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Abstract: This study sought to optimize the ultrasonic-assisted extraction of polyphenolic com-
pounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and
assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing
the Box–Behnken design (BBD) and artificial neural network (ANN) modeling was applied to
optimize extraction conditions, including the ethanol concentration, extraction temperature and
time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction
time (29.00 min), and extraction temperature (50 ◦C). Under these conditions, UMS exhibited to-
tal phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g
and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and rela-
tive standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence
of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans
and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free
antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron
transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-
induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner.
Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and
suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2)
and microphthalmia-associated transcription factor (MITF), which associated melanin production
in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic
compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed
antioxidant and depigmenting activities underscore the promising applications of UMS in skincare
formulations and pharmaceutical developments.

Keywords: Ajwa date seeds; anti-tyrosinase; hyperpigmentation; response surface methodology;
artificial neural network

1. Introduction

Extraction, the pivotal initial step in the retrieval and purification of bioactive com-
pounds from plant sources, often relies on conventional methods characterized by lengthy
extraction times and limited effectiveness [1]. To address these shortcomings, green extrac-
tion processes have been developed, offering an eco-friendly alternative. These processes
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are known to significantly reduce processing times, enhance heat and mass transfer rates,
improve product quality, minimize solvent usage and promote the adoption of Generally
Regarded as Safe (GRAS) solvents [2]. The adoption of green extraction methods not only
conserves energy but also minimizes adverse impacts on the environment and human
health. Among these techniques, ultrasound-assisted extraction (UAE) stands out as a
green and highly efficient approach, demonstrating superior recovery yields and the preser-
vation of target compound activities, making it particularly valuable for the extraction of
antioxidants [3].

The conventional one-factor-at-a-time approach to optimization often overlooks the
intricate interactions among variables, failing to guarantee optimal conditions and necessi-
tating numerous trials, thereby increasing time, costs, and resource consumption [1]. To
address this challenge, statistical methodologies such as the Box–Behnken design (BBD), a
component of response surface methodology (RSM), have emerged, enabling the predic-
tion of optimal extraction conditions and the comprehension of the relationships between
extraction factors [4]. RSM encompasses a range of statistical and mathematical techniques
for optimizing processes influenced by multiple variables, facilitating the development
of new products and the enhancement of existing ones. It elucidates how independent
variables affect processes, either individually or collectively, offering a mathematical model
to represent chemical or biological procedures and assess the impact of independent fac-
tors [5]. Nonetheless, the forecast accuracy of RSM may be compromised in the presence
of nonlinear relationships between variables [6]. Artificial neural networks (ANNs), with
their capacity for learning algorithms and modeling nonlinear systems, are increasingly
adopted as predictive tools across various disciplines, including food technology [7].

Free-radical reactions in biology play a crucial role in tissue damage and pathological
events in living organisms, especially in aerobic life where lipids with polyunsaturated fatty
acids are susceptible to oxidation [8]. Excess oxygen or insufficient reduction can generate
reactive oxygen species (ROS) such as superoxide anions, hydroxyl radicals and hydrogen
peroxide. Aerobic organisms have a natural antioxidant defense system, but if inadequate,
ROSs may cause oxidative damage to macromolecules [9]. Phytochemicals with intrinsic
antioxidant activity have emerged as potential remedies for oxidative stress-induced dis-
orders. Antioxidative phenolics in plant tissues, serving various roles from structural to
defensive, are believed to contribute to their medicinal actions. These compounds, studied
extensively for their positive effects on human health, can orchestrate cellular protective sig-
naling cascades, making them valuable candidates for mitigating oxidative stress-induced
disorders. Exploring the therapeutic potential of these natural compounds holds promise
in understanding and preventing diseases associated with free-radical reactions [8,9].

Melanogenesis, the intricate process of melanin synthesis involving melanocytes and
keratinocytes, is central to skin pigmentation. Melanin, produced by melanocytes, is then
transferred to adjacent keratinocytes, ultimately influencing skin color [10]. This physio-
logical phenomenon serves multiple vital functions, including protection against harmful
agents such as ultraviolet radiation (UVR) and various drugs. However, dysregulation of
melanogenesis can lead to cosmetically undesirable outcomes, such as freckles, chloasma,
dermatitis, and age-related skin pigmentation [10,11]. Thus, managing melanogenesis in
the human epidermis is a challenging scientific and clinical pursuit. UVR exposure triggers
DNA damage and activates p53, which in turn regulates tyrosinase (Tyr), tyrosinase-related
protein-1 and -2 (Trp-1 and -2), through the microphthalmia-associated transcription factor
(MITF) in melanocytes [12]. Additionally, several kinase proteins, including p38, c-jun N-
terminal kinases (JNKs) and extracellular signal-regulated protein kinases (ERKs), influence
melanogenesis [11].

The date palm, (Phoenix dactylifera L. Arecaceae family), is a globally popular and
nutritionally significant fruit. Among its various cultivars, the Ajwa date stands out as
one of the most esteemed and expensive varieties due to its ethnomedical associations
with health-enhancing properties [13]. Preclinical research has highlighted its diverse
health-promoting attributes, including antioxidative, anti-inflammatory, anticancer, hepato-
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protective, antimicrobial, nephroprotective, antidiabetic and hyperlipidemic effects [14–19].
Additionally, the fruit is a rich source of dietary fiber, minerals, organic acids and vitamins,
contributing to its nutritional and therapeutic significance, with carbohydrates constituting
over 70% of its composition. Furthermore, it contains a plethora of bioactive components,
such as polyphenols, encompassing phenolic acids, flavonoids and lignans [20]. Notably,
the benefits of Ajwa dates extend beyond the fruit itself to its seeds, the often overlooked
and underutilized byproducts of various date-related industries. These seeds, derived
from technological or biological transformations of date fruits, are typically discarded or
used as fertilizer or animal feed. However, they hold untapped potential as a source of
high-value-added components, although limited research has explored their potential in
pharmaceutical or nutraceutical product development [21].

This study unveils an innovative method to enhance the extraction of polyphenols
from unmature Ajwa date seeds (UMS) by employing UAE, RSM-BBD and ANN. Through
the systematic optimization of key parameters such as temperature, time and ethanol
concentration, a robust model was developed to maximize polyphenol yield from UMS,
representing a significant advancement in the field. Furthermore, the application of high-
resolution mass spectrometry facilitated the comprehensive identification of bioactive
secondary metabolites within UMS, shedding new light on their potential pharmacological
benefits. Additionally, the evaluation of antioxidant potential underscores the promising
applications of UMS in both food and pharmaceutical industries. An important aspect of
this study is the investigation into UMS’s depigmentation properties using MNT-1 cells,
accompanied by mechanistic studies. These findings not only emphasize UMS’s potential in
dermatology and skincare but also lay the groundwork for future applications in this field.

2. Materials and Methods
2.1. Sample Collection and Preparation

Unmature Ajwa date fruits (Kimri stage), harvested in Al-Madina Al-Munawara, Saudi
Arabia, were collected in July, 2022 and scientifically verified at the National Herbarium and
Genebank of Saudi Arabia, with a voucher specimen (No. NHG005) stored for reference.
UAE was conducted at a fixed 25 kHz frequency using specialized equipment (Elma
Schmidbauer GmbH, Singen, Germany). Unmatured date seeds (UMS) were meticulously
cleaned, air dried (40 ± 1 ◦C for 2 days using the laboratory dry oven) and ground
(average particle size: 300 µm of diameter). Dry powder samples (1.0 g) underwent triple
extraction with 10 mL of solvent, following the design in Table 1. Additionally, heat and
maceration extraction followed established methods [22]. The extracted samples were
filtered, concentrated in a rotary evaporator (Tokyo Rikakikai Co., Ltd., Tokyo, Japan)
and lyophilized with a freeze dryer (Il-shin Biobase, Goyang, Republic of Korea). The
resulting UMS extract was stored at −20 ◦C for subsequent experiments. The lyophilized
extract was dissolved in a mixture of DMSO and dH2O (1:9) to create a stock solution
of 100 µg/mL. Subsequently, serial dilution was performed using dH2O to prepare the
experimental concentrations.

