarly centrifuged. The cell pellets obtained from the initial and the subsequent
lavages were resuspended in media (RPMI 1640 1 time) containing 10% fetal bovine serum
and 1% antibiotics before they were pooled. The pooled cells from each litter represents
an n of 1. Cell viability and cell count were determined with trypan blue stain (0.4%; Life
Technologies, Grand Island, NY, USA). Pup AMs were cultured on slides, fixed with 3.7%
paraformaldehyde and permeabilized with ice-cold methanol.

Plasma collection for systemic biomarkers of oxidant stress. After euthanasia with
intraperitoneal sodium pentobarbital, blood samples were obtained from all pups via
cardiac puncture and the samples pooled per experimental group and litter. Samples
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were spun and stored at −80 ◦C until batch analyses. Total plasma antioxidant capacity
(AOC) was measured via colorimetric assay (MAK187, Sigma-Aldrich, St. Louis, MO, USA)
and 8-hydroxyguanosine (8-OHdG) was measured by ELISA (DNA Damage Competitive
ELISA kit, Life Technologies Corporation, Carlsbad, CA, USA).

Determination of the Respiratory syncytial virus (RSV) burden in the bronchoalveolar
lavage fluid (BAL) and whole lung. All pups were euthanized for analyses 48 h after
intranasal delivery of RSV. The lungs were then serially lavaged via the catheter with 40 µL
sterile saline (5 times) to remove the fluid and cells from the airspace. To determine the
RSV burden in the airways and alveolar space, the multiple BALs from pups within the
same litter were pooled. The pooled BAL was then serially diluted in phosphate-buffered
saline and plated for determination of RSV growth via the Hep-2 cell plaque assay, as we
have previously described [31]. After the pup was euthanized, the right upper lobe of the
lung was flash-frozen in liquid nitrogen and stored at −80 ◦C until batch analysis. The lobe
was weighed, sterile phosphate-buffered saline (10 times the tissue weight) was added, and
then the lobe homogenized on ice. After the samples were centrifuged (2000× g; 10 min;
4 ◦C), the supernatants were serially diluted in phosphate-buffered saline and then 100 µL
of the homogenate dilution was similarly plated for determination of RSV growth. For the
whole lung, RSV is presented as percentage of control of pfu/g lung tissue. The remaining
isolated neonatal lung lobes were also flash frozen in liquid nitrogen and stored at −80 ◦C
until batch analyses (see below).

Cellular immunostaining. The freshly isolated AMs were plated and fixed with 3.7%
paraformaldehyde before permeabilization with ice-cold methanol. For assessment of
RSV phagocytosis by the AM in vivo, we evaluated whole-cell RSV content via fluorescent
immunostaining (1 h; a 1:100 dilution; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA).
Given the critical role of the antioxidant GSH in the AM immune phenotype, we evaluated
whole-cell GSH via fluorescent immunostaining (1 h; 1:100 dilution; Abcam, Inc®, Boston,
MA, USA). Since fetal ETOH exposure increases AM expression of the immunosuppressant
TGFβ1 [11,31] and arginase-1 (Arg-1) [11], we also used immunostaining to evaluate whole-
cell TGFβ1 and Arg-1 in the neonatal AM. Immunostaining for the neutrophil cell surface
marker (Gr-1) was used to differentiate AM from polymorphonuclear leukocytes (PMNs).
Cells were incubated with the respective primary antibody in a 1:100 dilution (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA) for 1 h. After the slides were washed three times
with phosphate-buffered saline over 5 min, and the secondary antibody (anti-goat IgG,
ThermoFisher, Waltham, MA, USA) was added in a 1:200 dilution and further incubated for
45 min. Cellular fluorescence was quantified using fluorescence microscopy via ImagePro
Plus for Windows, Version 4.5 and presented as mean relative fluorescence units per cell
(RFUS/cell) ± S.E.M. as tallied from at least 25 cells/litter. To correct for autofluorescence,
the background fluorescence of unstained AMs was subtracted from the RFUs obtained for
each analysis.

