Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material
2.3. Extraction Protocol
2.3.1. Experimental Design
2.3.2. Procyanidins Extraction
2.4. Qualitative and Quantitative Analyses
2.4.1. Procyanidins Qualitative Characterization
2.4.2. Procyanidins Quantitative Characterization
2.5. Validation of the Extraction Protocol
2.6. Validation of the HPLC-FLD Analysis
2.7. Total Polyphenol Content
2.8. Total Flavonoid Content
2.9. Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization
3.1.1. Evaluation of the Solvent Effects for Procyanidins Extraction
3.1.2. Evaluation of the Solid-to-Solvent Ratio Effects for Procyanidins Extraction
3.1.3. Evaluation of the Acid Content Effects for Procyanidins Extraction
3.1.4. Evaluation of the Ultrasound Effects for Procyanidins Extraction
3.1.5. Evaluation of the Shaking Time Effects for Procyanidins Extraction
3.2. Procyanidin Extraction from Medicinal Herbal Plant Matrices
3.2.1. Procyanidin Qualitative Analysis
3.2.2. Procyanidin Quantitative Analysis
3.3. HPLC-FLD Method Validation
3.4. Extraction Method Validation
3.5. Total Polyphenol and Total Flavonoid Contents
3.6. Antioxidant Activity
3.7. Pearson Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Lorenzo, R.; Grumetto, L.; Sacchi, A.; Laneri, S.; Dini, I. Dermocosmetic Evaluation of a Nutricosmetic Formulation Based on Curcuma. Phytother. Res. 2023, 37, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, M.; D’Amico, F.; Barone, M.; Conti, G.; Mengoli, M.; Brigidi, P.; Turroni, S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022, 12, 875. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzo, F.; Piccolo, V.; Novellino, E.; Schiano, E.; Salviati, E.; Summa, V.; Campiglia, P.; Tenore, G.C.; Maisto, M. A Food-Grade Method for Enhancing the Levels of Low Molecular Weight Proanthocyanidins with Potentially High Intestinal Bioavailability. Int. J. Mol. Sci. 2022, 23, 13557. [Google Scholar] [CrossRef] [PubMed]
- Schiano, E.; Piccolo, V.; Novellino, E.; Maisto, M.; Iannuzzo, F.; Summa, V.; Tenore, G.C. Thinned Nectarines, an Agro-Food Waste with Antidiabetic Potential: HPLC-HESI-MS/MS Phenolic Characterization and In Vitro Evaluation of Their Beneficial Activities. Foods 2022, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, Y.; Ham, H.; Jeong, H.-S.; Lee, J. Protective Effects of Oligomeric and Polymeric Procyanidin Fractions from Defatted Grape Seeds on Tert-Butyl Hydroperoxide-Induced Oxidative Damage in HepG2 Cells. Food Chem. 2013, 137, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Castro, M.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Rivas-Arreola, M.J.; Karchesy, J.J. Antioxidant Activity of Fractions from Quercus sideroxyla Bark and Identification of Proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 2012, 66, 577–584. [Google Scholar] [CrossRef]
- Piccolo, M.; Ferraro, M.G.; Maione, F.; Maisto, M.; Stornaiuolo, M.; Tenore, G.C.; Santamaria, R.; Irace, C.; Novellino, E. Induction of Hair Keratins Expression by An Annurca Apple-Based Nutraceutical Formulation in Human Follicular Cells. Nutrients 2019, 11, 3041. [Google Scholar] [CrossRef] [PubMed]
- Aceto, G.; Di Muzio, L.; Di Lorenzo, R.; Laneri, S.; Cairone, F.; Cesa, S.; Petralito, S.; Paolicelli, P.; Casadei, M.A. Dual Delivery of Ginger Oil and Hexylresorcinol with Lipid Nanoparticles for the Effective Treatment of Cutaneous Hyperpigmentation. J. Drug Deliv. Sci. Technol. 2023, 87, 104790. [Google Scholar] [CrossRef]
- Keivani, N.; Hosseini, S.F. Omega-3 Polyunsaturated Fatty Acids. In Handbook of Food Bioactive Ingredients; Jafari, S.M., Rashidinejad, A., Simal-Gandara, J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 967–995. [Google Scholar] [CrossRef]
- Wang, T.K.; Xu, S.; Li, S.; Zhang, Y. Proanthocyanidins Should Be a Candidate in the Treatment of Cancer, Cardiovascular Diseases and Lipid Metabolic Disorder. Molecules 2020, 25, 5971. [Google Scholar] [CrossRef] [PubMed]
- Zineb, O.Y.; Rashwan, A.K.; Karim, N.; Lu, Y.; Tangpong, J.; Chen, W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. Food Rev. Int. 2023, 39, 5255–5278. [Google Scholar] [CrossRef]
- Lobo, A.; Liu, Y.; Song, Y.; Liu, S.; Zhang, R.; Liang, H.; Xin, H. Effect of Procyanidins on Lipid Metabolism and Inflammation in Rats Exposed to Alcohol and Iron. Heliyon 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Masumoto, S.; Moriichi, N.; Ohtake, Y.; Kanda, T. Administration of Apple Polyphenol Supplements for Skin Conditions in Healthy Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2020, 12, 1071. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Badolati, N.; Riccio, G.; Salviati, E.; Bottone, S.; Dentice, M.; Campiglia, P.; Tenore, G.; Stornaiuolo, M.; Novellino, E. A Boost in Mitochondrial Activity Underpins the Cholesterol-Lowering Effect of Annurca Apple Polyphenols on Hepatic Cells. Nutrients 2019, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Vugic, L.; Colson, N.; Nikbakht, E.; Gaiz, A.; Holland, O.J.; Kundur, A.R.; Singh, I. Anthocyanin Supplementation Inhibits Secretion of Pro-Inflammatory Cytokines in Overweight and Obese Individuals. J. Funct. Foods 2020, 64, 103596. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. The Hypoglycemic Potential of Phenolics from Functional Foods and Their Mechanisms. Food Sci. Hum. Wellness 2023, 12, 986–1007. [Google Scholar] [CrossRef]
