Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Chemicals
2.3. Preparation of the Cherry Leaf Sample Extracts
2.4. Spectrophotometric Techniques
2.5. Evaluation of Phenolic Compounds in Cherry Leaf Samples Using the HPLC-PDA Technique
2.6. Statistical Analysis
3. Results and Discussion
3.1. Qualitative and Quantitative Composition of the Phenolic Compounds of Sour Cherry (Prunus cerasus L.) Leaves
3.2. Determination of In Vitro Antioxidant Activity of Cherry Leaf Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serradilla, M.J.; Hernández, A.; López-Corrales, M.; Ruiz-Moyano, S.; de Guía Córdoba, M.; Martín, A. Composition of the Cherry (Prunus avium L. and Prunus cerasus L.; Rosaceae). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2015; pp. 127–147. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 August 2023).
- Ahmad, I.; Shamsi, S.; Zaman, R. A Review on Sour Cherry (Prunus cerasus): A High Value Unani Medicinal Fruit. Int. J. Green Pharm. 2017, 11, 1–6. [Google Scholar] [CrossRef]
- Abid, S.; Khajuria, A.; Parvaiz, Q.; Sidiq, T.; Bhatia, A.; Singh, S.; Ahmad, S.; Randhawa, M.K.; Satti, N.K.; Dutt, P. Immunomodulatory Studies of a Bioactive Fraction from the Fruit of Prunus cerasus in BALB/c Mice. Int. Immunopharmacol. 2012, 12, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Ahmad, R.; Ahmad, N.; Makhdoomi, M.; Parvaiz, Q. Augmentation of Immunocytes Functions by Prunus cerasus Fruit and Its Biotherapeutic Potential in Mice Model. Biomed. Pharmacol. J. 2019, 12, 2071–2081. [Google Scholar] [CrossRef]
- Biro, A.; Markovich, A.; Homoki, J.R.; Szollosi, E.; Hegedus, C.; Tarapcsák, S.; Lukács, J.; Stündl, L.; Remenyik, J. Anthocyanin-Rich Sour Cherry Extract Attenuates the Lipopolysaccharide-Induced Endothelial Inflammatory Response. Molecules 2019, 24, 3427. [Google Scholar] [CrossRef] [PubMed]
- Šarić, A.; Sobočanec, S.; Balog, T.; Kušić, B.; Šverko, V.; Dragović-Uzelac, V.; Levaj, B.; Čosić, Z.; Šafranko, Ž.M.; Marotti, T. Improved Antioxidant and Anti-Inflammatory Potential in Mice Consuming Sour Cherry Juice (Prunus cerasus Cv. Maraska). Plant Foods Hum. Nutr. 2009, 64, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, E.N.; Karvela, E.D.; Papadopoulou, A.; Karathanos, V.T. The Effect of Enrichment with Sour-Cherry Extracts on Gluten-Free Snacks Developed by Novel 3D Technologies. Antioxidants 2023, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Khoo, G.M.; Clausen, M.R.; Pedersen, B.H.; Larsen, E. Bioactivity of Sour Cherry Cultivars Grown in Denmark. Phytother. Res. 2012, 26, 1348–1351. [Google Scholar] [CrossRef]
- Maragheh, A.D.; Tabrizi, M.H.; Karimi, E.; Seyedi, S.M.R.; Khatamian, N. Producing the Sour Cherry Pit Oil Nanoemulsion and Evaluation of Its Anti-Cancer Effects on Both Breast Cancer Murine Model and MCF-7 Cell Line. J. Microencapsul. 2019, 36, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.A.; Wani, Z.A.; Shah, A.M.; Hassan, Q.P.; Mondhe, D.M.; Verma, M.K. Chemopreventive Effects of Prunus cerasus L. against Human Cancer Cells & Ascites Mice Models and Its Phytochemical Investigation by LC-Q-TOF-MS/MS. Phytomedicine Plus 2022, 2, 100336. [Google Scholar] [CrossRef]
- Saleh, F.A.; El-Darra, N.; Raafat, K. Hypoglycemic Effects of Prunus cerasus L. Pulp and Seed Extracts on Alloxan-Induced Diabetic Mice with Histopathological Evaluation. Biomed. Pharmacother. 2017, 88, 870–877. [Google Scholar] [CrossRef]
