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Abstract: Type 2 diabetes (T2D) is a major worldwide health crisis affecting about 6.2% of the world’s
population. Alarmingly, about one in five children in the USA have prediabetes. Glutathione (GSH)
and its precursors play a promising role in the prevention and management of type T2D. Oxidative
stress (OxS) is a probable factor in both T2D initiation and progression. GSH is the major cytosolic
water-soluble chemical antioxidant and emerging evidence supports its role in improving T2D
outcomes. Dietary supplementation with N-acetyl-cysteine (NAC) and/or glycine (GLY), which are
GSH precursors, has also been studied for possible beneficial effects on T2D. This review will focus on
the underlying pathophysiological and molecular mechanisms linking GSH and its precursors with
T2D and OxS. In addition to their traditional antioxidant roles, the in vivo effects of GSH/NAC/GLY
supplements will be evaluated for their potential abilities to modulate the complex pro-oxidant
pathophysiological factors (e.g., hyperglycemia) driving T2D progression. Positive feedback loops
that amplify OxS over long time intervals are likely to result in irreversible T2D micro- and macro-
vascular damage. Most clinical studies with GSH/NAC/GLY have focused on adults or the elderly.
Future research with pediatric populations should be a high priority since early intervention is critical.

Keywords: glutathione; oxidative stress; type 2 diabetes; reactive oxygen species; N-acetyl-L-cysteine;
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1. Introduction

The objective of this review is to critically evaluate the role of glutathione (GSH) and
its chemical precursors (N-acetyl-cysteine (NAC) and glycine (GLY)) in the prevention
and management of T2D and prediabetes. Oxidative stress (OxS) is a probable factor in
both T2D initiation and progression [1]. Antioxidant-based therapy may, therefore, have
potential benefits [2]. An ever-increasing body of evidence supports the role of OxS in T2D
pathogenesis [3–5]. OxS is usually defined as Sa physiologically significant alteration in
redox status resulting from an overproduction of reactive oxygen species (ROS) and/or
a deficiency in antioxidant protective mechanisms [6]. It is important, however, to also
consider how antioxidants, such as GSH, interconnect with the complex pathophysiological
risk factors that modulate T2D redox status [7]. GSH is the major cytosolic water-soluble
chemical antioxidant and clinical evidence suggests that patients with T2D have a GSH
deficiency [8]. As detailed below, GSH is important in the glutathione peroxidase (GPX)
system where it reduces hydroperoxides, which are prooxidants very relevant to T2D
initiation and progression [9].

1.1. The Epidemiology of T2D

The alarming present and forecasted global prevalence of T2D has stressed the need
to evaluate novel treatment strategies that could complement lifestyle modifications and
conventional pharmacological treatments [10–12]. It has been projected that by 2050, some
1.3 billion people worldwide will have diabetes with about 96% having T2D [13]. Both
T2D and prediabetes are rapidly increasing in pediatric populations [14,15]. This trend
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is particularly worrisome since neither the natural history of T2D progression nor the
efficacy of pharmacological treatments are as well characterized in pediatric populations
compared to adults [16]. In prediabetes, blood glucose levels have not yet reached the T2D
threshold [17]. In the United States (US), it has been estimated that more than one in three
adults and more than one in five children have prediabetes [15,17].

The US Preventive Services Task Force (USPSTF) recently affirmed screening for predi-
abetes or T2D in adults with overweight or obesity but did not extend this recommendation
to children and adolescents [18]. The USPSTF concluded that “the evidence is insufficient
to assess the balance of benefits and harms of screening for T2D in children and adoles-
cent” [19]. In contrast, a recent volunteer Task Force of medical experts has suggested
screening for prediabetes and diabetes in children, adolescents, and adults who have obe-
sity [20]. The American Academy of Pediatrics and the American Diabetes Association
have both recently recommended screening for abnormalities in glucose metabolism in
children with a body mass index (BMI) at or above the 95th percentile [21,22]. A key
rationale for screening children and young adults is that early and intensive intervention
will reduce future morbidity and mortality [20]. Obesity has long been recognized as a
major risk factor for cardiovascular disease, prediabetes, and T2D, as well as promoting
OxS and markers of inflammation [23–25].