Table 1. Box–Behnken design (BBD) for the independent variables and corresponding response value
(experimental).

Run

Independent Variables Response

EC (%) (X1) Time (min)
(X2)

Temp (◦C)
(X3)

TPC (mg GAE/g) (Y1) TFC (mg CE/g) (Y2)

RSM (prd.) ANN (prd.) Exp. RSM (prd.) ANN (prd.) Exp.

1 80 15 50 64.99 65.59 65.15 ± 1.15 40.71 41.66 39.25 ± 1.05
2 80 30 40 62.30 62.60 61.56 ± 0.52 39.28 39.25 40.25 ± 0.98
3 60 45 60 64.13 64.89 63.55 ± 1.15 45.29 44.57 44.80 ± 0.56
4 60 30 50 75.70 76.88 75.26 ± 1.01 57.41 57.95 58.32 ± 0.28
5 60 30 50 75.77 76.85 75.56 ± 0.89 57.41 57.20 57.01 ± 1.15
6 60 30 50 75.87 75.32 76.15 ± 0.69 57.41 57.69 59.40 ± 0.89
7 80 45 50 61.57 61.60 61.95 ± 1.00 41.65 41.25 41.53 ± 0.79
8 60 15 60 65.62 66.29 64.55 ± 1.15 42.98 42.77 43.83 ± 0.69
9 60 45 40 62.97 62.57 63.35 ± 0.69 43.52 44.09 42.67 ± 1.09

10 40 15 50 61.21 61.55 60.92 ± 0.59 37.50 38.83 37.62 ± 1.10
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Table 1. Cont.

Run

Independent Variables Response

EC (%) (X1) Time (min)
(X2)

Temp (◦C)
(X3)

TPC (mg GAE/g) (Y1) TFC (mg CE/g) (Y2)

RSM (prd.) ANN (prd.) Exp. RSM (prd.) ANN (prd.) Exp.

11 60 15 40 65.80 66.33 66.39 ± 1.01 43.28 42.62 43.77 ± 0.99
12 40 30 60 60.34 60.95 61.09 ± 1.15 37.14 36.99 36.17 ± 1.09
13 40 45 50 60.38 61.75 60.23 ± 0.79 39.10 39.56 40.56 ± 1.00
14 60 30 50 75.17 76.60 76.65 ± 0.49 57.41 58.25 56.32 ± 1.02
15 60 30 50 75.77 76.05 75.25 ± 0.89 57.41 57.85 56.01 ± 0.58
16 40 30 40 61.10 61.59 60.89 ± 0.92 39.41 40.66 38.79 ± 0.65
17 80 30 60 64.03 65.60 64.15 ± 1.09 43.03 44.25 43.64 ± 0.45

X1: Ethanol concentration (EC); X2: time; X3: temperature; TPC: total phenolic content; TFC: total flavonoid
content; RSM (prd.): predicted value by response surface method; ANN (prd.): predicted value by artificial
neural network method; mgGAE/g: mg gallic acid equivalent/g dry weight of sample; mgCE/g: mg catechin
equivalent/g dry weight of sample.

2.2. Measurement of Total Phenolic (TPC) and Total Flavonoid Content (TFC)

The TPC and TFC in UMS extracts were quantified using the Folin–Ciocalteu test and
aluminum chloride colorimetric method, respectively [11]. For TPC measurement, 2 µL of a
sample (100 µg/mL) was combined with 10 µL of Folin–Ciocalteu’s phenol reagent (Sigma-
Aldrich, St. Louis, MO, USA). After 5 min, 100 µL of a 7% Na2CO3 solution was introduced,
followed by the addition of 90 µL of dH2O. The mixture was then incubated in the dark for
90 min at room temperature. Absorbance was subsequently measured at 750 nm. On the
other hand, for TFC measurement, 2 µL of the sample was mixed with a solution comprising
100 µL of dH2O, 5 µL of 5% NaNO2, and 10 µL of 10% AlCl3·6H2O. After 10 min, 40 µL of
NaOH (1 M) was added, and the absorbance was measured against the reagent blank at
506 nm. The experiments were conducted in triplicates for each trial. Utilizing regression
equations derived from calibration curves, the TPC (y = 0.0512x + 0.0018; r2 = 0.9835) and
TFC (y = 0.014x + 0.0021; r2 = 0.9994) were determined. TPC was expressed as gallic acid
equivalent (mg)/dry weight sample (g), and TFC as catechin equivalent (mg)/dry weight
sample (g).

2.3. Cell-Free Antioxidant Assays

The free radical scavenging activity of UMS was evaluated using established protocols
for DPPH, ABTS, superoxide, hydroxyl and nitric oxide radicals [8,9]. Percent inhibition
was calculated using Equation (1) and IC50 values were determined for each radical to
assess UMS efficacy.

Radical scavenging activity(% inhibition) =
[(

A − B
A

)
× 100

]
(1)

where A and B denote the absorbance of the control and sample, respectively. Each sample
was examined three times.

For DPPH and ABTS radical scavenging assays, various concentrations of the sample
(2 µL) were mixed with 198 µL of DPPH (0.2 M in 50% methanol) and ABTS solutions
(2.5 mM potassium persulfate and 7 mM ABTS). The mixtures stood for 10 min at room
temperature in the dark, and absorbance readings were taken at 517 nm and 734 nm for the
DPPH and ABTS assays, respectively. Ascorbic acid served as the reference antioxidant.

Additionally, DPPH and ABTS scavenging was expressed as µmol ascorbic acid
equivalents per gram (µmol AAE/g) of UMS using calibrated regression equations (DPPH:
y = 0.0069x + 0.035; r2 = 0.9905 and ABTS: y = 0.0083x + 0.0002; r2 = 0.9989).

Superoxide radical generation was verified using the non-enzymatic PMS/NADH
complex, where NBT is reduced to formazan. Samples (2 µL) were mixed with a super-
oxide radical generation mixture (73 µM NADH, 50 µM NBT and 15 µM PMS in PBS),
incubated for 30 min, and absorbance was read at 562 nm [9]. Gallic acid served as the
reference antioxidant.

For hydroxyl radical scavenging activity, samples (5 µL) were added to the Fenton
reaction mixture (3.6 mM deoxyribose, 0.1 mM EDTA, 0.1 mM ascorbic acid, 1 mM H2O2
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and 0.1 mM FeCl3 in PBS). After a 1 h incubation at 37 ◦C, 1% TBA and 2.8% TCA were
added, heated, and absorbance was measured at 532 nm. Quercetin was the standard.

For nitric oxide measurement, samples (10 µL) were mixed with sodium nitroprus-
side (10 mM) in PBS, incubated for 150 min, then reacted with Griss reagent (Sigma-
Aldrich, St. Louis, MO, USA). Absorbance was measured at 546 nm using catechin as the
reference compound.

Moreover, the reducing power potential of UMS was evaluated through cupric-
reducing antioxidant capacity (CUPRAC) and ferric-reducing antioxidant power (FRAP)
assays, following Alam et al. [8]. In FRAP and CUPRAC assays, samples (2 µL) were
mixed with an FRAP reagent (20 mM FeCl3 and 10 mM TPTZ in acetic acid buffer), and
absorbance was measured at 595 nm. For CUPRAC, samples were mixed with a solution of
CuCl2, neocuproine (Sigma-Aldrich, St. Louis, MO, USA) and ammonium acetate buffer,
incubated for 1 h at 25 ◦C, and absorbance was measured at 450 nm. The obtained values
were expressed as (mmol AAE/g) of UMS using standard curves for each assay (CUPRAC:
y = 0.0065x + 0.039; r2 = 0.9975; and FRAP: y = 0.013x + 0.0465; r2 = 0.9889).

2.4. Cell Culture and Intracellular ROS Generation Assay

RAW 264.7 macrophages (ATCC, Rockville, MD, USA) were maintained in DMEM
supplemented with 10% FBS and 100 µg/mL each of streptomycin and penicillin, under
standard culture conditions (37 ◦C, and 5% CO2). Cells (5 × 105/mL) were seeded in 96-well
plates and incubated for 12 h. Subsequently, they were treated with UMS (6.25–100 µg/mL)
for 24 h, both alone and in combination with t-BHP (oxidative stress inducer). Cellular
toxicity was assessed using the MTT assay, while reactive oxygen species (ROS) generation
induced by t-BHP was evaluated by the DCFH-DA method, as previously described [8].