- Tenore, G.C.; Carotenuto, A.; Caruso, D.; Buonomo, G.; D’Avino, M.; Brancaccio, D.; Ciampaglia, R.; Maisto, M.; Schisano, C.; Novellino, E. A Nutraceutical Formulation Based on Annurca Apple Polyphenolic Extract Is Effective on Intestinal Cholesterol Absorption: A Randomised, Placebo-Controlled, Crossover Study. PharmaNutrition 2018, 6, 85–94. [Google Scholar] [CrossRef]
- Tenore, G.C.; Campiglia, P.; Stiuso, P.; Ritieni, A.; Novellino, E. Nutraceutical Potential of Polyphenolic Fractions from Annurca Apple (M. pumila Miller cv Annurca). Food Chem. 2013, 140, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; Chen, H.; Luo, Y.; Zheng, P.; Yu, J.; He, J. Grape Seed Proanthocyanidin Extract Promotes Skeletal Muscle Fiber Type Transformation via AMPK Signaling Pathway. J. Nutr. Biochem. 2020, 84, 108462. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef]
- Martinez-Micaelo, N.; González-Abuín, N.; Pinent, M.; Ardévol, A.; Blay, M. Procyanidin B2 Inhibits Inflammasome-mediated IL-1β Production in Lipopolysaccharide-stimulated Macrophages. Mol. Nutr. Food Res. 2015, 59, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Gao, H.; Chen, S.; Wang, Q.; Li, X.; Du, L.-J.; Li, J.; Luo, Y.-Y.; Li, J.-X.; Zhao, L.-C.; et al. Procyanidin A1 Alleviates Inflammatory Response Induced by LPS through NF-ΚB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 Cells. Sci. Rep. 2019, 9, 15087. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, Y.; Jin, W.; Wei, S.; Chen, J.; Zhong, C.; Zhong, Y.; Tu, C.; Peng, H. Procyanidin B2 Ameliorates the Progression of Osteoarthritis: An In Vitro and In Vivo Study. Int. Immunopharmacol. 2022, 113, 109336. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.-Y.; Li, Y.; Shang, Y.; Jiang, M.; Liu, J.; Zhan, Z.-Y.; Ye, H.; Lin, Y.-C.; Jiao, J.-Y.; Sun, R.-H.; et al. Management of Gout-Associated MSU Crystals-Induced NLRP3 Inflammasome Activation by Procyanidin B2: Targeting IL-1β and Cathepsin B in Macrophages. Inflammopharmacology 2020, 28, 1481–1493. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Forgione, F.; Bernardi, A.; Sacchi, A.; Laneri, S.; Greco, G. Clinical Studies on Topical Curcumin. Skin. Pharmacol. Physiol. 2024, 36, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Saviano, A.; Raucci, F.; Casillo, G.M.; Indolfi, C.; Pernice, A.; Foreste, C.; Iqbal, A.J.; Mascolo, N.; Maione, F. Present Status and Future Trends of Natural-Derived Compounds Targeting T Helper (Th) 17 and Microsomal Prostaglandin e Synthase-1 (MPGES-1) as Alternative Therapies for Autoimmune and Inflammatory-Based Diseases. Molecules 2020, 25, 6016. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.L.M.; Panizzon, G.P.; Aguiar, B.A.A.; Simionato, A.S.; Cardozo-Filho, L.; Andrade, G.; de Oliveira, A.G.; Guedes, T.A.; de Mello, J.C.P. Guaraná (Paullinia cupana) Seeds: Selective Supercritical Extraction of Phenolic Compounds. Food Chem. 2016, 212, 703–711. [Google Scholar] [CrossRef]
- Soto, C.; Caballero, E.; Pérez, E.; Zúñiga, M.E. Effect of Extraction Conditions on Total Phenolic Content and Antioxidant Capacity of Pretreated Wild Peumus boldus Leaves from Chile. Food Bioprod. Process. 2014, 92, 328–333. [Google Scholar] [CrossRef]
- Seğmenoğlu, M.S.; Çenet, M. Biochemical Properties of Crataegus monogyna Jacq. Fruit Extract and Effect on the A549 Lung Cancer Cell Line. Kuwait J. Sci. 2024, 51, 100146. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Magnavacca, A.; Fumagalli, M.; Pozzoli, C.; Terno, M.; Canilli, L.; Angarano, M.; Maranta, N.; Dell’Agli, M.; et al. Unveiling the Ability of Witch Hazel (Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int. J. Mol. Sci. 2022, 23, 9279. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, F.; Gębalski, J.; Makuch-Kocka, A.; Gawenda-Kempczyńska, D.; Ptaszyńska, A.A.; Grzyb, S.; Bogucka-Kocka, A.; Załuski, D. Phenolic Profile, Antioxidant, Anti-Enzymatic and Cytotoxic Activity of the Fruits and Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Molecules 2022, 27, 5579. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-Products a Source of Anthocyanins and Antioxidant Polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Xiaokang, W.; Lyng, J.G.; Brunton, N.P.; Cody, L.; Jacquier, J.-C.; Harrison, S.M.; Papoutsis, K. Monitoring the Effect of Different Microwave Extraction Parameters on the Recovery of Polyphenols from Shiitake Mushrooms: Comparison with Hot-Water and Organic-Solvent Extractions. Biotechnol. Rep. 2020, 27, e00504. [Google Scholar] [CrossRef] [PubMed]
- Frey, D.D.; Engelhardt, F.; Greitzer, E.M. A Role for “One-Factor-at-a-Time” Experimentation in Parameter Design. Res. Eng. Des. 2003, 14, 65–74. [Google Scholar] [CrossRef]