1.2. The Etiology of T2D

T2D is a chronic disease in which blood glucose levels are high enough and of sufficient
duration to cause damage to susceptible organs/tissues. Insulin resistance, pancreatic beta-
cell dysfunction, and abnormally high glucagon levels are the major etiological factors
that cause high blood glucose levels [26,27]. The progression of T2D starts with insulin
resistance followed by prediabetes, overt T2D with fasting blood glucose level above
126 mg/dL, and finally vascular damage [7,27]. T2D is, however, a multifactorial disease
with alterations in lipid and protein metabolism as well as complex interactions between
organs, tissues, cell types, and subcellular compartments/organelles. In this regard, it is
significant that alterations in lipid metabolism (e.g., high triglyceride levels) have been
found to occur years before overt T2D diagnosis in adults and can improve the prediction
of T2D progression [28]. Gummesson et al. [29] have observed distinct alterations in
plasma protein profiles in newly diagnosed adult T2D patients in comparison to healthy
adult controls. These data suggest that early-stage T2D is accompanied by plasma protein
alterations that may also prove useful in helping to predict T2D progression.

The complexity of T2D is reflected by the fact that it is a polygenic disorder with an
association with over 120 genetic loci [30]. In addition to insulin resistance, obesity (and
intraorgan adipose tissue), poor-quality high-calorie diets, and lack of physical exercise are
major risk factors for T2D [26]. The consumption of high-calorie/high-fat ultra-processed
foods by children and adolescents is strongly associated with obesity [31,32] and obesity, in
turn, is associated with chronic OxS [25]. OxS has emerged as an important mechanism for
the initiation of prediabetes and for promoting T2D progression [3,4,7]. In Section 2 of this
review, we outline the biochemistry of GSH and its central role as an antioxidant important
in modulating OxS and T2D. With this background in place, we mechanistically link (in
Section 3) T2D risk factors to OxS and T2D initiation/progression.

2. The Biochemistry and Roles of GSH (and Its Precursors) in OxS and T2D

GSH is a key water-soluble thiol (R-SH) antioxidant that may play an important role
in preventing, slowing, and perhaps reversing T2D progression [33]. In 1969, Kosower and
Kosower wrote a review of GSH with the title “Least I Forget Thee, Glutathione” [34]. This
admonition has been well heeded as evidenced by an eight-fold increase in the number of
GSH publications in 2022 compared to 1969 [35]. GSH (gamma-glutamylcysteinylglycine)
is most often described as a “tripeptide” composed of CYS, GLY, and glutamic acid (GLU)
as shown in Figure 1. Both GLY and CYS are considered conditionally essential amino
acids in the context of T2D [36,37].
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Figure 1. Glutathione biosynthetic scheme. N-acetyl-L-cysteine (NAC) can supply cysteine (CYS)
for the biosynthesis of reduced glutathione (GSH). NAC must first be hydrolyzed by aminoacylase
1 (ACY1) to release CYS. In the first step of GSH synthesis, L-glutamate-L-cysteine ligase (GCL)
catalyzes the formation of gamma-L-glutamyl-L-cysteine (GGC) by linking CYS and L-glutamate
(GLU). In the second step, glutathione synthetase (GS) catalyzes the formation of GSH by linking
GGC to GLY.

While it is true that GSH is a tripeptide, it is not a “eu-tripeptide”. Eupeptides have
amide bonds that are formed between the C-l of one amino acid and the N-2 of another
amino acid as occurs in typical proteins. In GSH, there is an iso-peptide bond between the
gamma-carboxyl group of the GLU side chain and CYS (see Figure 1). This iso-peptide
bond is important because it renders GSH relatively resistant to intracellular proteases that
cleave eu-peptide bonds [38]. This intracellular protease resistance enables GSH to reach
unusually high intracellular concentrations (5 mM) for an organic compound and thereby
contributes to its effectiveness as an intracellular antioxidant [39]. In contrast, the plasma
level of GSH in healthy individuals is about 0.0034 mM [40].