2.5. Effect of UMS on Melanin Content

Cells (5 × 105 cells/mL) were cultured in a 24-well plate (BD Falcon, Bedford, MA, USA)
overnight. Subsequent to media replacement, cells were exposed to UMS (25–100 µg/mL)
or arbutin (100 µg/mL). Post-3-days, PBS-washed cells were lysed with 1 N NaOH, and
absorbance at 405 nm was measured using a microplate reader (Thermo Fisher Scientific,
Vantaa, Finland). The percentage of melanin inhibition was calculated using Equation (2).

Melanin production(% inhibition) =
[(

A − B
A

)
× 100

]
(2)

where A and B represent the absorbance of non-treated cells and treated with UMS or
arbutin (positive control), respectively [11].

2.6. Preparation of Cell Lysates and Western Blotting

Cell lysates were treated with sodium dodecyl sulfate (SDS) buffer (3M, Maplewood,
MN, USA) and denatured at 100 ◦C for 5 min. Proteins (30 µg) were separated on a
10% SDS-polyacrylamide gel, transferred to nitrocellulose membranes (Whatman, Dassel,
Germany) and blocked with 5% skim milk in TBST buffer. After blocking, membranes
were probed with primary antibodies (Supplementary Table S1), followed by secondary
antibodies (anti-rabbit IgG-HRP; BioWorld Technology, St. Louis Park, MN, USA). Antigen–
antibody reactions were detected using an ECL solution system (Perkin Elmer, Waltham,
MA, USA) [11].

2.7. Single-Factor Experiment

Polyphenolic compound extraction was studied through single-factor experiments,
varying the ultrasonic time (10–50 min), temperature (30–70 ◦C) and ethanol concentration
(25–90%). Optimal ultrasonic-assisted extraction conditions were then determined based
on these results (Table S2).
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2.8. Experimental Design of RSM for the Extraction Process

In this study, BBD was employed to optimize the extraction process of UMS for
maximizing TPC and TFC. The independent extraction variables considered were ethanol
concentration (X1), extraction time (X2) and temperature (X3), while the response variables
of interest were TPC (Y1) and TFC (Y2). The relationships between these variables were
modeled using a second-order polynomial Equation (3):

Y = β0 + ∑n
i=1 βiXi + ∑n

i=1 βiiX2
ii + ∑n−1

i ∑n
j βijXij (3)

where Y represents the response variable; Xi and Xj are the coded independent variables;
β0 is the constant coefficient; and βi, βii and βij are the coefficients for linear, quadratic and
interaction effects, respectively. The outcomes of these interactions were visualized through
three-dimensional (3D) surface plots.

2.9. Artificial Neural Network (ANN) Modeling

A multilayer perceptron (MLP) neural network was used to establish a link between
independent variables (X1, X2 and X3) and response variables Y1 and Y2 using a backpropa-
gation feed-forward ANN model [23]. The dataset was divided into training (70%), valida-
tion (15%) and testing (15%) sets. Training was conducted using a hit and trial technique to
minimize the mean square error (MSE) calculated from Equation (4). Two different types
of neural networks, feed-forward and cascade feed-forward, were utilized, employing the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Levenberg–Marquardt backpropagation
(trainlm) algorithms. The ANN model’s architecture consisted of three layers, as depicted
in Supplementary Figure S1, with the output generated through nonlinear activation func-
tions in the hidden layer. Several statistical parameters, including R2, RMSE, AAD and SEP,
were computed using specific Equations (5)–(8), to evaluate and compare the predictive
performance of the ANN and RSM. This approach allowed for a robust assessment of the
nonlinear relationships between input and output variables.

MSE =
1
N ∑N

i=1(YANN − YExp)
2 (4)

R2 = 1 − ∑n
i=1

(
xi − xik)

2

∑n
i=1(xik − xz)2 (5)

RMSE =

√
1
n∑n

i=1(xi − xik)2 (6)

ADD % =

[
∑n

i=1(|xik − xi|/xik)

n

]
× 100 (7)

SEP % =
RMSE

ym
× 100 (8)

where Yp is the predicted response; Ye is the observed response; Ym is the average response
variable; n is the number of experiments

2.10. Validation of the Model

To ascertain the optimal extraction parameters for UMS, a combination of response
surface and Derringer’s desirability function was employed. Each response was trans-
formed into a unique desirability function, ranging from 0 to 1 based on their relative
desirability, from lowest to highest. These component functions were then integrated into a
total desirability function using Equation (9) [1].

D =
(

dw1
1 dw2

2 . . . .dwn
n

)1/∑ wi
(9)
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To assess the agreement between observed and expected UMS outcomes, calculations
of the RSD and RSE were performed using Equations (10) and (11), respectively. According
to the criteria set forth, data were considered consistent with predictions when RSD and
RSE values fell below 10% and 5%, respectively [24,25].

RSD(%) =
Standard deviation between predicted and actual values

Mean values between predicted and actual values
× 100 (10)

RSE(%) =
(Actual value–Predicted value)

Predicted value
× 100 (11)

2.11. Analysis of Chemical Compounds by ESI–MS/MS

In this study, negative-mode ESI–MS experiments were conducted using the Q-
Exactive™ Orbitrap Mass Spectrometer (Thermo Fisher Scientific Inc., San Jose, CA, USA).
Sample infusion into the ESI source was accomplished directly at a rate of 20 µL/min uti-
lizing a 500-µL syringe (Hamilton Company Inc., based in Reno, NV, USA), coupled with a
syringe pump (Harvard in Holliston, MA, USA, model 11). Data acquisition was conducted
through Xcalibur 3.1 with Foundation 3.1. (San Jose, CA, USA). The ESI–MS conditions
featured a mass resolution of 140,000, a mass spectra range of m/z 50–1000, sheath gas at
a flow rate of 5 and auxiliary gas at 0. Additionally, a spray voltage of 4.20 kV, capillary
temperature at 320 ◦C and automatic gain control set at 5 E 6 were applied. MS/MS studies
employed three stepwise normalized collision energies (10, 20 and 30) [9]. The identification
of m/z peaks was achieved by comparing calculated (exact) masses of deprotonated (M–H)
adducts with m/z values and ESI–MS/MS fragmentation patterns from in-house and online
databases such as FooDB [26], METLIN [27] and CFM-ID 4.0 [28]. The chemical structure
was drawn using ChemDraw Professional 15.0 (PerkinElmer, Waltham, MA, USA).

2.12. Statistical Analysis

Experimental data underwent robust analysis employing Design Expert 11 (Stat-Ease,
Minneapolis, MN, USA) and GraphPad Prism 9 (GraphPad Software 9.0.2, San Diego,
CA, USA). MATLAB’s Neural Network ToolboxTM (MATLAB R2020a, MathWorks, Natick,
MA, USA) facilitated artificial neural network (ANN) analysis. Results, presented as
mean ± standard deviation from a minimum of three independent experiments (n = 3),
were rigorously scrutinized for statistical significance at p < 0.001, < 0.01 and < 0.05.
Design Expert 11 enabled RSM analysis. GraphPad Prism 9 conducted one-way analysis of
variance and Tukey’s multiple comparison test for all biological activities, deeming p < 0.05
statistically significant.

3. Results and Discussion
3.1. Single Factor Analysis

In this study, experiments were conducted to assess the individual effects of three key
factors—ethanol concentration, extraction time and temperature—on the extraction yields
of TPC and TFC from UMS.

