Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Collection and Cultivation of Plant Materials
2.3. Sample Preparation: Pre-Treatment and Extraction
2.4. Identification of GSLs Using UPLC-MS/MS
2.5. Multivariate Analysis
2.6. In Silico Screening and Molecular Docking Analysis
3. Results and Discussion
3.1. Brassica Accessions: GSL Variation According to Origin
3.2. Principal Component Analysis (PCA)
3.3. Pearson Correlation Analysis
3.4. GSLs In Silico Antioxidant Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- POWO. Plants of the World Online. Available online: http://www.plantsoftheworldonline.org/ (accessed on 16 January 2024).
- De Tournefort, J.P. Historia Plantarum: Species Hactenus Editas Aliasque Insuper Multas Noviter Inventas & Descriptas Complectens; Henricum Faithorne: London, UK, 2012; pp. 1686–1704. [Google Scholar]
- Linnaeus, C. Species Plantarum; Impensis Laurentii Salvii: Stockholm, Sweden, 1753; Volume 2, pp. 667–668. [Google Scholar]
- De Candolle, A.P. Cruciferae. Syst. Nat. 1821, 2, 139–700. [Google Scholar]
- Hooker, J.D.; Bentham, G. Genera Plantarum; Lovell Reed: London, UK, 1880. [Google Scholar]
- Baillon, H. Historie des plantes. Monographie des Cruciferes; Librairie de Hachette et C.ie: Paris, France, 1871; Volume 3, pp. 188–195. [Google Scholar]
- Prantl, K. Cruciferae. In Die Natürlichen Pflanzenfamilien; Engler, A., Prantl, K.A., Eds.; Wilhelm Englmann: Leipzig, Germany, 1891; pp. 145–208. [Google Scholar]
- Schulz, O.E. Cruciferae-Brassiceae. Pars prima. In Das Pflanzenreich; Engler, H.G.A., Ed.; Wilhelm Englmann: Leipzig, Germany, 1919; Volume IV, pp. 1–290. [Google Scholar]
- Beilstein, M.A.; Al-Shehbaz, I.A.; Kellogg, E.A. Brassicaceae phylogeny and trichome evolution. Amer. J. Bot. 2006, 93, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Branca, F.; Cartea, E. Brassica. In Wild Crop Relatives: Genomic and Breeding Resources: Oilseeds; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–36. [Google Scholar]
- Sharma, H.K.; Kumar, A.; Singh, V.; Meena, H.; Priyamedha; Meena, B.; Sharma, P.; Rai, P. Genetic resources of brassicas. In Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization; Springer: Cham, Switzerland, 2022; pp. 285–337. [Google Scholar]
- Zhu, B.; Liang, Z.; Zang, Y.; Zhu, Z.; Yang, J. Diversity of glucosinolates among common brassicaceae vegetables in China. Hortic. Plant J. 2023, 9, 365–380. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed]
- Beretta, H.V.; Torres-Palazzolo, C.; Ramírez, D.A.; Camargo, A.B. Brassica Vegetables: Rich Sources of Neuroprotective Compounds. In Psychiatry and Neuroscience Update: From Epistemology to Clinical Psychiatry–Vol. IV; Springer: Cham, Switzerland, 2021; pp. 327–341. [Google Scholar]
- Wittstock, U.; Kurzbach, E.; Herfurth, A.-M.; Stauber, E. Glucosinolate breakdown. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 80, pp. 125–169. [Google Scholar]
- Mazumder, A.; Dwivedi, A.; Du Preez, J.L.; Du Plessis, J. In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex. Int. J. Pharm. 2016, 498, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar] [PubMed]
- Gepts, P. Biocultural diversity and crop improvement. Emerg. Top. Life Sci. 2023, 7, 151–196. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Ver. 2023-1. Available online: https://www.iucnredlist.org (accessed on 30 December 2023).
- Genesys. Available online: https://www.genesys-pgr.org/ (accessed on 26 December 2023).
- Global, G. Available online: https://www.grin-global.org/ (accessed on 29 December 2023).
- ECPGR. Available online: https://www.ecpgr.cgiar.org/resources/germplasm-databases/ecpgr-central-crop-databases (accessed on 27 December 2023).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 29 December 2023).