2.1. Diminished GSH Synthesis in T2D Results in OxS

Patients with uncontrolled T2D (i.e., persistent hyperglycemia) have been found by
Sekhar et al. to have severely diminished in vivo GSH synthesis, which can be restored by
dietary supplementation with “GSH plus GLY” [41]. It should be noted that the dietary
“GSH” used in this research was provided as NAC, which is a xenobiotic precursor to GSH;
it would be more accurate, therefore, to state that “NAC plus GLY” was used as the dietary
supplement. Surprisingly, the mechanism by which NAC enters cells is not completely
understood but NAC cannot simply be considered the equivalent of GSH [35]. Significantly,
Sekhar et al. found that supplementation with “NAC plus GLY” reduced measures of
systemic OxS, e.g., serum lipid peroxides (see Section 2.2.1 below) [41].

GSH is present and synthesized in the cytosol of all mammalian cells by a two-step
regulated process (see Figure 1) [42]. In the first step, L-glutamate-L-cysteine ligase (GCL)
catalyzes the formation of gamma-L-glutamyl-L-cysteine (GGC) by linking CYS (a thiol-
containing amino acid) and GLU. In the second step, glutathione synthetase (GS) catalyzes
the formation of GSH by linking GGC to GLY [38,43]. The first step is rate-limiting for
GSH synthesis, and the availability of CYS and the activity of GCL are key determinants of
GSH synthesis [42]. CYS, and its thiol group, are essential for the antioxidant properties of
GSH [44]. Moreover, since the Km of CYS for the catalytic subunit of GCL is close to its
cytosolic concentration, a drop in CYS levels would result in decreased GSH synthesis [44].
Intracellular levels of CYS are typically low and, if the demand for GSH is high (e.g.,
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OxS), CYS will be transported into the cell from the extracellular space [45]. There are
sound reasons for utilizing NAC rather than CYS as a dietary supplement since NAC is
chemically more stable than CYS and has an excellent safety record [35]. The enzymes for
GSH synthesis are not present in mitochondria but two transport systems pump GSH from
the cytosol into these organelles [46]. GSH is thought to act both as a direct antioxidant by
quenching reactive oxygen species (ROS) and as a cofactor for GPX [47].

2.2. GSH and the Glutathione Peroxidase (GPX) System

As outlined in Figure 2, GPX enzymes reduce hydroperoxides utilizing hydrogen ions
donated by the thiol group of GSH with the formation of oxidized GSH (GSSG). There are
eight known GPXs (GPX1-GPX8) with GPX1 being the most abundant and this isoform
is expressed in the cytoplasm and mitochondria of most cells [48,49]. GPX1-4 and GPX6
are selenoenzymes with selenocysteine (selenium replacing sulfur in CYS) at the active
site. Selenium (Se) is an essential trace element and in the absence of dietary Se, total
GPX activity in most mammalian tissues is markedly decreased [50]. GPX1-4 and GPX6
can reduce either organic hydroperoxides (ROOH) or hydrogen peroxide (H2O2) to the
corresponding organic alcohol or H2O in the case of H2O2.
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Figure 2. The glutathione peroxidase (GPX) system and lipid peroxidation. GPX catalyzes the
conversion of lipid hydroperoxides (LOOH), formed from lipid peroxidation to a lipid alcohol (LOH)
utilizing GSH as a reducing agent. The oxidized GSH (GSSG) formed by this reaction is reduced back
to GSH by glutathione reductase (GR) with the consumption of NADPH. The lipid peroxyl radical
(LOO*) formed from lipid peroxidation can undergo chemical decomposition to 4-hydroxynonenal
(4-HNE) and malondialdehyde (MDA), which are reactive aldehydes that can react with proteins to
form carbonylation products.

GPX1, due to its affinity for H2O2 and its abundance in most cells, is the key enzyme
responsible for minimizing cytosolic H2O2 levels as well as mitochondrial H2O2 levels
where no catalase is present in most mammalian cells [49,51,52]. Mitochondria, in addi-
tion to GPX1, also contain GPX4, which is unique in its ability to reduce phospholipid
hydroperoxides (PLOOH), which are not water-soluble [49]. As indicated in Figure 2,
oxidized GSH is recycled back to GSH by glutathione reductase (GR) with the consumption
of nicotinamide adenine dinucleotide phosphate (NADPH). An overproduction of H2O2
or lipid hydroperoxides can result in a reduced GSH/GSSG, ratio which is often used as
a biomarker for OxS [53]. Under normal physiological conditions, about 98% of the total
cellular GSH (GSH+GSSG) content is GSH.