- Xiao, G.; Xiao, X. Antidiabetic Effect of Hydro-Methanol Extract of Prunus cerasus L. Fruits and Identification of Its Bioactive Compounds. Trop. J. Pharm. Res. 2019, 18, 597–602. [Google Scholar] [CrossRef]
- Ben Lagha, A.; LeBel, G.; Grenier, D. Tart Cherry (Prunus cerasus L.) Fractions Inhibit Biofilm Formation and Adherence Properties of Oral Pathogens and Enhance Oral Epithelial Barrier Function. Phytother. Res. 2020, 34, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Berroukche, A.; Benreguieg, M.; Terras, M.; Fares, S.; Dellaoui, H.; Lansari, W.; Zerarki, I.; Tahir, A.; Dehkal, B. Antibacterial Effects of Prunus cerasus and Chamaemelum Nobile against Drug Resistant Strains Induced Urinary Disorders. East Afr. Sch. J. Med. Sci. 2018, 1, 26–31. [Google Scholar]
- Krisch, J.; Galgoczy, L.; Papp, T.; Vágvölgyi, C.; Galgóczy, L. Antimicrobial and Antioxidant Potential of Waste Products Remaining after Juice Pressing. Ann. Fac. Eng. Hunedoara-J. Eng. 2009, 8, 131–134. [Google Scholar]
- Raafat, K.; El-Darra, N.; Saleh, F.A. Gastroprotective and Anti-Inflammatory Effects of Prunus cerasus Phytochemicals and Their Possible Mechanisms of Action. J. Tradit. Complement. Med. 2020, 10, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bak, I.; Czompa, A.; Csepanyi, E.; Juhasz, B.; Kalantari, H.; Najm, K.; Aghel, N.; Varga, B.; Haines, D.D.; Tosaki, A. Evaluation of Systemic and Dermal Toxicity and Dermal Photoprotection by Sour Cherry Kernels. Phytother. Res. 2011, 25, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Ersus Bilek, S.; Uygun, Ö.; Bircan, C. Sour Cherry By-Products: Compositions, Functional Properties and Recovery Potentials—A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3549–3563. [Google Scholar] [CrossRef] [PubMed]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Hodun, G.; Gołba, M. Chemical Composition of 21 Cultivars of Sour Cherry (Prunus cerasus) Fruit Cultivated in Poland. Molecules 2020, 25, 4587. [Google Scholar] [CrossRef]
- Stryjecka, M.; Michalak, M.; Cymerman, J.; Kiełtyka-Dadasiewicz, A. Comparative Assessment of Phytochemical Compounds and Antioxidant Properties of Kernel Oil from Eight Sour Cherry (Prunus cerasus L.) Cultivars. Molecules 2022, 27, 696. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Kotsou, K.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Sustainable Valorization of Sour Cherry (Prunus cerasus) By-Products: Extraction of Antioxidant Compounds. Sustainability 2024, 16, 32. [Google Scholar] [CrossRef]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic Extracts of Cherry (Prunus cerasus L.) and Blackcurrant (Ribes nigrum L.) Leaves as Natural Preservatives in Meat Products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K. Profiling of Polyphenols by LC-QTOF/ESI-MS, Characteristics of Nutritional Compounds and In Vitro Effect on Pancreatic Lipase, α-Glucosidase, α-Amylase, Cholinesterase and Cyclooxygenase Activities of Sweet (Prunus avium) and Sour (P. cerasus) Cherries Leaves and Fruits. Ind. Crops Prod. 2021, 174, 114214. [Google Scholar] [CrossRef]
- Chrzanowski, G.; Sempruch, C.; Sprawka, I. Investigation of Phenolic Acids in Leaves of Black Currant (Ribes nigrum L.) and Sour Cherry (Prunus cerasus L.) Molecular Diagnostics of Pathogens Transmitted by Ixodes Ricinus Ticks View Project Mealybugs-Orchid Interactions View Project. 2007. Available online: https://www.researchgate.net/publication/262696254 (accessed on 26 February 2024).