- Maisto, M.; Schiano, E.; Novellino, E.; Piccolo, V.; Iannuzzo, F.; Salviati, E.; Summa, V.; Annunziata, G.; Tenore, G.C. Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods 2022, 11, 1453. [Google Scholar] [CrossRef] [PubMed]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Ursolic Acid Extraction in Oil from Annurca Apple to Obtain Oleolytes with Potential Cosmeceutical Application. Antioxidants 2023, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, V.; Maisto, M.; Schiano, E.; Iannuzzo, F.; Keivani, N.; Manuela Rigano, M.; Santini, A.; Novellino, E.; Carlo Tenore, G.; Summa, V. Phytochemical Investigation and Antioxidant Properties of Unripe Tomato Cultivars (Solanum lycopersicum L.). Food Chem. 2024, 438, 137863. [Google Scholar] [CrossRef]
- Wu, W.; Li, K.; Zhao, C.; Ran, X.; Zhang, Y.; Zhang, T. A Rapid HPLC–MS/MS Method for the Simultaneous Determination of Luteolin, Resveratrol and Their Metabolites in Rat Plasma and Its Application to Pharmacokinetic Interaction Studies. J. Chromatogr. B 2022, 1191, 123118. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, S.; Navarini, L.; Khamitova, G.; Maggi, F.; Sagratini, G.; Vittori, S.; Caprioli, G. A New Analytical Method for the Simultaneous Quantification of Isoflavones and Lignans in 25 Green Coffee Samples by HPLC-MS/MS. Food Chem. 2020, 325, 126924. [Google Scholar] [CrossRef] [PubMed]
- Caban, M.; Migowska, N.; Stepnowski, P.; Kwiatkowski, M.; Kumirska, J. Matrix Effects and Recovery Calculations in Analyses of Pharmaceuticals Based on the Determination of β-Blockers and β-Agonists in Environmental Samples. J. Chromatogr. A 2012, 1258, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Masson, P. Quality Control Techniques for Routine Analysis with Liquid Chromatography in Laboratories. J. Chromatogr. A 2007, 1158, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Kido, S.; Chosa, E.; Tanaka, R. The Effect of Six Dried and UV-C-Irradiated Mushrooms Powder on Lipid Oxidation and Vitamin D Contents of Fish Meat. Food Chem. 2023, 398, 133917. [Google Scholar] [CrossRef] [PubMed]
- Ostertag, F.; Schmidt, C.M.; Berensmeier, S.; Hinrichs, J. Development and Validation of an RP-HPLC DAD Method for the Simultaneous Quantification of Minor and Major Whey Proteins. Food Chem. 2021, 342, 128176. [Google Scholar] [CrossRef] [PubMed]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. J. Chromatogr. B 2009, 877, 4115–4124. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.-J.; Li, Y.; Zhao, S.-Q.; Yue, F.-H.; Cai, D.-J.; Wu, J.-T.; Zeng, X.-A.; Li, J.; Han, Z. Synergistic Ultrasound Pulsed Electric Field Extraction of Litchi Peel Polyphenols and Determination of Their Properties. Int. J. Biol. Macromol. 2024, 260, 129613. [Google Scholar] [CrossRef] [PubMed]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total Phenolic and Total Flavonoid Content, Antioxidant Activity and Sensory Evaluation of Pseudocereal Breads. LWT Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Xiao, Z.; Sun, A.; Zhao, M.; Wang, Y.; Huang, D.; Sui, X.; Huo, J.; Zhang, Y. Polyphenols in Twenty Cultivars of Blue Honeysuckle (Lonicera caerulea L.): Profiling, Antioxidant Capacity, and α-Amylase Inhibitory Activity. Food Chem. 2023, 421, 136148. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Motta, S.; Messina, S.; Casini, F.; Bosso, A. Polyphenolic Profile and Antioxidant Activity of Green Extracts from Grape Pomace Skins and Seeds of Italian Cultivars. Foods 2023, 12, 3880. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D.; Mustapha, A.; Kuehnel, L.; Daubert, C.R.; Kumar, R.; Agliata, J.; Flint-Garcia, S.; Wan, C.; Somavat, P. From Purple Corn Waste (Pericarp) to Polyphenol-Rich Extract with Higher Bioactive Contents and Superior Product Qualities Using Two-Step Optimization Techniques. Ind. Crops Prod. 2023, 200, 116871. [Google Scholar] [CrossRef]
- Sabaragamuwa, R.; Perera, C.O. Total Triterpenes, Polyphenols, Flavonoids, and Antioxidant Activity of Bioactive Phytochemicals of Centella asiatica by Different Extraction Techniques. Foods 2023, 12, 3972. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Serio, G.; Gaglio, R.; Maffei, M.E.; Settanni, L.; Di Stefano, V.; Gentile, C. Biological Activity and Metabolomics of Griffonia simplicifolia Seeds Extracted with Different Methodologies. Antioxidants 2023, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Denaro, M.; Trombetta, D.; Ragusa, S.; Circosta, C. New Insights on Euphorbia dendroides L. (Euphorbiaceae): Polyphenol Profile and Biological Properties of Hydroalcoholic Extracts from Aerial Parts. Plants 2021, 10, 1621. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on Infrared-Assisted Extraction Coupled with High Performance Liquid Chromatography (HPLC) for Determination of Catechin, Epicatechin, and Procyanidin B2 in Grape Seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Carrera, C.