While Se is required for most forms of GSPX, this trace element is present in some
25 other selenoproteins [54]. The role of Se in T2D has been studied for many decades
yet remains controversial [55]. A study by Laralis using a small population of patients
(N = 94) with T2D (no diabetic complications and consuming a Mediterranean diet) suggests
that 200 micrograms/day (chemical form not specified) can improve glycemic control
(after three or six months) [56]. Nevertheless, there is now a consensus suggesting that
the effect of Se intake on hyperglycemia has a U-shaped dose–response curve, i.e., a
dose above the recommended level (55 micrograms/day) causes hyperglycemia (and
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hyperinsulinemia) [55,57]. Although beyond the scope of this review, Se has been found to
modulate the insulin signaling pathway (see below) [55].

Blood levels of GPX are lower in patients with T2D compared to healthy controls and
the decrement in GPX activity was more severe in T2D patients with obesity compared to
T2D patients without obesity [58]. Compared to healthy controls, patients with T2D have
lower levels of red blood cell GSH levels as well as lower GSH synthesis rates, particularly
in T2D patients with microvascular complications [8].

2.2.1. Lipid Peroxidation, Protein Carbonylation, and T2D

Lipid hydroperoxides (LOOH) formed by the process of lipid peroxidation are also a
biomarker of OxS. If not reduced by the GPX system, lipid hydroperoxides can accumulate
and decompose, yielding lipid peroxyl radicals (LOO*) and/or lipid alkoxyl radicals (LO*),
which can amplify lipid peroxidation with the formation of additional lipid hydroperox-
ides [59]. The positive associations between lipid peroxidation and T2D progression have
been comprehensively reviewed by Shabalala et al. [9]. Both malondialdehyde (MDA) and
4-hydroxy-2-nonenal (4-HNE) are reactive aldehyde–lipid peroxidation by-products (see
Figure 2) that have been widely used as biomarkers of OxS [59,60]. A meta-analysis by Bank
and Ghosh found that serum levels of MDA were higher in subjects with T2D compared to
controls [61]. Similarly, increased serum (as well as other biofluids and tissues) levels of
4-HNE have been documented in T2D patients compared to controls [60]. Plasma levels of
MDA and 4-HNE are associated with T2D progression and poor glycemic control [9].

As indicated in Figure 2, MDA and 4-HNE can covalently modify proteins by car-
bonylation of CYS, histidine (HIS), and lysine (LYS) residues, thereby potentially altering
their structure and function(s), e.g., signal transduction pathways [62,63]. CYS, HIS, and
LYS are often present at the active sites of many enzymes. Human ex vivo studies as
well as studies in animal models suggest that obesity and insulin resistance are linked to
increased levels of adipose protein carbonylation [64,65]. In an animal model of obesity and
insulin resistance, it has been estimated that about 6–8% of adipose proteins are modified
by carbonylation, i.e., a nontrivial level [60,64]. The potential for protein carbonylation to
inactivate key antioxidant enzymes has not been well studied despite the potential rele-
vance to T2D etiology. Interestingly, carbonylated GPX1 and peroxiredoxin1 (PRX1) have
both been identified in adipose tissue but the functional significance of this modification
is not known [64]. PRXs are a family of peroxidases (like GPXs) that can reduce H2O2 or
ROOH and are thought to be important in protecting beta-cells from oxidative damage
and diminished insulin secretion [66,67]. Remarkable analytical progress in detecting and
characterizing carbonylated proteins, particularly in the area of proteomics, suggests that
future studies will be forthcoming [4,60].

2.3. NAC Metabolism and Its Role as an “Antioxidant” in T2D Management

NAC has been described as the “most frequently used” antioxidant supplement but
recent research suggests that its precise mechanism of action is less certain [35,68,69]. NAC
supplements are traditionally thought to provide the CYS residues needed to support
GSH synthesis [35]. It is likely that NAC is not an effective direct antioxidant and must be
converted into GSH and/or hydrogen sulfide and sulfane sulfur species [35,70]. NAC is
hydrolyzed to CYS by aminoacylase1 (ACY1) (Figure 1), which is found in many tissues
including the liver and intestines [71]. CYS, in turn, promotes GSH synthesis primarily
under circumstances in which tissue GSH is depleted, e.g., T2D [35]. The newly synthesized
GSH can act as an antioxidant via the GPX system (Figure 2) [72].