- Bajorath, J. Computational chemistry and computer-aided drug discovery: Part I. Future Med. Chem. 2016, 8, 1705–1706. [Google Scholar] [CrossRef]
- Fang, J.; Liu, C.; Wang, Q.; Lin, P.; Cheng, F. In silico polypharmacology of natural products. Brief. Bioinform. 2018, 19, 1153–1171. [Google Scholar] [CrossRef]
- Fiandaca, M.S.; Gonzalez-Dominguez, R.; Gonzalez-Diaz, H. New Experimental and Computational Tools for Drug Discovery: From Chemistry to Biology. Metabolomics, Pharmacokinetics, and Medicinal Chemistry. Part-IV. Curr. Top. Med. Chem. 2018, 18, 881–882. [Google Scholar] [CrossRef]
- Huang, S.; Chen, L.; Mei, H.; Zhang, D.; Shi, T.; Kuang, Z.; Heng, Y.; Xu, L.; Pan, X. In silico prediction of the dissociation rate constants of small chemical ligands by 3D-grid-based VolSurf method. Int. J. Mol. Sci. 2020, 21, 2456. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Parisi, D.; Sveshnikova, A.; Schroeder, M. Structure-based drug repositioning: Potential and limits. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2021; pp. 192–198. [Google Scholar]
- Alarabei, A.A.; Abd Aziz, N.A.L.; Ab Razak, N.I.; Abas, R.; Bahari, H.; Abdullah, M.A.; Hussain, M.K.; Abdul, A.M.S. Immunomodulating Phytochemicals: An Insight into their Potential Use in Cytokine Storm Situations. Adv. Pharm. Bull. 2023, 14, 105–119. [Google Scholar] [CrossRef]
- Bischoff, K.L. Glucosinolates. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 903–909. [Google Scholar]
- Meenu, M.; Zhang, Y.; Kamboj, U.; Zhao, S.; Cao, L.; He, P.; Xu, B. Rapid determination of β-glucan content of hulled and naked oats using near infrared spectroscopy combined with chemometrics. Foods 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.-Y. Human, animal and plant health benefits of glucosinolates and strategies for enhanced bioactivity: A systematic review. Molecules 2020, 25, 3682. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Kellman, B.P.; Chiang, A.W.; Zhang, Y.; Sorrentino, J.T.; York, A.K.; Mohammad, M.A.; Haymond, M.W.; Bode, L.; Lewis, N.E. Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis. Nat. Commun. 2021, 12, 4988. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, G.-A.; Subramanian, P.; Hahn, B.-S. Quantification and Diversity Analyses of Major Glucosinolates in Conserved Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Germplasms. Foods 2023, 12, 1243. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, H.; Moon, B.; Kim, S. Analysis of glucosinolates and their breakdown products from Mul-Kimchis using UPLC-MS/MS. J. Food Compos. Anal. 2024, 125, 105772. [Google Scholar] [CrossRef]
- Plots, S. Available online: https://www.bioinformatics.com.cn/en (accessed on 14 January 2024).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 28 January 2024).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Way2Drug. Available online: https://www.way2drug.com/passonline/ (accessed on 20 February 2024).