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Flavonol Composition and Antioxidant Activity of Onions (Allium cepa L.) Based on the Development of New Analytical Ultrasound-Assisted Extraction Methods. Antioxidants 2021, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Lima, Á.S.; de Oliveira, B.S.; Shabudin, S.V.; Almeida, M.; Freire, M.G.; Bica, K. Purification of Anthocyanins from Grape Pomace by Centrifugal Partition Chromatography. J. Mol. Liq. 2021, 326, 115324. [Google Scholar] [CrossRef]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Extracts from Strawberry By-Products Rich in Phenolic Compounds Reduce the Activity of Apple Polyphenol Oxidase. LWT 2020, 133, 110097. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the Polyphenol Extraction from Avocado Peel by Assisted Ultrasound and Microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Qin, L.; Yu, J.; Zhu, J.; Kong, B.; Chen, Q. Ultrasonic-Assisted Extraction of Polyphenol from the Seeds of Allium senescens L. and Its Antioxidative Role in Harbin Dry Sausage. Meat Sci. 2021, 172, 108351. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Zhang, J.; Wang, M. Extraction and Electrochemical Fingerprinting of Total Flavonoids from Hovenia spp. Int. J. Electrochem. Sci. 2021, 16, 211236. [Google Scholar] [CrossRef]
- Meziant, L.; Boutiche, M.; Bachir Bey, M.; Saci, F.; Louaileche, H. Standardization of Monomeric Anthocyanins Extraction from Fig Fruit Peels (Ficus carica L.) Using Single Factor Methodology. J. Food Meas. Charact. 2018, 12, 2865–2873. [Google Scholar] [CrossRef]
- Liu, P.; Yang, B.; Kallio, H. Characterization of Phenolic Compounds in Chinese Hawthorn (Crataegus pinnatifida Bge. Var. Major) Fruit by High Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Food Chem. 2010, 121, 1188–1197. [Google Scholar] [CrossRef]
- Mari, A.; Eletto, D.; Pizza, C.; Montoro, P.; Piacente, S. Integrated Mass Spectrometry Approach to Profile Proanthocyanidins Occurring in Food Supplements: Analysis of Potentilla erecta L. Rhizomes. Food Chem. 2013, 141, 4171–4178. [Google Scholar] [CrossRef] [PubMed]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Lamuela-Raventós, R.M. Phenolic Profiling of the Skin, Pulp and Seeds of Albariño Grapes Using Hybrid Quadrupole Time-of-Flight and Triple-Quadrupole Mass Spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Zhu, B.-R.; Jia, Q.; Li, Y.-M.; Wang, T.; Wang, H.-Y. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J. Agric. Food Chem. 2020, 68, 12617–12630. [Google Scholar] [CrossRef]
- da Silva, V.C.; Napolitano, A.; Eletto, D.; Rodrigues, C.M.; Pizza, C.; Vilegas, W. Characterization of Gallotannins from Astronium Species by Flow Injection Analysis-Electrospray Ionization-Ion Traptandem Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Eur. J. Mass. Spectrom. 2011, 17, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Ziani, B.E.C.; Barros, L.; Boumehira, A.Z.; Bachari, K.; Heleno, S.A.; Alves, M.J.; Ferreira, I.C.F.R. Profiling Polyphenol Composition by HPLC-DAD-ESI/MSn and the Antibacterial Activity of Infusion Preparations Obtained from Four Medicinal Plants. Food Funct. 2018, 9, 149–159. [Google Scholar] [CrossRef]
- Tian, Q.; Konczak, I.; Schwartz, S.J. Probing Anthocyanin Profiles in Purple Sweet Potato Cell Line (Ipomoea Batatas L. Cv. Ayamurasaki) by High-Performance Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 6503–6509. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhao, X.; Liu, C.; Dong, Q.; Mei, L.; Chen, C.; Shao, Y.; Tao, Y.; Yue, H. Identification of Phenolic Compounds in Fruits of Ribes Stenocarpum Maxim. By UHPLC-QTOF/MS and Their Hypoglycemic Effects in vitro and in vivo. Food Chem. 2021, 344, 128568. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E. Determination of Phenolic Compounds in Rose Hip (Rosa canina) Using Liquid Chromatography Coupled to Electrospray Ionisation Tandem Mass Spectrometry and Diode-array Detection. Rapid Commun. Mass. Spectrom. 2002, 16, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Gao, S.; Hu, M. A Validated Liquid Chromatography–Tandem Mass Spectrometry Method for the Determination of Methyl Gallate and Pentagalloyl Glucopyranose: Application to Pharmacokinetic Studies. J. Chromatogr. B 2015, 986–987, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Cristina e Santos, P.; Granero, F.O.; Junior, J.L.B.; Pavarini, R.; Pavarini, G.M.P.; Chorilli, M.; Zambom, C.R.; Silva, L.P.; da Silva, R.M.G. Insecticidal Activity of Tagetes Erecta and Tagetes Patula Extracts and Fractions Free and Microencapsulated. Biocatal. Agric. Biotechnol. 2022, 45, 102511. [Google Scholar] [CrossRef]
- Chu, C.; Li, J.; Yang, F.; Yang, K.; Liu, B.; Tong, S.; Yan, J.; Chen, S. A Novel High-Resolution Monophenolase/Diphenolase/Radical Scavenging Profiling for the Rapid Screening of Natural Whitening Candidates from Peaonia lactiflora Root and Their Mechanism Study with Molecular Docking. J. Ethnopharmacol. 2022, 282, 114607. [Google Scholar] [CrossRef] [PubMed]