As shown in Figure 1A, the choice of solvent concentration is pivotal. Ethanol, particu-
larly at 75% concentration, is demonstrated to be the optimal choice due to its compatibility
with the solubility of polyphenolic compounds. Notably, aqueous ethanol is favored for its
low toxicity and cost-effectiveness, which enhance its efficiency in polyphenolic extraction,
as corroborated by recent studies [4]. Figure 1B highlights the impact of the ultrasonic
extraction time. Extended times (10–30 min) are beneficial for increased polyphenolic
yield, but prolonged extraction negatively affects yields. This decline is attributed to
structural degradation and solvent loss through vaporization, diminishing mass transfer
efficiency [29]. Figure 1C emphasizes the role of temperature in polyphenolic compound
extraction. Elevated temperatures (30 ◦C to 50 ◦C) enhance yields by disrupting cellular
structures and reducing viscosity, consistent with prior research [30]. However, tempera-
tures above 50 ◦C result in reduced yields due to decreased acoustic cavitation intensity,
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diminished extraction efficiency and potential thermosensitive compound degradation [31].
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3.2. Fitting of the RSM and ANN Models

Table 1 presents the outcomes of 17 extraction scenarios, summarizing the experimental
parameters and results. The yields of TPC and TFC in UMS extracts exhibited a range
from 60.23 ± 0.79 to 76.65 ± 0.49 mgGAE/g and 37.62 ± 1.10 to 59.40 ± 0.89 mgCE/g,
respectively. The peak TPC and TFC values were achieved at the central point of the design
(X1: 60% EtOH; X2: 30 min; and X3: 50 ◦C). Both RSM and ANN predictions were closely
aligned with experimental results, with minimal discrepancies. Quadratic polynomial
equations (Equations (12) and (13)) were utilized to model the response variables (TPC and
TFC, respectively), accounting for their variation concerning the extraction factors.

TPC (Y1) = 75.77 + 1.21X1 − 0.9912X2 + 0.1438X3 − 8.12X2
1 − 5.59X2

2 − 5.73X2
3 − 0.6275X1X2 + 0.5975X1X3 + 0.5100X2X3 (12)

TFC (Y2) = 57.42 + 1.44X1 + 0.6375X2 + 0.3691X3 − 10.86X2
1 − 6.81X2

2 − 6.83X2
3 − 0.1651X1X2 + 1.50X1X3 + 0.5177X2X3 (13)

As described in Table 2, ANOVA was utilized to evaluate the statistical significance of
second-order quadratic model equations. Significance levels were determined by p-values,
classifying terms as significant (p < 0.05), highly significant (p < 0.01) or exceptionally signifi-
cant (p < 0.001). Conversely, terms with p-values above 0.05 were considered nonsignificant.

Table 2. ANOVA for quadratic model (function: none).

ANOVA for Quadratic Model for TPC

Source RC SS DF MS F-Value p-Value

Model 632.77 9 70.31 107.80 <0.0001 Significant
Intercept 75.77

Linear terms

X1 1.21 11.71 1 11.71 17.96 0.0039 Significant
X2 −0.9912 7.86 1 7.86 12.05 0.0104 Significant
X3 0.1438 0.1653 1 0.1653 0.2535 0.6301 Not Significant
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Table 2. Cont.

ANOVA for Quadratic Model for TPC

Source RC SS DF MS F-Value p-Value

Interaction terms

X1X2 −0.6275 1.58 1 1.58 2.41 0.1641 Not significant
X1X3 0.5975 1.43 1 1.43 2.19 0.1825 Not significant
X2X3 0.5100 1.04 1 1.04 1.60 0.2470 Not Significant

Quadratic terms

X1
2 −8.12 277.93 1 277.93 426.15 <0.0001 Significant

X2
2 −5.59 131.43 1 131.43 201.52 <0.0001 Significant

X3
2 −5.73 138.10 1 138.10 211.75 <0.0001 Significant

Lack of Fit 3.07 3 1.02 2.74 0.1772 Not significant
Pure error 1.49 4 0.3733

R2 0.9928
Adjusted R2 0.9836

Pred. R2 0.9192

Adeq Precision 25.0494
C.V. % 1.21

ANOVA for quadratic model for TFC

Source RC SS DF MS F-value p-value

Model 1016.65 9 112.96 46.54 <0.0001 Significant
Intercept 57.42

Linear terms

X1 1.44 16.62 1 16.62 6.85 0.0346 Significant
X2 0.6375 3.25 1 3.25 1.34 0.2851 Not Significant
X3 0.3691 1.09 1 1.09 0.4489 0.5243 Not Significant

Interaction terms

X1X2 −0.1651 0.1090 1 0.1090 0.0449 0.8382 Not significant
X1X3 1.50 9.04 1 9.04 3.72 0.0949 Not significant
X2X3 0.5177 1.07 1 1.07 0.4416 0.5276 Not Significant

Quadratic terms

X1
2 −10.86 496.93 1 496.93 204.73 <0.0001 Significant

X2
2 −6.81 195.12 1 195.12 80.39 <0.0001 Significant

X3
2 −6.83 196.58 1 196.58 80.99 <0.0001 Significant

Lack of Fit 8.88 3 2.96 1.46 0.3516 Not significant
Pure error 8.11 4 2.03

R2 0.9836
Adjusted R2 0.9624

Pred. R2 0.8503

Adeq Precision 16.9654
C.V. % 3.40

X1: ethanol concentration (%); X2: time (min); X3: temperature (◦C). RC: Regression coefficient; SS: sum of squares;
DF: the total degrees of freedom; MS: mean square.

The statistical significance of the model equations, as determined by the F-test and
p-values, underscores their reliability. The high F-values (for 107.80 TPC and 46.54 for
TFC) with p-values less than 0.0001 confirm the models’ significance. Furthermore, lack
of fit tests yielded non-significant p-values (for 0.1772 TPC and 0.3516 for TFC), affirming
the appropriateness of the second-order polynomial models for predicting total polyphe-
nolic extraction yields [1]. The determination coefficient (R2) demonstrates the model’s
adequacy, with values of 0.9928 for TPC and 0.9836 for TFC, indicating that over 99% of
the variation in total polyphenolic yield can be explained by the model. High adjusted
(R2 adj: 0.9836 and 0.9624 for TPC and TFC, respectively) and predicted determination
coefficients (R2 pred: 0.9192 and 0.8503 for TPC and TFC, respectively) further confirm
the correlation between the observed and predicted data. Furthermore, low coefficient of
variation (C.V.) values (1.21 for TPC and 3.40 for TFC) and high Adeq. precision values
(25.0494 for TPC and 16.9654 for TFC) suggest a high degree of precision and reliability in
the experimental data.
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In addition, to visualize interactions between independent variables, 3D surfaces and
contour plots were generated using multiple linear regression equations. These graphical
representations (Figure 2A,B) help elucidate the main and cross-product effects of indepen-
dent variables on the response variables, enhancing the understanding of the underlying
processes. This comprehensive statistical analysis supports the robustness and validity
of the model for predicting total polyphenolic extraction yields. The three-dimensional
response surface analysis in RSM examined the relationship between TPC, TFC and ex-
traction parameters. Contour plot shapes conveyed the significance of mutual interactions.
Elliptical contours implied negligible interactions, while circular contours indicated sig-
nificant interactions [22,25]. In Figure 2A,B, all response surfaces were convex, affirming
the appropriate selection of variable ranges for ultrasonic time, temperature and ethanol
concentration, highlighting their collective impact on TPC and TFC extraction yields.
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There is a growing body of evidence supporting the superiority and sophistication of
artificial neural network (ANN) modeling over RSM, making ANNs a promising alternative
for intricate nonlinear multivariate modeling in various fields, particularly in biological
processes. ANNs are inspired by the human CNS and its intricate network of interconnected
neurons, enabling complex computations in response to input data [32,33]. In this study,
experimental data were subjected to ANN modeling for validation. The predicted values
from the ANN model closely matched the observed values (Table 1), affirming the model’s
appropriateness.