- Oszmiański, J.; Wojdyło, A. Influence of Cherry Leaf-Spot on Changes in the Content of Phenolic Compounds in Sour Cherry (Prunus cerasus L.) Leaves. Physiol. Mol. Plant Pathol. 2014, 86, 28–34. [Google Scholar] [CrossRef]
- Švarc-Gaji, J.; Cerdà, V.; Clavijo, S.; Suárez, R.; Maškovi, P.; Cvetanovi, A.; Delerue-Matos, C.; Carvalho, A.P.; Novakov, V. Bioactive Compounds of Sweet and Sour Cherry Stems Obtained by Subcritical Water Extraction. J. Chem. Technol. Biotechnol. 2017, 93, 1627–1635. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Futur. J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Maatallah, S.; Dabbou, S.; Castagna, A.; Guizani, M.; Hajlaoui, H.; Ranieri, A.M.; Flamini, G. Prunus Persica By-Products: A Source of Minerals, Phenols and Volatile Compounds. Sci. Hortic. 2020, 261, 109016. [Google Scholar] [CrossRef]
- Taati, S.; Pilehvar, B.; Mirazadi, Z. Essential Oil, Phenol and Flavonoid Contents in Leaves and Fruits of Prunus Scoparia (Spach) C.K. Schneid. Populations. J. Med. Plants By-Prod. 2022, 11, 201–209. [Google Scholar] [CrossRef]
- Levaj, B.; Dragović-Uzelac, V.; Delonga, K.; Kovačević Ganić, K.; Banović, M.; Bursać Kovačević, D. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams. Food Technol. Biotechnol. 2010, 48, 538–547. [Google Scholar]
- Brozdowski, J.; Waliszewska, B.; Gacnik, S.; Hudina, M.; Veberic, R.; Mikulic-Petkovsek, M. Phenolic Composition of Leaf and Flower Extracts of Black Cherry (Prunus serotina Ehrh.). Ann. Sci. 2021, 78, 66. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; et al. Anti-Hepatitis B Virus Activity of Chlorogenic Acid, Quinic Acid and Caffeic Acid In Vivo and In Vitro. Antivir. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef]
- Zeng, A.; Liang, X.; Zhu, S.; Liu, C.; Wang, S.; Zhang, Q.; Zhao, J.; Song, L. Chlorogenic Acid Induces Apoptosis, Inhibits Metastasis and Improves Antitumor Immunity in Breast Cancer via the NF-ΚB Signaling Pathway. Oncol. Rep. 2021, 45, 717–727. [Google Scholar] [CrossRef] [PubMed]
- David dos Santos, M.; Camila Almeida, M.; Peporine Lopes, N.; Emília Petto de Souza, G. Evaluation of the Anti-Inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biol. Pharm. Bull. 2006, 29, 2236–2240. [Google Scholar] [CrossRef] [PubMed]
- Bassoli, B.K.; Cassolla, P.; Borba-Murad, G.R.; Constantin, J.; Salgueiro-Pagadigorria, C.L.; Bazotte, R.B.; Da Silva, R.S.D.S.F.; De Souza, H.M. Chlorogenic Acid Reduces the Plasma Glucose Peak in the Oral Glucose Tolerance Test: Effects on Hepatic Glucose Release and Glycaemia. Cell Biochem. Funct. 2008, 26, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Karthikesan, K.; Pari, L.; Menon, V.P. Antihyperlipidemic Effect of Chlorogenic Acid and Tetrahydrocurcumin in Rats Subjected to Diabetogenic Agents. Chem. Biol. Interact. 2010, 188, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol. 2016, 15, 471–479. [Google Scholar] [CrossRef]