- Mullen, W.; Lean, M.E.J.; Crozier, A. Rapid Characterization of Anthocyanins in Red Raspberry Fruit by High-Performance Liquid Chromatography Coupled to Single Quadrupole Mass Spectrometry. J. Chromatogr. A 2002, 966, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.; De Pascale, S.; Aponte, M.; Scaloni, A.; Addeo, F.; Caira, S. Polyphenol Profiling of Chestnut Pericarp, Integument and Curing Water Extracts to Qualify These Food By-Products as a Source of Antioxidants. Molecules 2021, 26, 2335. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Direct Identification of Phenolic Constituents in Boldo Folium (Peumus boldus Mol.) Infusions by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 443–449. [Google Scholar] [CrossRef]
- Song, J.; Fang, G.; Zhang, Y.; Deng, Q.; Wang, S. Fingerprint Analysis of Ginkgo Biloba Leaves and Related Health Foods by High-Performance Liquid Chromatography/Electrospray Ionization-Mass Spectrometry. J. AOAC Int. 2010, 93, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Peres, A.M.; Silva, A.M.S.; Domingues, M.R.M.; Cardoso, S.M. Simultaneous Characterization and Quantification of Phenolic Compounds in Thymus x citriodorus Using a Validated HPLC–UV and ESI–MS Combined Method. Food Res. Int. 2013, 54, 1773–1780. [Google Scholar] [CrossRef]
- Rush, M.D.; Rue, E.A.; Wong, A.; Kowalski, P.; Glinski, J.A.; van Breemen, R.B. Rapid Determination of Procyanidins Using MALDI-ToF/ToF Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11355–11361. [Google Scholar] [CrossRef]
- Li, H.-J.; Deinzer, M.L. Tandem Mass Spectrometry for Sequencing Proanthocyanidins. Anal. Chem. 2007, 79, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, D.I.; Salah, S.; Hassan, W.H.B.; Morsi, M.; Khalil, H.M.A.; Ahmed-Farid, O.A.; El-Shiekh, R.A.; Nael, M.A.; Elissawy, A.M. Anticancer and Neuroprotective Activities of Ethyl Acetate Fractions from Morus macroura Miq. Plant Organs with Ultraperformance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Profiling. ACS Omega 2022, 7, 16013–16027. [Google Scholar] [CrossRef] [PubMed]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon Citratus Leaves: Characterization of Flavonoids by HPLC–PDA–ESI/MS/MS and an Approach to Their Potential as a Source of Bioactive Polyphenols. Food Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, H.; Xu, X.; Xue, X.; Liu, M.; Xu, S.; Liu, H.; Gao, Y.; Zhang, H.; Li, X. Compounds Identification in Semen Cuscutae by Ultra-High-Performance Liquid Chromatography (UPLCs) Coupled to Electrospray Ionization Mass Spectrometry. Molecules 2018, 23, 1199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, R.; Lu, Q. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules 2020, 25, 1264. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yang, J.; Ma, L.; Wen, D.; Chen, F.; Li, J. Identification of Polyphenols in Mulberry (Genus morus) Cultivars by Liquid Chromatography with Time-of-Flight Mass Spectrometer. J. Food Compos. Anal. 2017, 63, 55–64. [Google Scholar] [CrossRef]
- Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of Oxygenation on Polyphenol Changes Occurring in the Course of Wine-Making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- Ling, Y.; Wu, B.; Wang, K.; Liu, H.; Chen, L.; Fan, M.; Sun, Z.; Huang, C. In Vivo Metabolism Study of Polygalic Acid in Rat Using HPLC-ESI-MSn. Biomed. Chromatogr. 2012, 26, 220–224. [Google Scholar] [CrossRef]
- Remy-Tanneau, S.; Le Guernevé, C.; Meudec, E.; Cheynier, V. Characterization of a Colorless Anthocyanin–Flavan-3-Ol Dimer Containing Both Carbon–Carbon and Ether Interflavanoid Linkages by NMR and Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 3592–3597. [Google Scholar] [CrossRef] [PubMed]
- Aksay, O.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS-Based Assessment of the Bioactive Compounds in Fresh and Fermented Caper (Capparis spinosa) Buds and Berries. Food Chem. 2021, 337, 127959. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Cardoso, S.M.; Domingues, M.R.M.; Domingues, P.; Silva, C.M.; Coimbra, M.A. Evidence for Galloylated Type-A Procyanidins in Grape Seeds. Food Chem. 2007, 105, 1457–1467. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Guyot, S.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Contreras-Esquivel, J.C.; Aguilar, C.N. Structural Characterization of Native and Oxidized Procyanidins (Condensed tannins) from Coffee Pulp (Coffea arabica) Using Phloroglucinolysis and Thioglycolysis-HPLC-ESI-MS. Food Chem. 2021, 340, 127830. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhao, L.; Chen, W.; Lu, Q.; Tang, C.; Wang, C.; Liu, R. Comparison of the Inhibitory Effects of Procyanidins with Different Structures and Their Digestion Products against Acrylamide-Induced Cytotoxicity in IPEC-J2 Cells. J. Funct. Foods 2020, 72, 104073. [Google Scholar] [CrossRef]