The ANN model effectively captured the nonlinear relationships between extraction
parameters (X1, X2 and X3) and response variables (Y1 and Y2), as evidenced in Figure 3A–D.
Like RSM, the fitness and significance of the ANN model relied on various parameters,
including R2 values for training, validation, testing, overall error reduction and the number
of epochs to prevent overfitting or underfitting. Notably, the best validation performance for
TPC occurred at epoch 6, and for TFC at epoch 4 (Figure 3A,B). Furthermore, high R2 values
exceeding 0.97224 for TPC and 0.99998 for TFC (Figure 3C,D) underscore the model’s
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precision and its potential to accurately represent the complex relationships between
the variables.
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3.3. Comparison of the Prediction Abilities of the RSM and ANN Models

The comparative evaluation of RSM and ANN models for predicting TPC and TFC in
UMS revealed the superior performance of the ANN model (Table 3). With higher R2 values
(0.9963 for TPC and 0.9912 for TFC) than RSM (0.9928 for TPC and 0.9836 for TFC), the
ANN model exhibited an enhanced predictive capability. Lower AAD and RMSE values
indicated a better fit. The ANN model also exhibited lower SEP values (0.0171 for TPC and
0.0326 for TFC), further emphasizing its accuracy. The ANN model’s flexibility in approxi-
mating nonlinear systems surpassed the RSM model, being constrained to second-order
polynomial regression. Additionally, the ANN model’s efficiency in handling multiple
responses in a single run outperformed the RSM model, often requiring multiple runs for
multi-response optimization. Dadgar et al. emphasized the ANN model’s superiority in
accuracy, precision and fitting experimental data to target responses, establishing it as a
more effective tool in this context [34].
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Table 3. Comparison of the prediction ability of RSM and ANN.

Parameters
TPC TFC

RSM ANN RSM ANN

R2 0.9928 0.9963 0.9836 0.9912
RMSE 6.7139 1.7760 3.8464 2.2384
AAD (%) 0.9237 0.1390 0.7828 0.2201
SEP (%) 0.0649 0.0171 0.0561 0.0326

R2: correlation coefficients; RMSE: root mean square error; AAD: absolute average deviation; SEP: standard error
of prediction.

3.4. Model Validation and Comparison with Other Extraction Methods

The simultaneous optimization of TPC and TFC in UMS extracts was achieved using
Derringer’s desirability function [34]. The maximum overall desirability (D = 0.953) was
attained under specific conditions: ethanol concentration (X1, 61.43 ∼= 61.00%), extraction
time (X2: 29.60 ∼= 30.00 min) and extraction temperature (X3, 50.24 ∼= 50.00 ◦C). The contour
plot as a function of ethanol concentration, extraction time and temperature at the optimum
condition are presented in the Supplementary Materials, Figure S2A–C. As described in
Figure 4A,B, the predictive model was validated with triplicate experiments, resulting in
TPC and TFC values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCAE/g, respectively,
with low RSD% (1.80 for TPC and 1.71 for TFC) and RSE% (2.59 for TPC and 2.45 for TFC).
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Figure 4C, UOP exhibited significantly higher TFC values compared to other extracts. Re-
markably, UOP showed no significant difference in TPC compared to HEW (head assisted 
extraction coupled with 75% EtOH), while surpassing other methods. Similarly, UOP 
demonstrated superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS radical scaveng-
ing activity compared to all other extracts, while UE and HEW displayed no significant 
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Figure 4. Model validation and comparative study of TPC and TFC of various extraction methods.
(A) TPC and TFC value of optimized condition. (B) Relative standard deviation (RSD) and relative
standard error (RSE) value of optimized condition. (C) Effect of various extraction techniques on the
yield of TPC and TFC of UMS extract. (D) Effect of various extraction techniques on the DPPH and
ABTS radical scavenging effects of UMS extract. Different letters represent statistical significance
(p < 0.05) between each group. (a, b, c and d for TPC; m, n, o, and p for TFC). U: ultrasonic assisted
extraction; H: heat assisted extraction; M: maceration extract; OP: optimized condition; E: 100% EtOH;
W: 100% aqueous; EW: 75% EtOH; AAE: ascorbic acid equivalent.

A comparative study was performed to evaluate the efficiency of the optimized extract
(UOP) obtained through UAE in comparison to traditional methods. As shown in Figure 4C,
UOP exhibited significantly higher TFC values compared to other extracts. Remarkably,
UOP showed no significant difference in TPC compared to HEW (head assisted extraction
coupled with 75% EtOH), while surpassing other methods. Similarly, UOP demonstrated
superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS radical scavenging activity
compared to all other extracts, while UE and HEW displayed no significant difference
in their scavenging capacities (Figure 4D). These findings underscore the remarkable
efficiency of UAE, which not only improves polyphenol yield and antioxidant activity but
also minimizes extraction time. This improved efficiency may be attributed to various
factors affecting ultrasonic energy transmission, including gas diffusion, gas–liquid phase
transitions and chemical reactions [29].
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3.5. Identification of Secondary Metabolites in UMS by High-Resolution Mass Spectroscopy

In the optimized UMS extracts, secondary metabolites were analyzed using ESI–
MS/MS in the negative ionization mode. A total of 104 compounds were successfully
identified, relying on the precursor ion mass, characteristic fragmentation patterns and
comparisons with the reference standards, literature and online databases (Table 4). The
significance of these findings was assessed based on confidence levels: Level 1 for com-
pounds confirmed with reference standards, Level 2 for probable identifications supported
by MSn data from the literature, and Level 3 for tentative candidates [35].

Table 4. List of possible identified compounds of UMS using ESI–MS/MS in the negative ionization
mode ([M–H]−).

Groups No. Compound Name EF OM (m/z) CM (m/z) MS/MS CL

Ph
en

ol
ic

ac
id

s
an

d
de

ri
va

ti
ve

s

1 p-Coumaroyl aspartic acid C13H13NO6 278.0669 278.0664 260.05, 234.07, 216.06 2
2 4-Hydroxybenzoyl glucose C13H16O8 299.0773 299.0766 137.02, 163.02 1
3 Coumaroylshikimic acid C16H16O7 319.0824 319.0817 173.04, 163.03, 145.02 2
4 Vanillic acid glucoside C14H18O9 329.0879 329.0872 167.03, 152.02, 123.04 1
5 Caffeoyl shikimic acid C16H16O8 335.0771 335.0772 179.01, 161.03, 155.03, 137.05 1
6 Glucosyringic acid C15H20O10 359.0985 359.0978 197.04, 182.01, 153.05 2
7 Caffeic acid derivatives C18H18O9 377.0853 377.0878 341.10, 215.03, 179.06, 161.04 2
8 Sinapic acid hexoside C17H22O10 385.1154 385.1135 223.06, 205.05 1
9 Sinapoylspermine C21H36N4O4 407.2649 407.2658 350.20, 279.13, 201.20 2
10 Methyl 4,6-di-O-galloyl-glucose C21H22O14 497.0927 497.0931 345.05, 183.12, 169.05, 125.01 2
11 Caffeoyl shikimic acid hexoside C22H26O13 497.1278 497.1295 335.01, 178.02, 135.02 2

12 Cinnamoyl-1,2-digalloyl
glucose C29H26O15 613.1126 613.1193 483.07, 443.09, 169.01, 147.04 2

13 3-O-feruloyl-7-O-acyl-feruloyl-
4-O-caffeoyl-quinic acid C38H36O16 747.1895 747.1931 729.05, 687.15, 571.02, 529.05,

409.12, 381.05, 357.06 2

Fl
av

on
oi

ds
an

d
de

ri
va

ti
ve

s

14 Apigenin C15H10O5 269.0454 269.045 241.01, 151.01, 149.03 1
15 Luteolin C15H10O6 285.0405 285.0399 267.05, 241.03, 151.00, 133.02 1
16 Catechin/Epicatechin C15H14O6 289.0718 289.0712 245.04, 205.05, 179, 151.04,

137.02 1

17 Chrysoeriol C13H16O8 299.0561 299.0555 285.03, 255.02, 153.01, 135.03,
125.03 2

18 Quercetin C15H10O7 301.0352 301.0348 273.04, 257.04, 179.00, 151.00 1
19 Taxifolin C15H12O7 303.0511 303.0504 285.04, 275.02, 241.05, 151.04,