- Shi, H.; Shi, A.; Dong, L.; Lu, X.; Wang, Y.; Zhao, J.; Dai, F.; Guo, X. Chlorogenic Acid Protects against Liver Fibrosis In Vivo and in Vitro through Inhibition of Oxidative Stress. Clin. Nutr. 2016, 35, 1366–1373. [Google Scholar] [CrossRef]
- Domitrović, R.; Cvijanović, O.; Šušnić, V.; Katalinić, N. Renoprotective Mechanisms of Chlorogenic Acid in Cisplatin-Induced Kidney Injury. Toxicology 2014, 324, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, N.S.; Brown, L.; Panchal, S.K. Chlorogenic Acid Attenuates High-Carbohydrate, High-Fat Diet–Induced Cardiovascular, Liver, and Metabolic Changes in Rats. Nutr. Res. 2019, 62, 78–88. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Jesus, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Exploring the Phenolic Profile, Antioxidant, Antidiabetic and Anti-Hemolytic Potential of Prunus avium Vegetal Parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef]
- Lenchyk, L. Determination of Phenolic Compounds in Prunus Domestica Leaves Extract. Scr. Sci. Pharm. 2015, 2, 31–35. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic Composition and Antioxidant Activity of Malus Domestica Leaves. Sci. World J. 2014, 2014, 306217. [Google Scholar] [CrossRef]
- Gervasi, T.; Calderaro, A.; Barreca, D.; Tellone, E.; Trombetta, D.; Ficarra, S.; Smeriglio, A.; Mandalari, G.; Gattuso, G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int. J. Mol. Sci. 2022, 23, 1710. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, Q.; Lin, J.; Li, X.; Sun, C.; Chen, K. Physicochemical Characterisation of Four Cherry Species (Prunus spp.) Grown in China. Food Chem. 2015, 173, 855–863. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Chang, Q.; Zhou, Z.; Han, R.; Liang, Z. Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum Dibotrys. Molecules 2021, 26, 2417. [Google Scholar] [CrossRef]
- Bladé, C.; Arola, L.; Salvadó, M.J. Hypolipidemic Effects of Proanthocyanidins and Their Underlying Biochemical and Molecular Mechanisms. Mol. Nutr. Food Res. 2010, 54, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.A.; Pimentel, F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Cardioprotective Properties of Grape Seed Proanthocyanidins: An Update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Zheng, Y.; Zhao, J.; Yu, H.; Zhu, J. Relationship between Neuroprotective Effects and Structure of Procyanidins. Molecules 2022, 27, 2308. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Matkowski, A.; Kubasiewicz-Ross, P.; Hadzik, J. Proanthocyanidins and Flavan-3-Ols in the Prevention and Treatment of Periodontitis—Immunomodulatory Effects, Animal and Clinical Studies. Nutrients 2021, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic Effect of Dietary Polyphenols: A Systematic Review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2023, 39, 4581–4609. [Google Scholar] [CrossRef]
- Khanam, S.; Mishra, D.A.; Shahid, A.; Pujari, N.M. Therapeutic Indication of Phloridzin: A New Gleam for Metabolic Disorders. Phytomed. Plus 2022, 2, 100200. [Google Scholar] [CrossRef]