Whole-lung analyses. In addition to determining the tissue RSV, the flash-frozen
neonatal lung tissue was evaluated for the inflammatory PMN marker myeloperoxidase
(MPO, ng/mL) with a commercially available ELISA (product # MBS2702122, MyBioSource,
Inc., San Diego, CA, USA). In parallel experiments, the neonatal right upper lobe lung
samples were weighed (designated wet weight) and then reweighed after desiccation
by overnight incubation at 70 ◦C (designated dry weight) and the lung wet/dry weight
ratio was determined. MPO concentrations (ng/mL) were normalized to lung sample
wet/dry weight.

Statistical analysis. SigmaPlot software (Systat Software 14.5; San Jose, CA, USA) was
used for statistical analysis and graph generation. ANOVA or Kruskal–Wallis ANOVA on
ranks was used when appropriate to detect overall differences between groups. Student–
Newman–Keuls or Dunn’s post hoc analysis was conducted for group comparisons as
indicated. A value of p ≤ 0.05 was deemed statistically significant. Data are presented as
mean ± S.E.M, where each n represents one litter.
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3. Results

Fetal ethanol (ETOH) exposure decreased alveolar macrophage (AM) viral clearance
and exacerbated the experimental lung Respiratory syncytial virus (RSV) infection in the
exposed pup. In agreement with our previous study [31], in utero ETOH exposure impaired
AM phagocytosis of inhaled RSV by 40% in the neonatal mouse pup when compared to
the control pup (Figure 1). With the ETOH-induced decrease in AM in virus phagocytosis,
there was an accompanying increase in the burden of RSV growth in the pup lung. Both the
BAL (Figure 2A) and neonatal whole lung (Figure 2B) demonstrated a ~twofold increase in
RSV growth in the ETOH pups when compared to the control pups.
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Figure 1. In utero ethanol (ETOH) exposure impaired in vivo alveolar macrophage (AM) phagocytosis
of respiratory syncytial virus (RSV) but restored by enteral liposomal glutathione (LGSH) treatments.
After breeding, the female mice were randomized to an experimental isocaloric liquid diet that
contained either 25% ethanol (ETOH)-derived calories or 25% maltose–dextrin-derived calories. The
diet was continued throughout pregnancy and after spontaneous term delivery. Pups were kept with
their respective dams and allowed to nurse ad libitum. On postnatal day 10 (P10), pups from the
control-fed dam and the ETOH-fed dam were then randomized to an oral gavage containing either
liposomal glutathione (LGSH) (20 µL, 1.7 mg of L-glutathione) or saline (20 µL). All pups were then
given intranasal injections of respiratory syncytial virus (RSV) (Nanoliter Injector; 20 µL; each nasal
nare; 2 × 105 PFU) before they were returned to their respective dams. After 24 h, pups received an
additional dose of ±LGSH (or saline) by gavage. All pups were then euthanized for analyses after
48 h, and the alveolar macrophages (AMs) from the pups were isolated from the multiple BALs and
pooled per experimental group and litter. For assessment of RSV phagocytosis by the AM in vivo,
we evaluated whole-cell RSV via fluorescent immunostaining (1 h; a 1:100 dilution; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA). Background fluorescence of unstained AMs was used to
account for autofluorescence and subtracted from the RFUs obtained for the RSV phagocytosis. The
RSV burden was calculated relative to the RSV fluorescence for AMs from the control + RSV group.
N = 5 litters for each group. a p = 0.05 when compared to the control + RSV group; b p ≤ 0.05 when
compared to the ETOH + RSV group.
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Figure 2. In utero ethanol (ETOH) exposure increased the respiratory syncytial virus (RSV) burden in
the bronchoalveolar lavage (BAL, A) and lung tissue (B), but both were normalized by oral liposomal
glutathione (LGSH) treatments. All pups were euthanized for analyses after 48 h of RSV delivery and
the lungs were then serially lavaged via the catheter with 40 µL sterile saline (5 times) to remove the
fluid and cells from the airspace. To determine the RSV burden in the airways and alveolar space, the
multiple BALs from pups were pooled per experimental group and litter. The pooled BAL was serially
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diluted in phosphate-buffered saline, plated for determination of RSV growth. The RSV burden in the
BAL (A) is presented as percentage of control plaque forming units/mL (PFU/mL). To determine the
RSV burden in the lung, the frozen right upper lung lobe was weighed, sterile phosphate-buffered
saline (10 times the tissue weight) was added, and then the lobe homogenized on ice. After the
samples were centrifuged (2000× g; 10 min; 4 ◦C), the supernatants were serially diluted in phosphate-
buffered saline and plated for determination of RSV growth. For the whole lung (B), RSV is presented
as percentage of control of PFU/g lung tissue. N = 5 litters for each group. a p = 0.05 when compared
to the control + RSV group; b p ≤ 0.05 when compared to the ETOH + RSV group.