- Yan, F.; Chen, L.; Chen, W.; Zhao, L.; Lu, Q.; Liu, R. Protective Effect of Procyanidin A-Type Dimers against H2O2-Induced Oxidative Stress in Prostate DU145 Cells through the MAPKs Signaling Pathway. Life Sci. 2021, 266, 118908. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Jáuregui, O.; Di Lecce, G.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Screening of the Polyphenol Content of Tomato-Based Products through Accurate-Mass Spectrometry (HPLC–ESI-QTOF). Food Chem. 2011, 129, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Faggian, M.; Sut, S.; Perissutti, B.; Baldan, V.; Grabnar, I.; Dall’Acqua, S. Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals. Molecules 2016, 21, 1531. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.; Auriola, S. High-Performance Liquid Chromatography with Electrospray Ionization Mass Spectrometry and Diode Array Ultraviolet Detection in the Identification of Flavonol Aglycones and Glycosides in Berries. J. Chromatogr. A 1998, 829, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Gabetta, B.; Fuzzati, N.; Griffini, A.; Lolla, E.; Pace, R.; Ruffilli, T.; Peterlongo, F. Characterization of Proanthocyanidins from Grape Seeds. Fitoterapia 2000, 71, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Sun, B.; Hernández, T.; Estrella, I.; Spranger, M.I. Proanthocyanidin Composition in the Seed Coat of Lentils (Lens culinaris L.). J. Agric. Food Chem. 2003, 51, 7999–8004. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.L. Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Thomazini, M.; Holkem, A.T.; Pinho, L.S.; Genovese, M.I.; Fávaro-Trindade, C.S. Production and Characterization of Solid Lipid Microparticles Loaded with Guaraná (Paullinia cupana) Seed Extract. Food Res. Int. 2019, 123, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Else, L.; Watson, V.; Tjia, J.; Hughes, A.; Siccardi, M.; Khoo, S.; Back, D. Validation of a Rapid and Sensitive High-Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC–MS/MS) Assay for the Simultaneous Determination of Existing and New Antiretroviral Compounds. J. Chromatogr. B 2010, 878, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, T.C.; de Assis, D.C.S.; Menezes, L.D.M.; da Silva, G.R.; Lanza, I.P.; Heneine, L.G.D.; de Cançado, S.V. HPLC–UV Method Validation for the Identification and Quantification of Bioactive Amines in Commercial Eggs. Talanta 2015, 142, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, W.P.D.W.; Vasantha Rupasinghe, H.P. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. Molecules 2022, 27, 1363. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Rojas, D.F.; Chagas-Paula, D.A.; Da Costa, F.B.; Souza, C.R.F.; Oliveira, W.P. Bioactive Compounds in Bidens pilosa L. Populations: A Key Step in the Standardization of Phytopharmaceutical Preparations. Rev. Bras. Farmacogn. 2013, 23, 28–35. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Badim, H.; Salvador, Â.C.; Silvestre, A.J.D.; Santos, S.A.O.; Rocha, S.M.; Sousa, A.M.; Pereira, M.O.; Wilson, C.P.; Rocha, C.M.R.; et al. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules 2021, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Zawiślak, A.; Francik, R.; Francik, S.; Knapczyk, A. Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials 2022, 15, 3317. [Google Scholar] [CrossRef] [PubMed]
- Floares, D.; Cocan, I.; Alexa, E.; Poiana, M.-A.; Berbecea, A.; Boldea, M.V.; Negrea, M.; Obistioiu, D.; Radulov, I. Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L. Agronomy 2023, 13, 3061. [Google Scholar] [CrossRef]
- Martín-García, B.; del Razola-Díaz, M.C.; Gómez-Caravaca, A.M.; Benítez, G.; Verardo, V. Setup of an Ultrasonic-Assisted Extraction to Obtain High Phenolic Recovery in Crataegus monogyna Leaves. Molecules 2021, 26, 4536. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J.M. Chemical Characterization and Antioxidant Activities of Oligomeric and Polymeric Procyanidin Fractions from Grape Seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.; Simal-Gandara, J.; Yu, Y.; Zou, L.; Xiao, J.; Deng, J. Bioactive Procyanidins from Dietary Sources: The Relationship between Bioactivity and Polymerization Degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- Sandu-Bălan, A.; Ifrim, I.L.; Patriciu, O.I.; Ștefănescu, I.A.; Fînaru, A.L. Walnut By-Products and Elderberry Extracts—Sustainable Alternatives for Human and Plant Health. Molecules 2024, 29, 498. [Google Scholar] [CrossRef]
- Tamayo-Vives, C.; García-Herrera, P.; Sánchez-Mata, M.C.; Cámara-Hurtado, R.M.; Pérez-Rodríguez, M.L.; Aceituno, L.; Pardo-de-Santayana, M.; Días, M.I.; Barros, L.; Morales, P. Wild Fruits of Crataegus monogyna Jacq. and Sorbus aria (L.) Crantz: From Traditional Foods to Innovative Sources of Pigments and Antioxidant Ingredients for Food Products. Foods 2023, 12, 2427. [Google Scholar] [CrossRef] [PubMed]
- Ben Aziz, M.; Garcia, F.; Mouls, L.; Fulcrand, H.; Hajjaj, H. Proanthocyanidins and Anthocyanins Contents, Chromatic and Antioxidant Properties of Red Grape Pomaces from Morocco. J. Food Meas. Charact. 2019, 13, 2051–2061. [Google Scholar] [CrossRef]
- Haș, I.M.; Teleky, B.E.; Szabo, K.; Simon, E.; Ranga, F.; Diaconeasa, Z.M.; Purza, A.L.; Vodnar, D.C.; Tit, D.M.; Nițescu, M. Bioactive Potential of Elderberry (Sambucus nigra L.): Antioxidant, Antimicrobial Activity, Bioaccessibility and Prebiotic Potential. Molecules 2023, 28, 3099. [Google Scholar] [CrossRef] [PubMed]