Pedre et al. [35] have reviewed the evidence suggesting that NAC-derived CYS can
also exert antioxidant activity by conversion into hydrogen sulfide (H2S) and sulfane
sulfur species, which may act as antioxidants. The conversion of CYS to H2S depends on
cystathionine-gamma-lyase (CSE), which is normally present only in the cytoplasm but
under stress simulation is translocated to the mitochondria and supports H2S production
in these organelles [73]. It is significant (see below) that the oxidation of H2S into sulfane
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sulfur species occurs primarily within mitochondria since OxS in these organelles has been
linked to transitory insulin resistance [74].

Szkudlinska et al. [75] tested the hypothesis that short-term (4 weeks total) NAC
supplementation (no GLY) might improve glucose tolerance and/or beta-cell function in
T2D. The study population (N = 12) in this report was small and patients with severe
hyperglycemia were excluded. Nevertheless, no benefit in glycemic control, glucose
tolerance, insulin resistance, or oxidative stress markers was observed [75]. In contrast,
a small pilot study by Sekhar et al. found that an “NAC plus GLY” supplement for two
weeks lowered insulin resistance in T2D subjects (N = 10) [33]. This author has made a
compelling argument that “NAC plus GLY” is uniquely different from “NAC alone” or
“GSH-alone” in so far as GLY is necessary for GSH synthesis [33,76]. An experiment in
which NAC alone, GLY alone, GSH alone, NAC plus GLY, and GSH plus GLY would be
needed to affirm this assertion. In older normal adults (N = 24) with no known T2D, Kumar
et al. found that NAC plus GLY (for a total of 16 weeks) improved GSH deficiency, reduced
markers of OxS, and improved insulin resistance [76].

2.4. GLY Alone Has Been Found to Play a Role in Promoting Insulin Resistance

It has long been noted that GLY deficiency (hypoglycinemia) is associated with obesity
or T2D and that improvement in insulin resistance is associated with increased plasma
GLY [77]. In a comprehensive literature review, McCarty et al. [78] concluded that dietary
GLY is rate-limiting for GSH synthesis and that supplemental GLY might promote GSH
synthesis and be clinically effective (and safe) in health disorders in which OxS is relevant,
e.g., T2D. For over a decade, it has been known that dietary collagen supplementation (rich
in GLY) strongly potentiates glucose-stimulated insulin secretion in patients with T2D [79].
In an animal model of sucrose-induced insulin resistance, it has been demonstrated that
dietary GLY supplementation decreases liver OxS biomarkers, increases liver GSH, and
improves insulin sensitivity [80]. Since GLY has no intrinsic antioxidant activity, it is likely
that that its in vivo beneficial effect on OxS and insulin resistance is indirect and mediated,
at least in part, by increased GSH synthesis.

A second mechanism by which GLY could affect glucose homeostasis lies in its po-
tential ability to modulate insulin secretion from pancreatic beta-cells by activating ligand-
gated chloride channels [78,81]. A progressive decline in insulin secretion from beta-cells
is a hallmark of T2D progression [27]. A small clinical study (N = 9) in 2002 found that
GLY supplementation increased plasma insulin levels in healthy subjects but did not estab-
lish a mechanism [79]. In pioneering work, Yan-Do et al. [82] found that GLY binding to
GLY receptors (GLYRs) on beta-cells stimulates insulin secretion by promoting an inward
Ca2+ flux. Moreover, these authors found that GLYR expression and GLY-induced cur-
rents are reduced in beta-cells from T2D donors, thereby contributing to impaired insulin
secretion [82].

3. Interconnections between OxS, T2D Risk Factors, and GSH Metabolism

Insulin resistance and impaired beta-cell secretion of insulin both contribute to
hyperglycemia-induced OxS and diabetic complications [83]. A paper by Boyaci et al. [84]
in 2021 raised the question of whether OxS is a consequence of hyperglycemia or if hyper-
glycemia is a result of OxS. It is likely, however, that multiple “positive feedback loops”
between T2D risk factors and OxS are at play and drive T2D progression in susceptible
individuals. A general review of positive feedback loops in biological systems has been
published by Mitrophanov et al. [85].