Increased acute lung injury after Respiratory syncytial virus (RSV) inhalation in pups
with in utero ethanol (ETOH) exposure. We next determined if the greater lung RSV burden
associated with fetal ETOH exposure resulted in greater lung injury. With the lung wet/dry
weight ratio as an indirect marker of lung edema, there was ~threefold increase in the ETOH
+ RSV group when compared to the control + RSV group (Figure 3A). Since pulmonary
neutrophil infiltration can be associated with acute lung injury, the MPO content of the lung
was used as a granulocyte marker. There was a ~fourfold increase in the MPO content of
the lung in the ETOH + RSV group compared to the control + RSV group (Figure 3B). Using
Gr-1+ as a marker of PMNs, we determined the percentage of cells that were neutrophils
in the first lavage. In the ETOH + RSV group, there was ~twofold increase in neutrophils
(GR-1+) in the alveolar space when compared to the control + RSV group (Figure 4). Taken
together, these results suggest that compared to the control pup, fetal ETOH exposure
resulted in a significant increase in these three indirect markers of acute lung injury after
RSV inhalation.
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Figure 3. The amplified Respiratory syncytial virus (RSV) infection in the pup after in utero ethanol
(ETOH) exposure resulted in increased acute lung injury, as defined by lung wet/dry weight ra-
tio (A) and whole-lung myeloperoxidase (MPO) concentration (B), but acute lung injury was nor-
malized by oral liposomal glutathione (LGSH) treatments. The flash-frozen right upper lobe lung
samples from the neonatal pups were weighed (designated wet weight) and then reweighed after
desiccation by overnight incubation at 70 ◦C (designated dry weight). The lung wet/dry weight ratio
was determined as a marker of acute lung injury (A). The flash-frozen lung tissue was also evaluated
for the inflammatory PMN marker myeloperoxidase (MPO) with a commercially available ELISA
(product # MBS2702122, MyBioSource, Inc., San Diego, CA, USA). MPO concentrations (ng/mL)
were normalized to the corresponding lung sample wet/dry weight (B). N = 5 litters for each group.
a p = 0.05 when compared to the control + respiratory syncytial virus (RSV) group; b p ≤ 0.05 when
compared to the ETOH + RSV group; c denotes p ≤ 0.05 when compared to the control + LGSH +
RSV group.

Oxidant stress was exacerbated when the fetal ethanol (ETOH)-exposed pup was
challenged with Respiratory syncytial virus (RSV). In the ETOH + RSV group, the plasma
antioxidant capacity (AOC) was decreased ~35% when compared to the control + RSV
group (Figure 5A). With plasma 8OH-dG as a marker of DNA oxidant damage, there
was ~threefold increase in the ETOH + RSV group when compared to the control + RSV
group (Figure 5B). When compared to the control + RSV group, fetal ETOH exposure
superimposed on inhaled RSV also exacerbated AM oxidant stress, as shown by ~50%
decrease in the cellular antioxidant GSH pool (Figure 6).
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Figure 4. Respiratory syncytial virus (RSV) superimposed on in utero ethanol (ETOH) exposure
increased polymorphonuclear leukocyte (PMN) migration into the alveolar space, but was attenuated
by oral liposomal glutathione (LGSH) treatments. Immunostaining for the cell surface marker (Gr-1)
was used to differentiate AM from the polymorphonuclear leukocytes (PMNs) that had migrated
into the alveolar space. Cells retrieved from the lavage were plated, fixed, and incubated with the
GR-1 primary antibody in a 1:100 dilution (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)
for 1 h. After the slides were washed three times with phosphate-buffered saline over 5 min, the
secondary antibody (anti-goat IgG) was added in a 1:200 dilution and further incubated for 45 min.
Cellular fluorescence was quantified using fluorescence microscopy via ImagePro Plus for Windows
Version 4.5 and presented as mean relative fluorescence units per cell (RFUS/cell) ± S.E.M. tallied
from at least 25 cells/litter. To correct for autofluorescence, the background fluorescence of unstained
AMs was subtracted from the RFUs obtained for each analysis. N = 5 litters for each group. a p = 0.05
when compared to the control + respiratory syncytial virus (RSV) group; b p ≤ 0.05 when compared
to the ETOH + RSV group.
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Figure 5. In utero ethanol (ETOH) exposure increased oxidant stress, as defined by a decrease in
the plasma antioxidant capacity (AOC; A) and an increase in DNA oxidation (8OH-dG; B), but this
oxidant stress was attenuated by oral liposomal glutathione (LGSH) treatments. After euthanasia with
intraperitoneal sodium pentobarbital, blood samples were obtained from all pups via cardiac puncture
and the samples pooled per experimental group and litter. Samples were spun and stored at −80 ◦C
until batch analyses. Total plasma AOC (A) was measured via colorimetric assay (MAK187, Sigma-
Aldrich, St. Louis, MO, USA) and 8-OHdG (B) was measured by ELISA (DNA Damage Competitive
ELISA Kit, Life Technologies Corporation, Carlsbad, CA, USA). N = 5 litters for each group. a p = 0.05
when compared to the control + RSV group; b p ≤ 0.05 when compared to the ETOH + respiratory
syncytial virus (RSV) group; c p ≤ 0.05 when compared to the control + LGSH + RSV group.