- Rana, S.; Dixit, S.; Mittal, A. In silico target identification and validation for antioxidant and anti-inflammatory activity of selective phytochemicals. Braz. Arch. Biol. Technol. 2019, 62, e19190048. [Google Scholar] [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007, 35, D301–D303. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo—Distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Jendele, L.; Krivak, R.; Skoda, P.; Novotny, M.; Hoksza, D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019, 47, W345–W349. [Google Scholar] [CrossRef] [PubMed]
- Kochnev, Y.; Hellemann, E.; Cassidy, K.C.; Durrant, J.D. Webina: An open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics 2020, 36, 4513–4515. [Google Scholar] [CrossRef] [PubMed]
- Puúčiková, V.; Rohn, S.; Hanschen, F.S. Glucosinolate Accumulation and Hydrolysis in Leafy Brassica Vegetables Are Influenced by Leaf Age. J. Agric. Food Chem. 2023, 71, 11466–11475. [Google Scholar] [CrossRef]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annu. Rev. Food Sci. Technol. 2021, 12, 485–511. [Google Scholar] [CrossRef]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Klopsch, R.; Witzel, K.; Artemyeva, A.; Ruppel, S.; Hanschen, F.S. Genotypic variation of glucosinolates and their breakdown products in leaves of Brassica rapa. J. Agric. Food Chem. 2018, 66, 5481–5490. [Google Scholar] [CrossRef]
- Coves, S.; Soengas, P.; Velasco, P.; Fernández, J.C.; Cartea, M.E. New vegetable varieties of Brassica rapa and Brassica napus with modified glucosinolate content obtained by mass selection approach. Front. Nutr. 2023, 10, 1198121. [Google Scholar] [CrossRef]
- Lee, M.-K.; Chun, J.-H.; Byeon, D.H.; Chung, S.-O.; Park, S.U.; Park, S.; Arasu, M.V.; Al-Dhabi, N.A.; Lim, Y.-P.; Kim, S.-J. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Sci. Technol. 2014, 58, 93–101. [Google Scholar] [CrossRef]
- Maldonade, I.; Luengo, R.; Silva, J.; Ribeiro, R. Screening Brazilian collard cultivars for glucosinolate content. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Fruit and Vegetables for Processing, International 1292, Istanbul, Turkey, 12–16 August 2018; pp. 351–356. [Google Scholar]
- Cartea, M.E.; Cámara-Martos, F.; Obregón, S.; Badenes-Pérez, F.R.; De Haro, A. Advances in Breeding in Vegetable Brassica rapa Crops. In Brassica Breeding and Biotechnology; (working title); Aminul Islam, A.K.M., Hossain, M.A., Mominul Islam, A.K.M., Eds.; IntechOpen Ltd.: London, UK, 2021; pp. 1–18. [Google Scholar]
- Possenti, M.; Baima, S.; Raffo, A.; Durazzo, A.; Giusti, A.M.; Natella, F. Glucosinolates in food. In Glucosinolates; Merillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2017; pp. 87–132. [Google Scholar]
- Oh, S.; Tsukamoto, C.; Kim, K.; Choi, M. Investigation of glucosinolates, and the antioxidant activity of D olsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS. J. Food Biochem. 2017, 41, e12366. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, N.S.; Park, J.S.; Lee, S.Y.; Lee, J.-W.; Park, S.U. Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). Foods 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sohn, S.I.; Sathasivam, R.; Khaskheli, A.J.; Kim, M.C.; Kim, N.S.; Park, S.U. Targeted metabolic and in-silico analyses highlight distinct glucosinolates and phenolics signatures in Korean rapeseed cultivars. Plants 2021, 10, 2027. [Google Scholar] [CrossRef] [PubMed]