Over long time intervals, T2D positive feedback loops can eventually result in ir-
reversible OxS micro- and/or macro-vascular damage such as diabetic retinopathy (a
microvascular disease) [86]. Figure 3 provides a simplified scheme showing the inter-
connections between OxS and T2D risk factors as well as some likely positive feedback
loops. High-calorie meals, overweight/obesity, gastrointestinal postprandial oxidative
stress (POS), insulin resistance, hyperglycemia, and pancreatic beta-cell dysfunction are
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examples of risk factors that can modulate both local and systemic OxS in T2D. Encour-
agingly, accumulating evidence suggests that T2D progression is not “inevitable” and
possibly reversible at an early stage [26]. As will be detailed below, GSH metabolism plays
a central role in modulating T2D OxS and may play a role in reversing/slowing early T2D
progression.
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Figure 3. Simplified scheme connecting oxidative stress (OxS) and T2D risk factors. Two sets of
potential positive feedback loops (circles with +) are indicated (blue and red arrows). The text
describes these positive feedback loops in more detail. Over prolonged time intervals, systemic OxS
can cause beta-cell dysfunction as well as irreversible micro- and macro-vascular damage.

In addition to high-calorie meals, it should be mentioned that there are other common
exogenous sources of OxS. As comprehensively reviewed by Bhattacharyya et al. [87], some
pollutants, radiation, cigarette smoking, and some drugs/xenobiotics can contribute to
OxS. As recently noted by the World Health Organization, quitting cigarette smoking can
decrease the risk of developing T2D by 30–40% [88]. In addition to mitochondrial OxS
(as detailed below), there are numerous sources of endogenous OxS (e.g., inflammatory
responses) that can be relevant to T2D progression [87].

3.1. High-Fat/High-Calorie Diets Promote Postprandial Oxidative Stress (POS), Mitochondrial
OxS, and Insulin Resistance

In healthy young adults, the consumption of a lipid (saturated fat)-rich meal results
in robust postprandial oxidative stress (POS) compared to an isocaloric carbohydrate-
rich meal (dextrose) [89]. When fed a standard meal, patients with T2D show a greater
POS compared to matched healthy subjects [90]. POS has been proposed as a probable
mechanism contributing to systemic OxS, T2D progression, and vascular damage (see
Figure 3) [91,92]. Moreover, supplementation (for 15 days) with dietary antioxidants
(including NAC) has been found to reduce POS and improve markers of endothelial
dysfunction in subjects with T2D or insulin resistance [93]. In addition to promoting OxS,
high-calorie/fat diets are also problematic because they are likely an initiating factor for
prediabetes (see below) and promote overweight and obesity. In marked contrast, very low-
calorie (hypocaloric) diets can improve glycemic control in T2D patients and potentially
promote T2D remission [94].
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3.2. Skeletal Muscle Mitochondrial OxS and Insulin Resistance

It has long been recognized that skeletal muscle insulin resistance is the primary defect
in T2D [95]. The insulin-sensitive glucose transporter 4 (GLUT4) is the primary means by
which skeletal muscle takes up glucose. Insulin stimulates the translocation of GLUT4
from intracellular GLUT4-containing vesicles to the cell surface where this transporter can
actively support facilitated glucose transport [96]. The insulin signaling pathway is complex
but requires the activation of Akt (a serine–threonine kinase) by phosphorylation [97]. The
reduced ability of insulin to activate the GLUT4 glucose transport system in skeletal muscle
is a primary cause of insulin resistance [96,98].

In pioneering work, Anderson et al. [74] found that a high-calorie diet (in healthy
adults) promoted skeletal muscle mitochondrial OxS which, in turn, resulted in transient
insulin resistance. While both a high-calorie fat or carbohydrate meal could induce this
transient insulin resistance, dietary fat was more effective than dietary carbohydrates [74].
Obesity, a known risk factor for T2D, dramatically amplified skeletal muscle mitochondrial
OxS [74]. As indicated in Figure 3, positive feedback loops connecting high-calorie/fat
meals, overweight/obesity, mitochondrial OxS, skeletal muscle insulin resistance, increased
glycemia, and systemic OxS are likely at play in T2D. In susceptible individuals, it is likely
that these positive feedback loops promote T2D progression. In addition to the importance
of lifestyle and environmental factors, T2D has an inheritance ranging from 30 to 70% [99].