Antioxidants 2024, 13, 137 11 of 18

Antioxidants 2024, 13, x FOR PEER REVIEW 11 of 19 
 

 
Figure 6. In utero ethanol (ETOH) exposure increased alveolar macrophage (AM) oxidant stress, as 
defined by a decrease in the glutathione (GSH) pool, but the GSH pool in the AM was restored by 
oral liposomal glutathione (LGSH) treatments. The freshly isolated AMs were plated and fixed with 
3.7% paraformaldehyde before permeabilization with ice-cold methanol. The antioxidant GSH pool 
in the AMs was evaluated by whole-cell GSH via fluorescent immunostaining (1:100 dilution; 
Abcam, Inc®, Boston, MA, USA). Cellular fluorescence was quantified using fluorescence micros-
copy via ImagePro Plus for Windows version 4.5 [37] and is presented as mean relative fluorescence 
units per cell (RFUS/cell) ± S.E.M. as tallied from at least 25 cells/litter. To correct for autofluores-
cence, the background fluorescence of unstained AMs was subtracted from the RFUs obtained for 
each analysis. N = 5 litters for each group. a p = 0.05 when compared to the control + respiratory 
syncytial virus (RSV) group; b p ≤ 0.05 when compared to the ETOH + RSV group; c p ≤ 0.05 when 
compared to the control + LGSH + RSV group. 

Increased markers of alveolar macrophage (AM) immune suppression with fetal eth-
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AM expression of Arg-1, an immunosuppressant, was increased ~twofold in the ETOH + 
RSV group when compared to the control + RSV group (Figure 7B). 

Figure 6. In utero ethanol (ETOH) exposure increased alveolar macrophage (AM) oxidant stress, as
defined by a decrease in the glutathione (GSH) pool, but the GSH pool in the AM was restored by
oral liposomal glutathione (LGSH) treatments. The freshly isolated AMs were plated and fixed with
3.7% paraformaldehyde before permeabilization with ice-cold methanol. The antioxidant GSH pool
in the AMs was evaluated by whole-cell GSH via fluorescent immunostaining (1:100 dilution; Abcam,
Inc®, Boston, MA, USA). Cellular fluorescence was quantified using fluorescence microscopy via
ImagePro Plus for Windows version 4.5 [37] and is presented as mean relative fluorescence units per
cell (RFUS/cell) ± S.E.M. as tallied from at least 25 cells/litter. To correct for autofluorescence, the
background fluorescence of unstained AMs was subtracted from the RFUs obtained for each analysis.
N = 5 litters for each group. a p = 0.05 when compared to the control + respiratory syncytial virus
(RSV) group; b p ≤ 0.05 when compared to the ETOH + RSV group; c p ≤ 0.05 when compared to the
control + LGSH + RSV group.