125.02 2
20 Epigallocatechin C15H14O7 305.0637 305.0661 287.05, 137.02, 125.02 1
21 Methoxysinensetin C21H22O8 401.1299 401.1236 371.11, 339.08, 191.71 2
22 Epicatechin hydroxybenzoate C22H18O8 409.0924 409.0923 289.07, 271.06, 137.02, 119.01 2
23 Naringenin rhamnoside C21H22O9 417.1249 417.1186 271.06, 187.03, 151.00, 119.05 2
24 Epiafzelechin gallate C22H18O9 425.0877 425.0872 287.05, 273.07, 169.01, 151.00 2
25 Apigenin hexoside C21H20O10 431.0989 431.0978 269.04, 241.01, 151.01, 149.03 1
26 Naringin C21H22O10 433.1137 433.1134 271.06, 187.03, 151.00, 119.05 1
27 Epicatechin gallate C22H18O10 441.0810 441.0821 135, 169, 273, 371, 399, 413, 427 2
28 Biochanin A glucoside C22H22O10 445.1199 445.1135 283.06, 268.03, 239.03, 211.04,

132.02 2
29 Kaempferol hexoside C21H20O11 447.0929 447.0927 285.04, 241.03, 151.00, 133.02 1
30 Taxifolin rhamnoside C21H22O11 449.1089 449.1089 303.05, 285.04, 275.02, 151.04,

125.02 2
31 Catechin glucoside C21H24O11 451.1356 451.1240 289.15, 151.10, 137.08, 123.10 2
32 Epicatechin 3-(3-methylgallate) C23H20O10 455.1018 455.0978 289.02, 183.05, 124.01 2
33 Afrormosin glucoside C23H24O10 459.1354 459.1291 297.07, 281.04, 267.06 2
34 Chrysoeriol hexoside C22H22O11 461.1085 461.1083 299.05, 285.03, 153.01, 135.03,

125.03 2
35 Isoquercitrin C21H20O12 463.0884 463.0876 301.05, 268.01, 179.02, 151.01 1
36 Epicatechin glucuronide C21H22O12 465.1036 465.1033 289.15, 151.10, 137.08, 123.10 2
37 Epigallocatechin caffeate C24H20O10 467.0980 467.0978 305.06, 287.05, 179.03, 137.02,

125.02 2

38 Isorhamnetin glucoside C22H22O12 477.1035 477.1033 315.05, 300.01, 255.05, 179.05,
151.02 2

39 Luteone glucoside C26H28O11 515.1615 515.1553 353.10, 311.05, 297.04 2
40 Isorhamnetin malonyl hexoside C24H24O13 519.1141 519.1138 315.05, 300.02, 227.01, 204.04,

177.01 2
41 Luteolin hexosyl sulfate C21H20O14S 527.0502 527.0495 447.05, 285.01, 241.06 2
42 Chrysoeriol hexosyl sulfate C22H22O14S 541.0658 541.0652 299.05, 284.05, 241.02 2
43 Isoquercitrin sulfate C21H20O15S 543.0448 543.0444 463.05, 301.01, 268.01, 179.02,

151.01 2

44 Procyanidin A2 C30H24O12 575.1195 575.1189 539.09, 449.08, 423.07, 289.07,
285.04, 269.04, 125.02 1

45 Procyanidin B2 C30H26O12 577.1352 577.1346 451.10, 425.08, 407.07, 289.07,
287.05, 269.04, 125.02 1

46 Luteolin rhamnosyl hexoside C27H30O15 593.1509 593.1506 447.09, 285.03, 153.01, 135.04 2

47 Chrysoeriol rhamnosyl
hexoside C28H32O15 607.1672 607.1663 461.10, 299.05, 284.03, 153.01,

149.05 2

48 Isorhamnetin rhamnosyl
hexoside C28H32O16 623.1609 623.1612 477.10, 315.05, 299.05, 165.05 2

49 Isorhamnetin dihexoside C28H32O17 639.1556 639.1561 447.01, 315.01 2
50 Procyanidin B2 gallate C37H30O16 729.1473 729.1455 451.10, 425.08, 407.07, 289.07,

287.05, 169.01, 125.02 2

51

Kaempferol
3-(3′′ ,6′′-di-p-coumaroyl
galactoside) (Stenopalustroside
A)

C39H32O15 739.1679 739.1663 593.12, 575.11, 285.03, 163.03 2
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Table 4. Cont.

Groups No. Compound Name EF OM (m/z) CM (m/z) MS/MS CL

52 Quercetin
3-O-xylosyl-rutinoside C32H38O20 741.1846 741.1878 609.14, 301.03 2

53 Epicatechin-(4beta-
>8)-epigallocatechin gallate C37H30O17 745.1395 745.1404 441.08, 303.05, 169.01, 125.02 2

54 Luteolin rhamnosyl dihexoside C33H40O20 755.1990 755.2034 709.16, 593.10, 575.05, 285.01 2

55 Quercetin rhamnosyl
dihexoside C33H40O21 771.1969 771.1983 609.14, 591.05, 301.03, 153.02,

125.00 2

56 Isorhamnetin rhamnosyl
dihexoside C34H42O21 785.2110 785.2140 623.16, 477.10, 315.05 2

57 Quercetin 3-sophorotrioside C33H40O22 787.1909 787.1933 625.10, 463.09, 301.01 2

58
Quercetin 3-(6′ ′ ′ ′-p-coumaryl
sophorotrioside)
(Pisumflavonoside I)

C42H46O24 933.2302 933.2300 787.19, 625.10, 463.09, 301.01 2

59 Quercetin 3-(6′′-caffeoyl
sophorotrioside) C42H46O25 949.2223 949.2250 787.19, 625.10, 463.09, 301.01 2

Te
rp

en
oi

ds

60 8-Hydroxy-(+)-δ-cadinene C15H24O 219.175 219.1748 203.14, 201.16, 179.14 2
61 Valerenic acid C15H22O2 233.1544 233.1541 219.13, 189.16, 161.13 2
62 β-Ionyl acetate C15H24O2 235.1700 235.1698 193.15, 175.14, 149.13 2
63 Valerenolic acid C15H22O3 249.1528 249.1490 231.13, 205.15, 187.14, 177.12 2
64 Phytuberol C15H24O3 251.1651 251.1647 233.15, 221.15, 193.12 2
65 Curcolonol C15H20O4 263.1288 263.1283 245.11, 227.10, 205.08 2
66 Absindiol C15H22O4 265.1445 265.1439 247.13, 221.15, 209.11 2
67 Acoric acid C15H24O4 267.1602 267.1596 249.14, 223.16, 181.12 2
68 Phytuberin C17H26O4 293.1758 293.1752 251.16, 233.15, 221.15, 193.12 2
69 Trilobinol C20H28O2 299.2016 299.2011 283.16, 265.15, 257.15 2
70 Abietadiene-diol C20H32O2 303.2330 303.2324 287.20, 257.22, 241.19, 215.18 2
71 Piperochromenoic acid C22H28O3 339.2000 339.1960 325.18, 295.20, 189.05, 137.02 2
72 Eucannabinolide C22H28O8 419.1710 419.1705 389.16, 371.14, 359.14, 347.14 2
73 β-Amyrenone C30H48O 423.3624 423.3626 407.33, 391.30 2
74 Cichorioside M C21H32O9 427.1974 427.1968 265.14, 247.13, 221.15, 209.11 2
75 Cynaroside A C21H32O10 443.1921 443.1917 281.13, 263.12, 237.14, 193.12 2
76 Oleanonic acid C30H46O3 453.3376 453.3368 241, 323, 341, 379 2

Li
gn

an
s 77 1,2-Di-(syringoyl)-hexoside C24H28O14 539.1385 539.1401 359.09, 341.08, 197.04, 153.05 2

78 Citrusin B C27H36O13 567.2084 567.2077 405.15, 387.14, 358.14, 209.08,
197.08 3

79 Lyoniresinol glucoside C28H37O13 581.2236 581.2234 419.17, 265.10, 247.09 3

C
ar

bo
xy

lic
ac

id
,f

at
ty

ac
id

s
an

d
am

in
o

ac
id

s

80 Fumaric acid C4H4O4 115.0026 115.0037 71.01 2
81 Succinic acid C4H6O4 117.0183 117.0187 99.00, 73.02 2
82 Malic acid C4H6O5 133.0133 133.0142 115.00, 89.02, 71.01 2
83 Tartaric acid C4H6O6 148.9235 149.0086 87.05 2
84 Ribonic acid C5H10O6 165.0398 165.0418 149.04, 105.01, 87.00, 75.00 2
85 Citric acid C6H8O7 191.0191 191.0197 173.00, 129.01, 111.00 2
86 Homocitric acid C7H10O7 205.0349 205.0348 161.04. 143.04. 117.05 2
87 Lauric acid C12H24O2 199.1698 199.1698 181.16, 165.13, 163.11, 139.11,

135.11 2
88 Myristic acid C14H28O2 227.2014 227.2011 209.19, 183.21, 179.18 2
89 Methylmyristic acid C15H30O2 241.2171 241.2167 227.20, 209.19, 183.21, 179.18 2
90 Palmitic acid C16H32O2 255.2327 255.233 237.23, 211.24, 197.22 2
91 16-Hydroxypalmitic acid C16H32O3 271.2279 271.2273 253.12, 237.22. 225.25, 211.24.