The work by Anderson et al. [74] is also important since these investigators demon-
strated that a high-fat diet induced skeletal muscle OxS (and insulin resistance) by pro-
moting mitochondrial H2O2 emission. Although not the primary focus of their work,
Anderson et al. [74] found that glucose-stimulated Akt phosphorylation in skeletal muscle
was markedly diminished by a high-fat diet, suggesting a disruption in the insulin signal-
ing pathway. The high-fat diet also induced a decrease in the skeletal muscle GSH/GSSG
ratio, suggesting that GSH was oxidized to GSSG by GPX in response to increased H2O2
production. It should again be noted that mitochondria do not have the enzymes required
for GSH synthesis and must import GSH from the cytoplasm [46]. GPX enzymes were not
studied by Anderson et al. but GPX1 and GPX4 are pivotal since they reduce mitochondrial
H2O2 [49]. Recent research indicates that genetic variants in GPX1 and GPX3 are associated
with T2D risk [100].

Søndergård et al. [101] conducted a small clinical trial looking at the effects of three
weeks of oral GSH supplementation on whole-body insulin sensitivity in obese subjects
with (N = 10) and without (N = 10) T2D. These investigators [101] found that GSH supple-
mentation increased insulin sensitivity in both the obese subjects with and without T2D but
did not change the GSH/GSSG ratio in skeletal muscle as might have been anticipated by
the work of Anderson et al. [74]. As mentioned above (Sections 2.3 and 2.4), simultaneous
GLY supplementation could be important in promoting an optimal redox status.

3.3. Hyperglycemia Promotes Protein Glycation, Formation of AGEs, Activation of the Polyol
Pathway, OxS, and T2D Progression

Chronic bouts of transient insulin resistance will result in chronic increases in post-
prandial glucose (PPG) as indicated in Figure 3. Glucose can covalently react with lysine,
arginine, and the N-terminal residues on proteins to form glycation products, which can
further react to produce advanced glycation end products (AGEs) [102]. Glycation can
modify the structure and functions of proteins. It has been found, for example, that glyca-
tion of the GPX results in a loss of enzymatic activity [103]. This is a hypothetical example
of a positive feedback loop, i.e., increased mitochondrial OxS promotes increased glycemia,
promoting increased glycation–inactivation of GPX enzymes with a further increase in
skeletal muscle mitochondrial OxS and glycemia.

As reviewed by Sottero et al. [92], increased plasma levels of glucose resulting from
insulin resistance can promote the formation of AGEs. Hyperglycemia will eventually result
when beta-cell secretion of insulin is unable to make up for insulin resistance [104]. AGEs
can stimulate ROS production as a result of binding to RAGE (receptor for AGEs) [105].
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In vitro and ex vivo evidence (animal models and T2D patients) supports the role of
the AGE-RAGE pathway in promoting OxS-driven beta-cell dysfunction and decreased
insulin secretion [106,107]. Evidence from an animal model also shows that AGEs can
induce insulin resistance by repressing the skeletal muscle glucose transporter GLUT4 [108].
Repression of GLUT4 is known to contribute to insulin resistance [95,98]. As indicated
in Figure 3, these sequences of molecular events are also another potential set of positive
feedback loops.

High plasma glucose also promotes OxS by activation of the polyol pathway in which
aldose reductase (AR) reduces glucose to sorbitol followed by the conversion of sorbitol to
fructose by sorbitol dehydrogenase (SDH). In the first reaction, NADPH is consumed by
AR, which can result in OxS since NADPH is required for reducing GSSG to GSH (by GR)
and GSH is required for the reducing peroxides by the GPX system (see Figure 2). It has
been estimated that in diabetes, as much as 30% of body glucose can be consumed by the
polyol pathway [102].