- Argentieri, M.P.; Accogli, R.; Fanizzi, F.P.; Avato, P. Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to southern Italy (Salento). Planta Medica 2011, 77, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Kabouw, P.; Biere, A.; van der Putten, W.H.; van Dam, N.M. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J. Agric. Food Chem. 2010, 58, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Uddin, M.R.; Park, S.U. Glucosinolate accumulation in three important radish (‘Raphanus sativus’) cultivars. Aust. J. Crop Sci. 2013, 7, 1843–1847. [Google Scholar]
- Kwon, H.Y.; Choi, S.I.; Han, X.; Men, X.; Jang, G.W.; Choi, Y.E.; Lee, O.H. Antiobesity effect of Brassica juncea cultivated in Jeongseon with optimized sinigrin content using 3T3-L1 adipocytes. J. Food Biochem. 2021, 45, e13650. [Google Scholar] [CrossRef]
- Kaur, T.; Hussain, K.; Koul, S.; Vishwakarma, R.; Vyas, D. Evaluation of nutritional and antioxidant status of Lepidium latifolium Linn.: A novel phytofood from Ladakh. PLoS ONE 2013, 8, e69112. [Google Scholar] [CrossRef]
- Zaman, S.; Shah, K.; Zaman, B.; Sayal, A.U.; Naqvi, S.T.A.; Shah, M.; Hussain, J.; Hassan, A.; Abbasi, A.M.; Ahmad, R. Determination of genetic diversity, sinigrin contents, and elicitors-induced enhancement of sinigrin in Nasturtium officinale L. Turk. J. Agric. For. 2022, 46, 59–72. [Google Scholar]
- Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC–MS combined with k-means cluster analysis. Ind. Crops Prod. 2014, 56, 211–222. [Google Scholar] [CrossRef]
- Essoh, A.P.; Monteiro, F.; Pena, A.R.; Pais, M.S.; Moura, M.; Romeiras, M.M. Exploring glucosinolates diversity in Brassicaceae: A genomic and chemical assessment for deciphering abiotic stress tolerance. Plant Physiol. Biochem. 2020, 150, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Ochar, K.; Hwang, A.; Lee, Y.-J.; Kang, H.J. Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm. Plants 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.D.; Kim, S.-H.; Ko, H.C.; Ro, N.; Subramanian, P.; Chung, Y.-J.; Lee, Y.-H.; Hahn, B.-S.; Rhee, J.-H. Leaf Mustard (Brassica juncea) Germplasm Resources Showed Diverse Characteristics in Agro-Morphological Traits and Glucosinolate Levels. Foods 2023, 12, 4374. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xu, K.; Li, H.; Gao, G.; Yan, G.; Qiao, J.; Wu, X. Evaluation of quality traits and their genetic variation in global collections of Brassica napus L. Plant Genet. Resour. 2018, 16, 146–155. [Google Scholar] [CrossRef]
- Merinas-Amo, T.; Lozano-Baena, M.-D.; Obregón-Cano, S.; Alonso-Moraga, Á.; de Haro-Bailón, A. Role of glucosinolates in the nutraceutical potential of selected cultivars of Brassica rapa. Foods 2021, 10, 2720. [Google Scholar] [CrossRef] [PubMed]
- Ben Ammar, H.; Arena, D.; Treccarichi, S.; Di Bella, M.C.; Marghali, S.; Ficcadenti, N.; Lo Scalzo, R.; Branca, F. The effect of water stress on the glucosinolate content and profile: A comparative study on roots and leaves of Brassica oleracea L. crops. Agronomy 2023, 13, 579. [Google Scholar] [CrossRef]
- Kołodziejski, D.; Piekarska, A.; Hanschen, F.S.; Pilipczuk, T.; Tietz, F.; Kusznierewicz, B.; Bartoszek, A. Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables. Eur. Food Res. Technol. 2019, 245, 383–400. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, N.A.; Gaytán-Martínez, M.; de la Luz Reyes-Vega, M.; Loarca-Piña, G. Glucosinolates and isothiocyanates from Moringa oleifera: Chemical and biological approaches. Plant Foods Hum. Nutr. 2020, 75, 447–457. [Google Scholar] [CrossRef]
- Lipinski, C.A. Avoiding investment in doomed drugs. Curr. Drug Discov. 2001, 1, 17–19. [Google Scholar]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Velasco, P.; Rodríguez, V.M.; Soengas, P.; Poveda, J. Trichoderma hamatum increases productivity, glucosinolate content and antioxidant potential of different leafy brassica vegetables. Plants 2021, 10, 2449. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Yoon, M.K.; Kwak, J.-H. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hortic. Environ. Biotechnol. 2014, 55, 138–147. [Google Scholar] [CrossRef]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef]