195.21 2
92 α-Linoleic acid C18H32O2 279.2328 279.233 261.22 2
93 Oleic acid C18H34O2 281.2485 281.2486 263.25, 181.21, 127.25 2

94 Dihydroxy octadecadienoic
acid C18H32O4 311.2226 311.2239 293.22, 275.23 2

95 Dihydroxy octadecenoic acid C18H34O4 313.2383 313.2378 295.23, 277.25, 183.32 2
96 Dihydroxy octadecanoic acid C18H36O4 315.2538 315.2535 297.23, 279.25, 2

97 Trihydroxy octadecadienoic
acid C18H32O5 327.2175 327.2171 309.23, 291.25, 273.23 2

98 Trihydroxy octadecenoic acid C18H34O5 329.2332 329.2333 311.25, 293.26, 275.23 2
99 α-Hydroxybehenic acid C22H44O3 355.3217 355.3212 337.31, 311.33, 293.32, 281.32 2

100 26-Hydroxyhexacosanoic acid C26H52O3 411.3842 411.3838 393.37, 381.37, 367.39 2

O
th

er
s 101 Dihydrojasmonic acid C12H20O3 211.1335 211.1334 167.14, 111.08, 59.10 2

102 N-acetyl-α-neuraminic acid C11H19NO9 308.0986 308.0987 290.09, 219.06, 200.05, 146.08,
128.07 2

103 1-Deoxynojirimycin hexoside C12H23NO9 324.1298 324.1295 161.04, 144.06, 143.03, 113.02 2
104 Icariside D1 C19H28O10 415.1609 415.1604 398.15, 384.14, 250.12 2

EF: elemental formula; OM: observed mass; CM: calculated mass; CL: confidence level.

In Table 4, compounds 1–13 were identified as phenolic compounds in UMS based on
mass fragmentation patterns. Notably, the phenolic acids in UMS were often in glucosidic
form or conjugated with quinic and shikimic acid. While compounds 1–12 had been
reported in various date cultivars in previous studies [1,17,22,24], compound 13, with
a monoisotopic mass [M–H]− of m/z 747.1895 and the molecular formula C38H36O16,
was newly identified as 3-O-feruloyl-7-O-acyl-feruloyl-4-O-caffeoyl-quinic acid in the
Ajwa date.

Flavonoids are a diverse group of polyphenolic compounds found in plants, cat-
egorized into seven subclasses based on their structural variations: flavonols, flavones,
isoflavones, anthocyanidins, flavanones, flavanols and chalcones [36]. Among the flavonoids
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identified, flavone aglycones, including apigenin (14), luteolin (15), chrysoeriol (17) and
methoxysinensetin (21), were identified along with their glycosides (compounds 25, 34, 46,
47 and 54) and sulfate conjugates as luteolin hexosyl sulfate (41) and chrysoeriol hexosyl
sulfate (42) [17,20,22,24]. Quercetin (18), a major flavonol aglycone, was found along-
side numerous flavonol glycosides (29, 30, 35, 38, 40, 43, 48, 49, 52 and 55–57), which
were prevalent across various date variants [20,22,24]. Furthermore, UMS unveiled novel
flavonol glycoside conjugates with hydroxycinnamic acids, specifically kaempferol 3-(3′′,6′′-
di-p-coumaroylgalactoside) (51), quercetin 3-(6′ ′ ′ ′-p-coumaryl sophorotrioside) (58) and
quercetin 3-(6′′-caffeoyl sophorotrioside) (59), as determined through MSn data and pre-
vious studies [37,38]. Moreover, UMS contained flavonoid diversity, with compounds
23 and 26 identified as naringenin glycosides (flavanones) and compounds 28, 33 and
39 characterized as biochanin A glycoside, afrormosin glycoside and luteone glycoside
(isoflavones). Compounds 16, 22, 27, 31, 32 and 36 were confirmed to be flavanols, mainly
catechin/epicatechin and their glycosidic and gallate conjugates [24]. Interestingly, epi-
gallocatechin (20) and epigallocatechin caffeate (37) were discovered for the first time
in UMS. This study also revealed the presence of proanthocyanidins in UMS, including
procyanidin A2 (44), procyanidin B2 (45), procyanidin B2-gallate (50) and epicatechin-
(4beta->8)-epigallocatechin 3′-gallate (53), marking the first-time identification of these
proanthocyanidins in UMS.

Terpenes, characterized by their five-carbon isoprene units, represent a significant
category of secondary metabolites. Terpenoids, on the other hand, are derivatives of
terpenes, displaying a variety of functional groups and methyl group rearrangements.
Terpenoids are categorized into monoterpenes, sesquiterpenes, diterpenes, sesterpenes
and triterpenes based on their carbon unit composition. Mass spectrometry of terpenoids
unveils distinct ions resulting from the loss of neutral molecules, such as CH3 (15 Da) H2O
(18 Da), CO (28 Da), COO (44 Da) and CH3COOH (60 Da). Furthermore, pseudo-molecular
ions undergo retro-Diels–Alder (RDA) fragmentation reactions. Terpenoid glycosides can
also generate terpenoid aglycones by shedding sugar units [39–42]. Comparing fragmenta-
tion patterns to the prior literature, sesquiterpenoids (compounds 60–65, 68 and 72) and
their lactone derivatives, including absindiol (66) and cymaroside A (75), were identified.
Compound 74, with a deprotonated ion [M–H]− at m/z 427.1974 and molecular formula
C21H32O9, was recognized as the sesquiterpene glycoside cichorioside M. Additionally,
two monoterpenoids (67 and 71), two diterpenoids (69 and 70) and two triterpenoids (73
and 76) were characterized in the study [40,42–44]. Notably, the study marks the first-ever
report of the presence of terpenoids in UMS.

Compounds 77–79 have been unequivocally identified as lignan glycosides. Notably,
compound 77, 1,2-di-(syringoyl)-hexoside, had been previously discovered in Ajwa date
pulp [22]. Compounds 78 and 79, newly discovered in UMS, exhibited deprotonated
ions [M–H]− at m/z 567.2084 and 581.2236, respectively and generated base peaks at m/z
405.15 and 419.17 by losing the glycosyl moiety (162 Da), confirming their identities as
citrusin B (78) and lyoniresinol glucoside (79) [45,46].

Mass spectrometric analysis and data from the literature and online databases aided
in the identification of compounds 80–86 as carboxylic acids and compounds 87–100 as
fatty acids (Table 4). These findings are consistent with previous research [20,26–28,47–49].
Compounds 102 and 103, identified as N-acetyl-α-neuraminic acid and 1-deoxynojirimycin
hexoside, were previously reported in Ajwa date pulp [24]. In contrast, compounds 101
and 104, dihydrojasmonic acid and icariside D1, were newly found in UMS, characterized
by their deprotonated ions [M–H]− at m/z 211.1335 and 415.1609, respectively, which was
supported by their mass fragmentation behavior documented in earlier studies [50].