Increased markers of alveolar macrophage (AM) immune suppression with fetal
ethanol (ETOH) exposure superimposed on experimental Respiratory syncytial virus
(RSV). In the ETOH + RSV group, there was ~twofold increase in AM expression of the
immunosuppressant TGFβ1 when compared to the control + RSV group (Figure 7A).
Likewise, AM expression of Arg-1, an immunosuppressant, was increased ~twofold in the
ETOH + RSV group when compared to the control + RSV group (Figure 7B).
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Figure 7. In utero ethanol (ETOH) exposure resulted in alveolar macrophage (AM) immunosup-
pression, as defined by an increase in transforming growth factor β1 (TGFβ1) (A) and arginase
1 (Arg-1) (B) expression, but oral liposomal glutathione (LGSH) treatments attenuated the AM
immunosuppression. AM expression of TGFβ1 (A) and Arg-1 (B) were used as markers of immuno-
suppression. Cells were incubated with the primary antibody in a 1:100 dilution (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA) for 1 h. After the slides were washed three times with
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phosphate-buffered saline over 5 min, the secondary antibody (anti-goat IgG) was added in a
1:200 dilution and further incubated for 45 min. Cellular fluorescence was quantified using fluo-
rescence microscopy via ImagePro Plus for Windows version 4.5 [38] and is presented as mean
relative fluorescence units per cell (RFUS/cell) ± S.E.M. tallied from at least 25 cells/litter. To cor-
rect for autofluorescence, the background fluorescence of unstained AMs was subtracted from the
RFUs obtained for each analysis. N = 5 litters for each group. a p = 0.05 when compared to the
control + respiratory syncytial virus (RSV) group; b p ≤ 0.05 when compared to the ETOH + RSV
group; c p ≤ 0.05 when compared to the control + LGSH + RSV group.

In vivo liposomal gluthaione (LGSH) treatments improved alveolar macrophage (AM)
function and improved immune defense against Respiratory syncytial virus (RSV). To in-
vestigate the hypothesized therapeutic role of the antioxidant GSH in the setting of RSV, we
evaluated whether LGSH administered to the pups by gavage would improve pulmonary
defenses against experimental RSV. Enteral LGSH administered immediately before the
intranasal delivery of RSV significantly improved the capacity of AMs to phagocytose RSV
in the ETOH-exposed pup (Figure 1). Furthermore, RSV growth was significantly decreased
in both the BAL (Figure 2A) and the whole lung (Figure 2B) of the ETOH-exposed pups
gavaged with LGSH, approaching values observed in the control + RSV group.

In vivo liposomal glutathione (LGSH) treatments attenuated Respiratory syncytial
virus (RSV)-induced acute lung injury. The diminished RSV growth seen in the ETOH-
exposed pups gavaged with LGSH was accompanied by decreased markers of RSV-induced
acute lung injury. Indeed, whole-lung wet/dry weight ratios (Figure 3A) and lung MPO
levels (Figure 3B) were significantly decreased when the ETOH-exposed pup was treated
with LGSH. Similarly, LGSH treatments also attenuated PMNs influx (Gr-1+ cells) into
the airspace for both the RSV-treated control and the ETOH pups, suggestive of decreased
acute lung injury (Figure 4).

Liposomal glutathione (LGSH) treatments also decreased the oxidant stress in pups
challenged with Respiratory syncytial virus (RSV). In the ETOH + LGSH + RSV group,
the plasma AOC was significantly improved when compared to the ETOH + RSV group
(Figure 5A). Likewise, LGSH treatments resulted in a significant decrease in DNA oxidant
damage for both the control + RSV group and the ETOH + RSV group (Figure 5B). Similar
results were observed in the GSH pool for AM, as noted by improved GSH/cell for both
the control + LGSH + RSV group and the ETOH + LGSH + RSV group (Figure 6).

Liposomal glutathione (LGSH) treatments improved alveolar macrophage (AM) im-
mune functions in pups challenged with Respiratory syncytial virus (RSV). In the
control + RSV + LGSH group, there was a significant decrease in AM expression of the
immunosuppression markers TGFβ1 (Figure 7A) and Arg-1 (Figure 7B) when compared
to AMs from the control + RSV group. In the ETOH + LGSH + RSV group, there was
also a significant decrease in the TGFβ1 (Figure 7A) and Arg-1 (Figure 7B) immuno-
suppression markers in the AMs when compared to the ETOH + RSV group. How-
ever, these AM markers of immunosuppression remained significantly elevated in the
ETOH + LGSH + RSV group when compared to the AMs from the control + RSV group
and the control + LGSH + RSV group.