- Sies, H. Oxidative eustress and oxidative distress: Introductory remarks. In Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–12. [Google Scholar]
- Saso, L.; Gürer-Orhan, H.; Stepanić, V. Modulators of oxidative stress: Chemical and pharmacological aspects. Antioxidants 2020, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Romá-Mateo, C.; García-Giménez, J.L. Oxidative Stress and Rare Diseases: From Molecular Crossroads to Therapeutic Avenues. Antioxidants 2021, 10, 617. [Google Scholar] [CrossRef]
- Carneiro, A.; Sinoti, S.; de Freitas, M.; Simeoni, L.; Fagg, C.; Magalhães, P.; Silveira, D.; Fonseca-Bazzo, Y. Hydroethanolic Extract of Morus nigra L. Leaves: A Dual PPAR-α/γ Agonist with Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7. Plants 2022, 11, 3147. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Scordino, M.; Frinchi, M.; Urone, G.; Nuzzo, D.; Mudò, G.; Di Liberto, V. Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects. Antioxidants 2023, 12, 687. [Google Scholar] [CrossRef]
- Salavati, S.; Mogheiseh, A.; Nazifi, S.; Amiri, A.; Nikahval, B. The effects of melatonin treatment on oxidative stress induced by ovariohysterectomy in dogs. BMC Vet. Res. 2021, 17, 181. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Brucker, N.; Durgante, J.; Bubols, G.; Bulcão, R.; Moro, A.; Charão, M.; Baierle, M.; Nascimento, S.; Gauer, B. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute myocardial infarction. Int. J. Environ. Res. Public Health 2014, 11, 9024–9037. [Google Scholar] [CrossRef] [PubMed]
- Gaafar, R.M.; Osman, M.E.-A.H.; Abo-Shady, A.M.; Almohisen, I.A.; Badawy, G.A.; El-Nagar, M.M.; Ismail, G.A. Role of Antioxidant Enzymes and Glutathione S-Transferase in Bromoxynil Herbicide Stress Tolerance in Wheat Plants. Plants 2022, 11, 2679. [Google Scholar] [CrossRef] [PubMed]
- Fasciolo, G.; Napolitano, G.; Aprile, M.; Cataldi, S.; Costa, V.; Ciccodicola, A.; Di Meo, S.; Venditti, P. Hepatic insulin resistance in hyperthyroid rat liver: Vitamin E supplementation highlights a possible role of ROS. Antioxidants 2022, 11, 1295. [Google Scholar] [CrossRef]
- Flohé, L. Looking back at the early stages of redox biology. Antioxidants 2020, 9, 1254. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef]
- Suroowan, S.; Llorent-Martínez, E.J.; Zengin, G.; Dall’Acqua, S.; Sut, S.; Buskaran, K.; Fakurazi, S.; Le Van, B.; Abdalla, M.; Abdalla, A.N. Above the Invasive and Ornamental Attributes of the Traveler’s Palm: An In Vitro and In Silico Insight into the Anti-Oxidant, Anti-Enzymatic, Cytotoxic and Phytochemical Characterization of Ravenala madagascariensis. Antioxidants 2023, 12, 184. [Google Scholar] [CrossRef]
- Idres, Y.A.; Tousch, D.; Cazals, G.; Lebrun, A.; Naceri, S.; Bidel, L.P.; Poucheret, P. A Novel Sesquiterpene Lactone Xanthatin-13-(pyrrolidine-2-carboxylic acid) Isolated from Burdock Leaf Up-Regulates Cells’ Oxidative Stress Defense Pathway. Antioxidants 2021, 10, 1617. [Google Scholar] [CrossRef]
- Yang, D.; Chen, X.; Liu, X.; Han, N.; Liu, Z.; Li, S.; Zhai, J.; Yin, J. Antioxidant and α-glucosidase inhibitory activities guided isolation and identification of components from mango seed kernel. Oxidative Med. Cell. Longev. 2020, 2020, 8858578. [Google Scholar] [CrossRef]
- Prakash, P.; Kumari, N.; Gayathiri, E.; Selvam, K.; Ragunathan, M.G.; Chandrasekaran, M.; Al-Dosary, M.A.; Hatamleh, A.A.; Nadda, A.K.; Kumar, M. In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM. Antioxidants 2021, 10, 1307. [Google Scholar] [CrossRef]