3.6. Antioxidant Effect of UMS

The assessment of antioxidant activities in phytochemicals necessitates a compre-
hensive understanding of various molecular mechanisms. In this investigation, multiple
methodologies were employed to evaluate the antioxidant potential of UMS. The DPPH,
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ABTS, superoxide, hydroxyl and NO radical scavenging assays, as well as CUPRAC and
FRAP assays, were utilized. As depicted in Figure 5A,B, UMS demonstrated a dose-
dependent and significant DPPH and ABTS radical scavenging potential, exhibiting IC50
values of 42.62 ± 0.27 µg/mL and 34.42 ± 1.44 µg/mL, respectively. In comparison,
the positive control, ascorbic acid, exhibited an IC50 value of 13.79 ± 0.87 µg/mL and
21.44 ± 0.27 µg/mL in the DPPH and ABTS assays, respectively, indicating that UMS not
only engage in hydrogen atom transfer but also operates through a single electron transfer
mechanism. The evaluation of superoxide and hydroxyl radical scavenging abilities em-
ployed the PMS–NADH superoxide-generating system and Fenton reaction, respectively [8].
Figure 5C,D illustrate UMS’s robust potential to scavenge superoxide and hydroxyl radicals,
with IC50 values of 36.84 ± 1.02 µg/mL and 42.32 ± 0.59 µg/mL, respectively. In contrast,
the positive controls, gallic acid and quercetin, had IC50 values of 14.12 ± 0.77 µg/mL and
11.21 ± 1.06 µg/mL for superoxide and hydroxyl radical scavenging, respectively. These
results suggest that UMS employ a single electron transfer mechanism for its antioxidant
activity. Moreover, UMS exhibited dose-dependent NO radical scavenging activity with
an IC50 value of 41.77 ± 1.64 µg/mL, while the positive control catechin had an IC50
value of 8.47 ± 0.39 µg/mL (Figure 5E). Furthermore, CUPRAC and FRAP assays were
performed, revealing UMS’s notable reduction capability with values of 189.42 ± 12.98 and
158.32 ± 12.05 µmol AAE/g at 50 µg/mL, respectively (Figure 5F).
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Furthermore, t-BHP, a well-known short-chain lipid peroxide analogue that is fre-
quently used to produce oxidative stress in cells, was employed to examine cellular re-
sponses to oxidative stress in both cellular and tissue settings in order to evaluate the
potential of UMS in attenuating cellular oxidative stress. The induction of oxidative stress
by t-BHP resulted in notable cell death. However, pretreatment with UMS and gallic acid
effectively mitigated cellular toxicity at non-toxic concentrations (Figure 5G). Additionally,
as depicted in Figure 5H, UMS demonstrated a dose-dependent reduction in the generation
of cellular ROSs, further highlighting its antioxidative properties.

This study corroborates existing evidence indicating that date seed extracts, par-
ticularly from Ajwa seeds, exhibit high radical scavenging activity in various cell-free
antioxidant methods. Ajwa seeds surpass date flesh in antioxidant properties, positioning
them as a promising natural source of antioxidants. The attributed effectiveness of Ajwa
seeds in addressing various conditions is likely linked to polyphenolic compounds func-
tioning as reducing agents, free radical scavengers and hydrogen donors. The antioxidant
properties and polyphenolic composition of date seeds are influenced by factors such as ge-
netic diversity, soil conditions, maturity stages, storage conditions and extraction methods.
Furthermore, UMS, containing cinnamic acid, benzoic acid hydroxylated derivatives and
various flavonoids, is implicated in its antioxidant properties, offering protection against
oxidative-stress-induced diseases such as inflammation, hyperlipidemia and diabetes.

3.7. Depigmenting Effect of UMS on Hyperpigmented Melanocyte (MNT-1) Cells

Melanogenesis, the process of melanin production, plays a crucial role in skin pig-
mentation and can be implicated in various skin conditions [12]. Mushroom tyrosinase
is a well-established enzyme used to test compounds that inhibit melanogenesis [51] and
the results indicated that UMS significantly suppressed mushroom tyrosinase activity in a
concentration-dependent manner, with a lower IC50 value (48.60 ± 1.02 µg/mL) compared
to the positive control, arbutin (IC50 = 131.03 ± 2.01 µg/mL) (Figure S4).

Furthermore, the study examined the impact of UMS extract on melanin levels in
MNT-1 cells and revealed a dose-dependent reduction (Figure 6A) without causing cytotox-
icity (Figure S5). This reduction in melanin content was associated with the downregulation
of key melanogenesis-related proteins, including Tyr, Trp-1, -2 and MITF, as confirmed
through western blot analysis (Figure 6B). The inhibition of MITF expression is particularly
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significant, as MITF is a master regulator of melanogenesis. The presence of flavonoids and
procyanidins in the UMS extract aligns with the observed depigmenting effects. Flavonoids
(luteolin, taxifolin, quercetin catechin, epigallocatehin, procyanidinA2 and B2) have been
previously linked to anti-melanogenic activity in the cosmetic industry [52,53], and the
mass spectrometric analysis confirmed the abundance of these compounds in the UMS
extract. Moreover, the study delved into the underlying mechanisms of UMS’s depig-
menting effects. The study demonstrated that the UMS extract stimulated the p38 and
ERK signaling pathways in MNT-1 cells, which play roles in regulating melanogenesis. In
contrast, UMS fail to trigger JNK activation in MNT-1 cells (Figure 6C). Moreover, in order
to confirm the involvement of the p38 and ERK signaling pathways in mediating UMS’s de-
pigmenting effects, specific inhibitors for p38 and ERK were administered either alone or in
combination with UMS. The findings indicated that inhibiting p38 and ERK selectively suc-
cessfully reversed the depigmenting effects of UMS. This association linked the activation
of these pathways to the reduction of MITF expression and the inhibition of Tyr expression
(Figure 6D,E). This supports earlier research that demonstrated that polyphenolic-rich
plant extracts achieve depigmentation through similar MAPKs’ signaling-mediated MITF
downregulation [11,54].
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(25–100 µg/mL) for 3 days. (A) Melanin content was determined. Western blot analysis of
(B) melanogenesis factors such as Tyr, Trp-1, -2 and MITF, (C) MAPK proteins including p38, ERK
and JNK. MNT-1 cells were co-treated with UMS and selective inhibitors of ERK (U0126) and p38
(SB239063). (D) MITF and Tyr levels were determined by western blot analysis, and (E) melanin
content was also determined. * p < 0.05, ** p < 0.01 vs. NT, # p < 0.01 vs. UMS alone, ns: non-significant
vs. NT, ARB: arbutin.
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4. Conclusions

This pioneering study investigated the optimization of UAE conditions for extracting
bioactive compounds from unmature Ajwa date seeds using both RSM and ANN modeling.
High-resolution mass spectrometry analysis identified phenolic acids, flavonoids, lignans
and fatty acids in the extract. The ANN model outperformed the RSM model, exhibiting
higher accuracy and reliability, with the optimal conditions determined to be 61% ethanol,
29 min of extraction time and an extraction temperature of 50 ◦C, while the extract/solvent
ratio was fixed to 1:10 (g/mL). Under these conditions, the extract yielded maximum TPC
of 77.52 ± 1.55 mg GAE/g and TFC of 58.85 ± 1.12 mg CE/g. Furthermore, UMS showed
a potent antioxidant activity in various cell-free antioxidant assays and the mitigation of t-
BHP induced cellular ROS generation. The date industry generates thousands of discarded
byproducts, such as date pomace and seeds, that are rich with bioactive compounds. New
aspects of using these byproducts to produce high-nutritional-value food products have
recently attracted interest. Additionally, this study highlighted the extract’s potential as
an anti-melanogenic agent, showing its ability to inhibit mushroom tyrosinase, reduce
melanin levels and modulate melanogenesis-related proteins. The activation of p38 and
ERK signaling pathways further supports its potential for pigmentation-related skin care
products. This research underscores the significance of Ajwa date seeds as a source of
bioactive compounds and encourages its further exploration in dermatology and cosmetics,
including isolating bioactive markers and in vivo testing for therapeutic applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13020238/s1, Figure S1: The ANN models architecture;
Figure S2: The contour plot as a function of ethanol concentration, extraction time and temperature
at optimum condition; Figure S3: Mushroom tyrosinase inhibition activity of UMS optimized extract;
Figure S4: Effect of UMS optimized extract on MNT-1 cell viability; Table S1: List of antibodies
used in this study; Table S2: Independent process variables with experimental ranges and levels for
ultrasound assistant extraction of UMS [47].
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