- Belló, C.; Prestes, A.P.; Schemberger, J.A.; Hacke, A.C.M.; Pereira, R.P.; Manente, F.A.; Carlos, I.Z.; de Andrade, C.R.; Fernandes, D.; da Cruz, I.B.M.; et al. Aqueous Extract of Paullinia cupana Attenuates Renal and Hematological Effects Associated with Ketoprofen. J. Food Biochem. 2021, 45, e13560. [Google Scholar] [CrossRef] [PubMed]
Source Matrix | Rt (min) | [M−H]− (m/z) | [M + H]+ (m/z) | Fragmentation Pattern | Putatively Compound | Reference |
---|---|---|---|---|---|---|
Hamamelis virginiana L. leaves | 6.50 | 631.21 | - | 585.02, 479.03, 317.10 | Myricetin-hexosyl-gallate | [66] |
6.67 | - | 611.16 | 449.15, 303.08 | Cyanidin 3,5-diglucoside | [67] | |
6.80 | 479.15 | - | 461.22, 317.12, 316.05 | Myricetin-O-glucoside | [68] | |
7.29 | 477.22 | - | 463.21, 300.97, 183.17 | Quercetin-O-hexuronide | [69] | |
7.46 | 939.13 | - | 787.17, 769.07, 617.25 | Pentagalloyl glucopyranose | [70] | |
7.67 | 447.23 | - | 327.13, 301.17, 285.14, 284.20 | Quercetin-O-deoxy-hexoside | [71] | |
7.76 | 1091.00 | - | 939.18, 769.25, 617.33 | Hexagalloylglucose | [72] | |
8.03 | 1243.18 | - | 1091.20, 939.24, 920.28, 769.26 | Heptagalloylglucopyranose | [72] | |
8.72 | - | 595.15 | 329.16, 309.10, 287.08 | Cyanidin-3-rutinoside | [73] | |
Peumus boldus Molina leaves | 6.17 | - | 867.05 | 715.36, 579.30, 577.13, 425.06, 287.15 | Procyanidin C1 B-type linkage | [74] |
6.70 | 609.35 | - | 463.13, 447.12, 315.06, 301.03 | Luteolin-glucopyranosil-glucopyranoside | [75] | |
6.72 | - | 611.16 | 449.15, 303.08 | Cyanidin 3,5-diglucoside | [67] | |
7.06 | 623.12 | - | 595.24, 477.13, 461.18, 315.12 | Isorhamnetin-O-rutinoside | [76] | |
7.06 | 593.44 | - | 447.21, 431.30, 285.05 | Isorhamnetin-O-deoxyhexosyl-pentoside | [75] | |
7.41 | 709.29 | - | 563.19, 541.06, 431.19, 285.17 | Kaempferol-O-pentosyl-O-dirhamnoside | [75] | |
7.49 | 607.33 | - | 461.14, 315.13, 212.21 | Isorhamnetin-O-dirhamnoside | [75] | |
7.71 | 447.15 | - | 301.07, 299.99, 285.12 | Luteolin-O-hexoside | [77] | |
Crataegus monogyna Jacq. flowers and leaves | 6.21 | - | 867.22 | 715.11, 697.25, 579.22 | Procyanidin C1 B-type linkage | [74] |
6.36 | 865.16 | - | 847.31, 739.19, 695.16, 577.21, 451.19, 287.17 | Procyanidin C1 B-type linkage | [78] | |
6.60 | - | 595.34 | 449.15, 431.16 | (Epi)gallocatechin gallate B-type linkage | [79] | |
6.68 | - | 449.39 | 431.08, 383.23, 329.20, 287.03 | Kaempferol-O-glucoside | [80] | |
6.72 | 593.21 | - | 473.15, 413.13, 293.13 | Isorientin-O-rhamnoside | [81] | |
7.04 | - | 579.31 | 433.24, 415.28 | Procyanidin B2 | [61] | |
7.05 | 1155.12 | - | 1136.12, 1028.33, 984.19, 866.26,577.28, 407.18 | Procyanidin tetramer B-type linkage | [61] | |
7.05 | 577.28 | - | 457.23, 413.07, 292.98 | Procyanidin B2 | [62] | |
7.26 | 463.12 | - | 301.02, 300.01 | Quercetin-O-galactoside | [82] | |
8.31 | - | 577.29 | 559.32, 425.20, 245.16 | Procyanidin A2 | [74] | |
9.29 | 582.36 | - | 462.28, 436.36, 342.23 | Tri-p-Coumaroyl spermidine | [83] | |
Eleutherococcus senticosus Maxim. root | 7.30 | 463.40 | - | 331.18, 301.04, 161.010 | Quercetin-O-glucoside | [84] |
9.46 | 809.43 | - | 791.22, 743.26, 647.42, 629.35, 471.23 | malvidin 3-glucoside-ethyl-(epi)catechin | [85] | |
9.46 | 663.42 | - | 645.52, 587.51, 487.27 | Monoglucuronide methyl (-)-Epigallocatechingallate | [86] | |
10.79 | 781.61 | - | 631.53, 630.43, 586.42, 472.44 | Malvidin 3-glucoside flavene–epicatechin dimer A type | [87] | |
Paullinia cupana Kunth. seed | 4.48 | 289.03 | - | 245.17, 205.12, 178.99 | (Epi)catechin | [88] |
6.14 | - | 865.19 | 713.16, 695.20, 533.19 | Procyanidin C1 A-type linkage | [89] | |
6.36 | 863.29 | - | 711.11, 693.29, 573.18, 451.18, 411.15 | Procyanidin trimer A-type linkage | [90] | |
7.38 | 1153.27 | - | 1134.19, 1026.35, 864.15, 575.17, 423.19 | Procyanidin tetramer B-type linkage | [91] | |
7.38 | 575.08 | - | 539.12, 449.13, 423.20, 289.13 | Procyanidin A2 | [92] | |
7.34 | 1151.37 | - | 1133.06, 1025.03, 999.10, 981.31, 863.21, 575.23 | Procyanidin tetramer A-type linkage | [91] | |
Sambucus nigra L. flowers | 6.74 | 625.25 | - | 505.12, 445.08, 300.08 | Quercetin-O-dihexoside | [93] |
7.13 | 609.17 | - | 343.11, 301.03, 284.99 | Quercetin-O-rhamnosylglucoside | [94] | |
7.18 | - | 611.16 | 465.10, 303.02 | Quercetin-O-deoxyhexose–hexose | [95] | |
7.6 | 623.4 | - | 315.06, 300.10 | Dihydroxy-dimethoxychalcone-C-diglycoside | [93] | |
9.76 | - | 1595.76 | 1577.20, 1472.10, 1443.82, 1370.00, 613.47 | Procyanidin pentamer monogallate A-type linkage | [96] | |
Sambucus nigra L. leaves | 7.16 | 609.2 | - | 301.07, 300.03, 254.93 | Quercetin-O-rhamnosyl-glucoside | [94] |
7.17 | - | 611.23 | 465.10, 303.05 | Dimeric epigallocatechin (b type) or prodelphinidin dimer | [74] | |
9.75 | 1593.67 | - | 1558.64, 1209.36, 821.60, 594.50 | Procyanidin gallate pentamer A-type linkage | [97] |
Sample | Catechin | Epicatechin | Procyanidin B1 | Procyanidin B2 | Procyanidin A2 | Procyanidin C1 |
---|---|---|---|---|---|---|
µg/g Dry Matrix | ||||||
Sambucus nigra L. flower | 171.19 ± 4.11 a | ND | 166.78 ± 4.92 a | 64.53 ± 4.52 a | ND | 71.05 ± 1.96 a |