- Francis, P.; Chakraborty, K. Stomopnolides AB from echinoidea sea urchin Stomopneustes variolaris: Prospective natural anti-inflammatory leads attenuate pro-inflammatory 5-lipoxygenase. Nat. Prod. Res. 2021, 35, 4235–4247. [Google Scholar] [CrossRef]
- Singh, R.K.; Prasad, A.; Muthamilarasan, M.; Parida, S.K.; Prasad, M. Breeding and biotechnological interventions for trait improvement: Status and prospects. Planta 2020, 252, 54. [Google Scholar] [CrossRef]
- Hirani, A.H.; Geng, J.; Zhang, J.; Zelmer, C.D.; McVetty, P.B.; Daayf, F.; Li, G. Quantitative Trait Loci Mapping and Candidate Gene Identification for Seed Glucosinolates in Brassica rapa L. Crop Sci. 2016, 56, 942–956. [Google Scholar] [CrossRef]
Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 | |
---|---|---|---|---|
Glucobarbarin | 0.39326 | −0.03543 | 0.36776 | −0.00975 |
Glucoberteroin | 0.02899 | 0.67632 | 0.16737 | 0.03900 |
Glucobrassicanapin | 0.49485 | −0.11434 | −0.14273 | 0.04016 |
Glucobrassicin | 0.37983 | 0.00232 | 0.20934 | 0.20512 |
Glucoerucin | −0.09370 | 0.67273 | 0.08169 | 0.04366 |
Gluconapin | 0.27930 | 0.04975 | −0.40898 | 0.35562 |
Gluconasturtiin | 0.44987 | 0.20539 | −0.24152 | 0.18864 |
Glucotropaeolin | 0.23415 | −0.13393 | 0.60240 | 0.06097 |
Progoitrin | 0.23710 | 0.07679 | −0.40500 | −0.48498 |
Sinigrin | −0.23486 | −0.08482 | −0.11558 | 0.74284 |
Eigenvalue | 2.57277 | 1.84864 | 1.58271 | 1.00980 |
Variance % | 25.73% | 18.49% | 15.83% | 10.10% |
Cumulative % | 25.73% | 44.21% | 60.04% | 70.14% |
SIN | GNA | GBN | PRO | GTL | GER | GNS | GBE | GBB | |
GNA | −0.042 | ||||||||
GBN | −0.284 ** | 0.428 ** | |||||||
PRO | −0.177 | 0.140 | 0.209 * | ||||||
GTL | −0.134 | −0.130 | 0.210 * | −0.179 | |||||
GER | −0.059 | 0.009 | −0.213 * | −0.057 | −0.103 | ||||
GNS | −0.027 | 0.339 ** | 0.518 ** | 0.397 ** | −0.013 | 0.067 | |||
GBE | −0.100 | −0.024 | −0.124 | 0.004 | 0.011 | 0.760 ** | 0.220 * | ||
GBB | −0.182 | 0.020 | 0.303 ** | 0.084 | 0.489 ** | −0.115 | 0.347 ** | 0.078 | |
GBS | −0.165 | 0.148 | 0.329 ** | 0.036 | 0.304 ** | −0.074 | 0.322 ** | 0.075 | 0.308 ** |
Targets | CAT | GPX | SOD | ||||||
Ligands | Affinity (kcal/mol) | Dist from rmsd l.b. | Best mode rmsd u.b. | Affinity (kcal/mol) | Dist from rmsd l.b. | Best mode rmsd u.b. | Affinity (kcal/mol) | Dist from rmsd l.b. | Best mode rmsd u.b. |
GBN | −7.090 | 2.749 | 5.965 | −5.469 | 3.335 | 6.226 | 23.56 | 2.842 | 3.589 |
GNA | −6.814 | 2.769 | 4.162 | −4.436 | 2.572 | 6.125 | 16.260 | 1.540 | 2.065 |
GNS | −8.580 | 4.204 | 6.856 | 31.42 | 0.886 | 1.55 | 38.210 | 2.468 | 5.772 |
GTL | −6.564 | 1.948 | 2.839 | 35.75 | 2.691 | 4.680 | 33.69 | 2.938 | 3.946 |
SIN | −6.902 | 2.756 | 5.709 | 16.73 | 2.651 | 3.516 | 20.040 | 2.320 | 5.489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwar, K.; Desta, K.T.; Ochar, K.; Kim, S.-H. Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential. Antioxidants 2024, 13, 376. https://doi.org/10.3390/antiox13030376
Iwar K, Desta KT, Ochar K, Kim S-H. Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential. Antioxidants. 2024; 13(3):376. https://doi.org/10.3390/antiox13030376
Chicago/Turabian StyleIwar, Kanivalan, Kebede Taye Desta, Kingsley Ochar, and Seong-Hoon Kim. 2024. "Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential" Antioxidants 13, no. 3: 376. https://doi.org/10.3390/antiox13030376
APA StyleIwar, K., Desta, K. T., Ochar, K., & Kim, S. -H. (2024). Unveiling Glucosinolate Diversity in Brassica Germplasm and In Silico Analysis for Determining Optimal Antioxidant Potential. Antioxidants, 13(3), 376. https://doi.org/10.3390/antiox13030376