For cells primarily relying on insulin-independent GLUT transporters, such as GLUT1,
plasma levels of glucose will equilibrate with intracellular cytosolic glucose. When post-
prandial glucose and/or fasting blood glucose are sufficiently high, the polyol pathway
(and OxS) will be activated in cells relying on GLUT1, e.g., endothelial cells [109,110].
Moreover, the fructose produced by the second reaction in the polyol pathway is a much
more effective glycating agent than glucose [102,111]. Dietary fructose has been implicated
in promoting T2D [111]. Both microvascular and macrovascular endothelial cells express
GLUT1 and early endothelial dysfunction in T2D is thought to be a driver of future cardio-
vascular disease [112]. The role of hyperglycemia-induced OxS damage to endothelial cells
has been reviewed [110]. The activation of the polyol pathway and the resulting OxS have
been strongly implicated in the development of diabetic retinopathy [113].

3.4. Chronic Inflammation, OxS, and T2D

OxS arising from chronic inflammation has long been recognized as a potential driver
of T2D progression [114,115]. Chronic inflammation is associated with increased levels
of ROS, reactive nitrogen oxide species (RNOS), and C-reactive protein. As reviewed by
Son et al. [116], the increased production of superoxide radicals (O2

•−) resulting from T2D
hyperglycemia can rapidly react with nitric oxide (NO) to produce peroxynitrite (ONOO−),
which can subsequently react with protein (and apolipoprotein) tyrosine residues to form
3-nitro-tyrosine (3-NT). 3-NT levels are biomarkers for inflammation and patients with T2D
have increased serum 3-NT levels compared to controls [117]. ROS and RNOS are both
thought to contribute to T2D macro- and micro-vascular damage [116]. GSH is thought to
play a key role in NO biochemistry [118]. GSH, for example, can react with NO to form
S-nitrosoglutathione, which may be relevant to T2D by promoting insulin sensitivity [119].

Serum levels of C-reactive protein are clinically used as a measure of systemic inflam-
mation and are increased in T2D [120,121]. Although not focused on T2D, a meta-analysis
by Askari et al. [122] found that oral NAC supplementation reduced serum levels of C-
reactive protein. In a small study of T2D subjects (N = 24 adults), Jeremias et al. [123] found
that oral NAC supplementation (four weeks) significantly reduced C-reactive protein levels
compared to placebo. As suggested by these researchers, “further study” is well justified.
We would also suggest the inclusion of a pediatric population.

4. Is NAC a Drug and/or a Dietary Supplement?

Despite the potential clinical benefits of NAC+GLY for slowing and perhaps even
reversing T2D progression, there is a practical issue in its clinical utilization, i.e., it is not
entirely clear if NAC is a drug or dietary supplement from a regulatory point of view. The
US Federal Food and Drug Administration (FDA) has asserted that NAC was approved
as a drug (in 1963) before it was promoted as a dietary supplement and therefore cannot
be considered a dietary supplement. According to the National Institutes of Health (NIH),
“supplements are products intended to supplement the diet. They are not medicines and
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are not intended to treat, diagnose, mitigate, prevent, or cure diseases” [124]. In addition,
“Medicines must be approved by FDA before they can be sold or marketed. Supplements
do not require this approval”. Nevertheless, in 2022, the FDA decided to exercise “en-
forcement discretion” over NAC and this product is freely available (as of October 2023)
for purchase without a prescription [125]. It has been emphasized that stronger federal
oversight and regulation of dietary supplements is desirable and could result in enhanced
public/physician confidence concerning safety and research outcomes [126,127].

5. Conclusions

OxS plays a central role in the initiation and progression of T2D and dysfunction
of the GPX system due to low GSH levels is a key mechanism giving rise to systemic
and tissue-specific OxS. Deficient GSH synthesis resulting from decreased levels of GSH
precursors is a key driver of T2D initiation and progression. Several clinical studies, albeit
with relatively small study populations, have shown that GSH, and its precursors NAC and
GLY, can reduce OxS biomarkers and lower insulin resistance. These studies have almost
exclusively been conducted with adult populations in which the disease burden is already
present. Positive feedback loops that amplify OxS over long intervals can eventually result
in irreversible OxS-driven micro- and macro-vascular damage. These positive feedback
loops reinforce the notion that early intervention is the optimal strategy for potentially
reversing or dramatically slowing T2D progression. NAC and GLY have excellent safety
records and long-term double-blind placebo-controlled studies with a pediatric population
should be a high future priority.
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