4. Discussion

Fetal alcohol exposure is well known to adversely affect the developing newborn, most
notably the developing brain [39]. However, evidence continues to mount that in utero
alcohol also adversely alters multiple organs in the developing fetus [40,41], including the
developing lung. As we and others have described, multiple cell types within the ETOH-
exposed developing lung are at risk of alcohol-induced injury and altered pulmonary
immune function [42–44].

Using small-animal models of in utero ETOH exposure, we have previously shown
that ETOH alters immune defenses in the both the premature and the term lung, dimin-
ishes the lung’s major antioxidant GSH, and alters the immune phenotype of the resident
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AMs [1]. Specifically, in utero ETOH exposure induces an immunosuppressed AM pheno-
type, characterized by increased cellular TGFβ1, an important immunosuppressant that
decreases bacterial as well as viral phagocytosis by the AM [11,12,31].

In these models, the detrimental effects of in utero ETOH exposure were modulated
by the availability of the antioxidant GSH. We have also demonstrated that experimental
interventions to diminish oxidant stress by maintaining or replenishing GSH status in
the neonatal ETOH-exposed lung results in decreased neonatal AM TGFβ1, and more
importantly, improved AM immune functions after in utero ETOH exposure. Indeed,
beneficial interventional strategies such as dietary S-adenosyl methionine, a GSH precursor,
during maternal ETOH ingestion [45] or exogenous inhaled GSH to the neonatal pup
improved neonatal defenses against experimental bacterial infection. These studies suggest
a potential therapeutic role for exogenous GSH to improve pulmonary immune defenses in
the vulnerable ETOH-exposed neonate.

In adult studies, enteral LGSH diminishes markers of systemic oxidant stress and
improved immune function [46]. Furthermore, a randomized control trial in healthy adults
demonstrated that oral LGSH increases body stores of GSH and improves immune cell
function [47]. To expand on our previous findings of ETOH-induced immune dysfunction
and neonatal infection risk with either bacteria or viruses [31], the current study evaluated
the potential therapeutic role for enteral LGSH in the setting of an experimental neonatal
viral infection with RSV. In our neonatal mouse model, in utero ETOH-exposed pups
demonstrated increased pulmonary RSV infection, accentuated markers of acute lung
injury, and diminished AM phagocytosis of RSV when compared to control + RSV pups.
The ETOH-induced derangements in immune defenses against RSV were accompanied
by decreased GSH in the AM and increased AM immunosuppression, as demonstrated
by increased TGFβ1 and Arg-1 immunostaining. Excitingly, enteral LGSH administered
immediately prior to experimental RSV delivery successfully improved the ETOH-exposed
pup’s pulmonary defense against RSV, as evidenced by diminished RSV growth; decreased
markers of acute lung injury (lung wet/dry weight ratio, whole-lung MPO, and PMN
count); decreased AM expression of immunosuppression markers (TGFβ1 and Arg-1);
and restored AM in vivo phagocytosis of RSV. The role of LGSH in supplying the critical
antioxidant GSH and decreasing ETOH-induced oxidant stress was demonstrated by
normalization of the systemic antioxidant capacity, systemic DNA oxidation, and the AM
pool of GSH.

The current study is important because newborns, particularly former premature
newborns, are at risk of significant morbidity due to viral infections such as RSV [20,21].
Although we have demonstrated that in utero alcohol exposure is reported in a third of
premature babies [2], the risk and severity of subsequent RSV infection in alcohol-exposed
newborns remains poorly described. While RSV infections have been reported to be
increased clinically in alcohol-exposed male babies [48], the mechanisms underlying the
increased risk of RSV infection in the alcohol-exposed newborn requires further study.
Furthermore, the potential for LGSH to augment immune defenses in the RSV-infected
infant requires additional investigation.

The immune defense of airway epithelial cells is highly sensitive to alcohol and
alcohol-induced oxidant stress [49,50], and these epithelial cells are the primary site for RSV
infections. However, the first line of cellular defense against pathogens in the airspace is the
AM, which plays a key role in engulfing and digesting pathogens, thereby minimizing the
exposure of other airway cells to the pathogen. AMs also play a key role as a modulator of
inflammation in the airspace through cytokine production and cellular interactions, thereby
making AM immune functions critical for pulmonary defenses against RSV. Optimal AM
defenses dictate effective viral clearance and significantly contribute to the resolution of
pulmonary disease [23,24,51–54].