- Khalid, S.; Bader, H.; Ain, U. A Review on the Pharmacological Importance of Phloridzin and Its Conjugated Analogues. Pharmacologyonline 2018, 3, 324–336. [Google Scholar]
- Guyot, S.; Serrand, S.; Le Quéré, J.M.; Sanoner, P.; Renard, C.M.G.C. Enzymatic Synthesis and Physicochemical Characterisation of Phloridzin Oxidation Products (POP), a New Water-Soluble Yellow Dye Deriving from Apple. Innov. Food Sci. Emerg. Technol. 2007, 8, 443–450. [Google Scholar] [CrossRef]
- Anunciato Casarini, T.P.; Frank, L.A.; Pohlmann, A.R.; Guterres, S.S. Dermatological Applications of the Flavonoid Phloretin. Eur. J. Pharmacol. 2020, 889, 173593. [Google Scholar] [CrossRef]
- Liebelt, D.J.; Jordan, J.T.; Doherty, C.J. Only a Matter of Time: The Impact of Daily and Seasonal Rhythms on Phytochemicals. Phytochem. Rev. 2019, 18, 1409–1433. [Google Scholar] [CrossRef]
- Mohammadi Bazargani, M.; Falahati-Anbaran, M.; Rohloff, J. Comparative Analyses of Phytochemical Variation within and between Congeneric Species of Willow Herb, Epilobium hirsutum and E. parviflorum: Contribution of Environmental Factors. Front. Plant Sci. 2021, 11, 595190. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Törrönen, A.R. Content of Flavonols and Selected Phenolic Acids in Strawberries and Vaccinium Species: Influence of Cultivar, Cultivation Site and Technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Šimat, V.; Ljubenkov, I.; Burčul, F.; Grga, M.; Mihajlovski, M.; Lončar, R.; Katalinić, V.; Skroza, D. Influence of the Vegetation Period on Sea Fennel, Crithmum maritimum L. (Apiaceae), Phenolic Composition, Antioxidant and Anticholinesterase Activities. Ind. Crops Prod. 2018, 124, 947–953. [Google Scholar] [CrossRef]
- Deng, L.Z.; Xiong, C.H.; Pei, Y.P.; Zhu, Z.Q.; Zheng, X.; Zhang, Y.; Yang, X.H.; Liu, Z.L.; Xiao, H.W. Effects of Various Storage Conditions on Total Phenolic, Carotenoids, Antioxidant Capacity, and Color of Dried Apricots. Food Control 2022, 136, 108846. [Google Scholar] [CrossRef]
- Scibisz, I.; Mitek, M. Effect of processing and storage conditions on phenolic compounds and antioxidant capacity of highbush blueberry jams. Pol. J. Food Nutr Sci. 2009, 59, 45–52. [Google Scholar]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hydamaka, A.W.; Lowry, L.; Beta, T. Comparison of Antioxidant Capacity and Phenolic Compounds of Berries, Chokecherry and Seabuckthorn. Cent. Eur. J. Biol. 2009, 4, 499–506. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of Antioxidant Activity by Using Different in Vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Michel, P. Antioxidant Activity of Inflorescences, Leaves and Fruits of Three Sorbus Species in Relation to Their Polyphenolic Composition. Nat. Prod. Res. 2009, 23, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Dziadek, K.; Kopeć, A.; Tabaszewska, M. Potential of Sweet Cherry (Prunus avium L.) by-Products: Bioactive Compounds and Antioxidant Activity of Leaves and Petioles. Eur. Food Res. Technol. 2019, 245, 763–772. [Google Scholar] [CrossRef]