Sambucus nigra L. leaves | 19.84 ± 1.50 a | 92.36 ± 8.90 a | ND | 228.55 ± 7.99 b | ND | 59.75 ± 3.77 a |
Crataegus monogyna Jacq. flowers and leaves | ND | 4606.86 ± 271.42 b | ND | 4148.05 ± 235.18 c | 351.55 ± 35.59 a | 4040.59 ± 255.61 b |
Peumus boldus Molina leaves | 27,694.7 ± 53.7 b | 1004.65 ± 62.60 c | 33,873.9 ± 67.84 b | ND | ND | 3169.23 ± 188.48 c |
Eleutherococcus senticosus Maxim. root | 340.21 ± 23.96 c | ND | ND | 272.42 ± 27.92 d | ND | ND |
Paullinia cupana Kunth. seed | 36,153.08 ± 2681.30 d | 36,267.49 ± 2596.96 d | 6593.71 ± 412.79 c | 5391.78 ± 350.42 c | 5075.61 ± 325.70 b | 2829.14 ± 126.94 c |
Hamamelis virginiana L. leaves | 4547.11 ± 397.98 c | ND | 2339.66 ± 175.66 b | ND | ND | ND |
Grape pomace | 345.83 ± 6.45 a | 238.26 ± 0.94 a | 169.72 ± 6.27 a | 144.90 ± 24.43 b | ND | 70.21 ± 0.95 a |
Analyte | Conc. Range (μg/mL) | Calibration Curve Equation | Correlation Coefficient | LOD (ppb) | LOQ (ppb) |
---|---|---|---|---|---|
Catechin | 0.5–100 | y = 107x + 6710 | 0.9957 | 87.80 ± 34.80 | 263.40 ± 104.4 |
Epicatechin | 0.5–50 | y = 9 × 106x + 1458 | 0.9981 | 42.80 ± 6.47 | 128.40 ± 19.41 |
Procyanidin B1 | 0.5–100 | y = 5 × 106x − 7107 | 0.9958 | 280.00 ± 5.26 | 840.00 ± 15.78 |
Procyanidin B2 | 0.5–100 | y = 5 × 106x − 2474 | 0.9999 | 130.00 ± 23.40 | 390.00 ± 70.20 |
Procyanidin A2 | 0.5–100 | y = 107x − 4400 | 0.9997 | 130.00 ± 0.10 | 390.00 ± 0.30 |
Procyanidin C1 | 0.5–100 | y = 5 × 106x − 3264 | 0.9998 | 69.50 ± 43.10 | 208.50 ± 129.3 |
Analyte | Conc. (μg/mL) | Precision (% CV) | Accuracy (% bias) | ||
---|---|---|---|---|---|
Intraday | Interday | Intraday | Interday | ||
1 | 6.5 | 5.7 | −0.08 | −0.08 | |
Catechin | 10 | 7.2 | 5.5 | −0.20 | −0.90 |
100 | 3.7 | 3.6 | −0.32 | 0.05 | |
1 | 4.8 | 4.6 | −0.05 | −0.05 | |
Epicatechin | 10 | 6.3 | 4.3 | −0.29 | −0.23 |
100 | 4.2 | 2.5 | −0.83 | −0.60 | |
1 | 1.3 | 13.9 | 0.07 | 0.08 | |
Procyanidin B1 | 10 | 3.7 | 6.4 | −0.30 | −0.27 |
100 | 0.8 | 2.8 | −3.59 | −3.46 | |
1 | 7.4 | 12.8 | −0.01 | −0.01 | |
Procyanidin B2 | 10 | 0.7 | 10.1 | −0.32 | −0.24 |
100 | 3.4 | 4.1 | −0.32 | −0.37 | |
1 | 10.3 | 6.7 | −0.02 | −0.02 | |
Procyanidin A2 | 10 | 8.7 | 6.1 | −0.48 | −0.45 |
100 | 4.4 | 4.5 | −4.00 | −4.21 | |
1 | 8.8 | 6.5 | −0.01 | −0.01 | |
Procyanidin C1 | 10 | 4.8 | 5.5 | −0.48 | −0.48 |
100 | 1.0 | 2.5 | −3.50 | −3.70 |
Analyte | Conc. (μg/mL) | Recovery (%) | Matrix Effect (%) |
---|---|---|---|
10 | 92.23 | 8.53 | |
Catechin | 25 | 83.95 | −17.64 |
50 | 87.32 | −13.04 | |
10 | 95.84 | 5.26 | |
Epicatechin | 25 | 106.51 | −19.71 |
50 | 79.43 | 2.37 | |
2.5 | 112.02 | 19.47 | |
Procyanidin B1 | 5 | 85.28 | −14.89 |
10 | 85.87 | −18.87 | |
2.5 | 79.92 | −18.54 | |
Procyanidin B2 | 5 | 87.87 | −19.14 |
10 | 94.72 | 19.79 | |
25 | 84.20 | −13.38 | |
Procyanidin A2 | 50 | 104.25 | −14.66 |
100 | 93.48 | −1.25 | |
2.5 | 106.46 | 19.66 | |
Procyanidin C1 | 5 | 103.78 | −17.56 |
10 | 98.02 | 19.93 |
Herbal Matrix | Polyphenol Content (mg GAE/g DW) * | Total Flavonoid Content (mg CAT/g DW) ** |
---|---|---|
Sambucus nigra L. flower | 134.10 ± 6.36 c | 26.17 ± 2.54 b |
Sambucus nigra L. leaves | 71.31 ± 2.12 d | 15.01 ± 2.23 c |
Crataegus monogyna Jacq. flowers and leaves | 82.85 ± 4.37 d | 4.74 ± 0.16 d |
Peumus boldus Molina leaves | 266.52 ± 22.35 b | 39.57 ± 2.80 a |
Eleutherococcus senticosus Maxim. root | 6.23 ± 1.48 d | 3.43 ± 0.48 d |
Paullinia cupana Kunth. seed | 372.67 ± 15.49 a | 42.59 ± 2.20 a |
Hamamelis virginiana L. leaves | 136.75 ± 29.81 c | 7.95 ± 1.28 d |
Grape pomace | 12.65 ± 1.42 d | 7.18 ± 0.81 d |
Herbal Matrix | In-House Result (µmol Trolox/g DW) | Literature Result (µmol Trolox/g DW) | References |
---|---|---|---|
Sambucus nigra L. flower | 758.89 ± 100.20 a,b | 570–920 | [112] |
Sambucus nigra L. leaves | 374.40 ± 47.20 c | 104.35 ± 0.22 | [115] |
Crataegus monogyna Jacq. flowers and leaves | 62.96 ± 5.27 d | 29–57 | [113] |
Peumus boldus Molina leaves | 935.23 ± 169.85 a | 524.17 | [28] |
Eleutherococcus senticosus Maxim. root | 5.70 ± 1.44 d | Not reported | - |
Paullinia cupana Kunth. seed | 693.63 ± 48.04 b | 67.91 ± 4.00 | [116] |
Hamamelis virginiana L. leaves | 27.34 ± 2.11 d | Not reported | - |
Grape pomace | 196.91 ± 0.86 c | 120–230 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keivani, N.; Piccolo, V.; Marzocchi, A.; Maisto, M.; Tenore, G.C.; Summa, V. Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants 2024, 13, 586. https://doi.org/10.3390/antiox13050586
Keivani N, Piccolo V, Marzocchi A, Maisto M, Tenore GC, Summa V. Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants. 2024; 13(5):586. https://doi.org/10.3390/antiox13050586
Chicago/Turabian StyleKeivani, Niloufar, Vincenzo Piccolo, Adua Marzocchi, Maria Maisto, Gian Carlo Tenore, and Vincenzo Summa. 2024. "Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest" Antioxidants 13, no. 5: 586. https://doi.org/10.3390/antiox13050586
APA StyleKeivani, N., Piccolo, V., Marzocchi, A., Maisto, M., Tenore, G. C., & Summa, V. (2024). Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants, 13(5), 586. https://doi.org/10.3390/antiox13050586