For RSV, a central role for reactive oxygen species and subsequent oxidant stress
are demonstrated by significant alterations in oxidant response pathways and increases
in markers of oxidative damage [55,56]. In addition to downregulation of the cellular
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antioxidant enzyme systems, RSV augments its own replication [57]. In contrast, antioxi-
dant treatments attenuate both RSV-induced oxidant stress and that caused by the viral
burden [25,26]. This suggests that modulation of oxidant stress represents a potential
novel pharmacological approach to ameliorate RSV-induced acute lung inflammation and
injury [57].

Availability of the endogenous antioxidant tripeptide GSH (glutamine, cysteine, and
glycine) is critical for maintaining redox homeostasis and preventing the immune cell
damage caused by reactive oxygen species. One strategy for GSH supplementation during
oxidant stress is oral LGSH, which has been shown to decrease oxidant stress in HIV
subjects and patients with type 2 diabetes [32–34]. In a mouse model of an active My-
cobacterium tuberculosis infection, GSH depletion exacerbated the pathogen burden, but
oral LGSH decreased both pulmonary oxidant stress and granuloma-promoting immune
responses, resulting in decreases in the pulmonary bacterial infection [58]. Similar results
were obtained in a diabetic mouse model with an active Mycobacterium tuberculosis infection,
demonstrating that oral LGSH treatments can also improve bacterial clearance in an im-
munocompromised model [59]. In human clinical trials, enteral LGSH elevated antioxidant
defenses and improved immune functions of natural killer cells and lymphocytes [46,47],
however studies of enteral LGSH in the neonatal population are lacking.

Overall, the current study provides provocative evidence that in utero ETOH exposure
results in chronic oxidant stress, which subsequently mediates dysregulation of the AM
immune responses and the risk of a viral infection. Correspondingly, this increased the
risk of acute lung injury associated with a viral infection. However, restoration of the GSH
pool through enteral LGSH treatments improved the GSH pool in AMs and decreased the
AM immunosuppression associated with in utero ETOH exposure. Similarly, the systemic
oxidant stress as well as the exacerbation of the RSV infection and acute lung injury in the
ETOH + RSV group were attenuated by the enteral LGSH therapy in the exposed pup. In
this study, we focused on AMs and cannot rule out the possibility that other cell types also
negatively affected by in utero ETOH ethanol exposure were positively impacted by the
enteral LGSH therapy and contributed to the improved RSV clearance. Likewise, additional
studies are needed to determine if these effects of fetal ethanol exposure on chronic oxidant
stress or AM immune function improve with pulmonary maturation.

Additional studies are also needed to determine if there is a potential therapeutic
role for LGSH in this vulnerable population, where timing of LGSH delivery before or
at the time of the viral exposure may be critical. If these findings ultimately prove to be
relevant in the clinical situation, then LGSH therapy may provide a strategy to improve AM
immune responses and decrease the risk and severity of pulmonary infections in the highly
vulnerable preterm infant with fetal alcohol exposure. Novel strategies such as LGSH
supplements may also become particularly important in this era of antibiotic-resistant
bacterial infections.

5. Conclusions

• Fetal ethanol exposure promoted chronic oxidant stress in alveolar macrophages and
systemically.

• Chronic oxidant stress resulted in immunosuppression of alveolar macrophages.
• In utero ethanol exposure impaired the capacity of pup alveolar macrophages to clear

viruses.
• Fetal ethanol exposure exacerbated lung respiratory syncytial virus infection and acute

lung injury.
• Enteral treatments of the pup with liposomal glutathione normalized alveolar

macrophage immune responses, lung viral infection, and acute lung injury.
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Abbreviations

AM alveolar macrophage
AOC antioxidant capacity
Arg-1 arginase 1
BAL bronchoalveolar lavage
ETOH ethanol
GSH glutathione
8-OHdG 8-hydroxyguanosine
LGSH liposomal glutathione
PFU plaque forming units
PI phagocytic index
PMNs polymorphonuclear leukocytes
RFU relative fluorescence unit
RSV respiratory syncytial virus
TGFβ1 transforming growth factor β1
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