Cultivar | Compound | ||||
---|---|---|---|---|---|
Chlorogenic Acid | Phloridzin | Procyanidin B2 | Procyanidin C1 | Procyanidin B1 | |
‘Kelleris’ | 5809.6 ± 167.7c 1 | 13.4 ± 0.4de | 105.4 ± 3.0c | 209.0 ± 6.0a | 370.4 ± 10.7a |
‘Lucyna’ | 4427.8 ± 51.1d | 12.8 ± 0.1e | 50.2 ± 0.6d | 47.7 ± 0.6e | 333.2 ± 3.8b |
‘Molodezhnaya’ | 6751.4 ± 155.9b | 38.1 ± 0.9a | 38.4 ± 0.9e | 179.0 ± 4.1b | 19.1 ± 0.4e |
‘North Star’ | 1413.3 ± 24.5g | 15.5 ± 0.3c | 2.6 ± 0.0g | 102.2 ± 1.8c | 27.0 ± 0.5e |
‘Note’ | 8028.0 ± 92.7a | 20.6 ± 0.2b | 12.9 ± 0.1f | 99.9 ± 1.2c | 9.5 ± 0.1e |
‘Pandy’ | 6130.7 ± 35.4c | 20.1 ± 0.1b | 123.4 ± 0.7b | 54.2 ± 0.3e | 11.4 ± 0.1e |
‘Tikhonovskaya’ | 2702.3 ± 46.8f | 15.1 ± 0.3cd | 47.1 ± 0.8de | 93.2 ± 1.6c | 21.9 ± 0.4e |
‘Turgenevka’ | 2825.1 ± 65.2f | 6.7 ± 0.2g | 50.9 ± 1.2d | 99.3 ± 2.3c | 282.6 ± 6.5c |
‘Vytenu zvaigzde’ | 3763.1 ± 108.6e | 8.6 ± 0.2f | 138.4 ± 4.0a | 77.1 ± 2.2d | 94.4 ± 2.7d |
Cultivar | Compound | |||||
---|---|---|---|---|---|---|
Rutin | Reynoutrin | Quercitrin | Isoquercitrin | Avicularin | Hyperoside | |
‘Kelleris’ | 52.8 ± 1.5cd 1 | 51.3 ± 1.5d | 1933.9 ± 55.8e | 2635.4 ± 76.1a | 829.0 ± 23.9f | 1815.5 ± 52.4a |
‘Lucyna’ | 36.8 ± 0.4e | 33.1 ± 0.4ef | 3135.2 ± 36.2c | 567.3 ± 6.6c | 1268.0 ± 14.6e | 945.8 ± 10.9b |
‘Molodezhnaya’ | 51.4 ± 1.2d | 117.1 ± 2.7a | 2084.1 ± 48.1e | 341.7 ± 7.9ef | 2194.0 ± 50.7a | 438.5 ± 10.1ef |
‘North Star’ | 21.6 ± 0.4f | 26.5 ± 0.5f | 5610.0 ± 97.2a | 306.8 ± 5.3ef | 1396.6 ± 24.2de | 502.8 ± 8.7e |
‘Note’ | 77.4 ± 0.9b | 89.2 ± 1.0b | 5048.3 ± 58.3b | 477.2 ± 5.5cd | 1611.5 ± 18.6c | 724.2 ± 8.4c |
‘Pandy’ | 35.6 ± 0.2e | 40.1 ± 0.2e | 3319.1 ± 19.2c | 243.1 ± 1.4f | 1312.1 ± 7.6e | 402.7 ± 2.3f |
‘Tikhonovskaya’ | 89.2 ± 1.5a | 78.4 ± 1.4c | 5501.3 ± 95.3a | 701.0 ± 12.1b | 1965.2 ± 34.0b | 695.6 ± 12.0cd |
‘Turgenevka’ | 57.6 ± 1.3c | 41.0 ± 0.9e | 3466.7 ± 80.1c | 388.9 ± 9.0de | 1473.5 ± 34.0cd | 605.4 ± 14.0d |
‘Vytenu zvaigzde’ | 40.3 ± 1.2e | 123.8 ± 3.6a | 2416.3 ± 69.8d | 347.4 ± 10.0def | 944.8 ± 27.3f | 299.8 ± 8.7g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zymonė, K.; Liaudanskas, M.; Lanauskas, J.; Nagelytė, M.; Janulis, V. Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves. Antioxidants 2024, 13, 553. https://doi.org/10.3390/antiox13050553
Zymonė K, Liaudanskas M, Lanauskas J, Nagelytė M, Janulis V. Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves. Antioxidants. 2024; 13(5):553. https://doi.org/10.3390/antiox13050553
Chicago/Turabian StyleZymonė, Kristina, Mindaugas Liaudanskas, Juozas Lanauskas, Miglė Nagelytė, and Valdimaras Janulis. 2024. "Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves" Antioxidants 13, no. 5: 553. https://doi.org/10.3390/antiox13050553
APA StyleZymonė, K., Liaudanskas, M., Lanauskas, J., Nagelytė, M., & Janulis, V. (2024). Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves. Antioxidants, 13(5), 553. https://doi.org/10.3390/antiox13050553