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Abstract: Stroke is a devastating neurological disorder that is characterized by the sudden disruption
of blood flow to the brain. Lipids are essential components of brain structure and function and
play pivotal roles in stroke pathophysiology. Dysregulation of lipid signaling pathways modulates
key cellular processes such as apoptosis, inflammation, and oxidative stress, exacerbating ischemic
brain injury. In the present review, we summarize the roles of lipids in stroke pathology in different
models (cell cultures, animal, and human studies). Additionally, the potential of lipids, especially
polyunsaturated fatty acids, to promote neuroprotection and their use as biomarkers in stroke
are discussed.

Keywords: lipids; brain; ischemic stroke; oxidative stress; therapeutic strategies

1. Introduction

Hypoxic–ischemic brain damage (HIBD) results in partial or complete hypoxia of
brain tissue due to decreased or suspended cerebral blood flow. Among HIBD, ischemic
stroke is a leading cause of mortality and disability worldwide [1,2]. Strokes mainly
affect the brain. Still, in less than 1.5% of cases, the occlusion of the blood flow to the
spine may also occur, leading to spinal strokes. Cerebral stroke can be classified into
hemorrhagic stroke and ischemic stroke, the latter accounting for 80 to 85% of cases. Lipids
play critical roles in maintaining the structural integrity, energy metabolism, and signaling
pathways in the brain. Dysregulation of lipid metabolism has been implicated in the
pathogenesis of stroke [3–6]. Ischemia–reperfusion injury leads to the excessive production
of reactive oxygen species (ROS), resulting in lipid, protein, and DNA oxidation. Lipid-
derived oxidative stress contributes to neuronal injury, blood–brain barrier disruption, and
neuroinflammation in stroke. Targeting lipid-mediated mechanisms represents a promising
therapeutic approach for stroke prevention and treatment. Understanding the relationship
between ischemic stroke and lipids is essential for elucidating potential preventive and
therapeutic strategies.

This review aims to describe the mechanisms involved in the pathophysiology of
hypoxic–ischemic brain injury, especially cerebral stroke, with a focus on the importance
of reactive oxygen species production and lipid peroxidation that can lead to the clinical
condition of hypoxic–ischemic. Highlighting the roles of lipids in these pathologies could
help to define lipid-based strategies for the prevention of stroke or treatment.

2. Stroke

Stroke, also known as cerebrovascular accident (CVA), is the second leading cause
of death and disability worldwide [1,2] with 16 million incidents, an annual mortality
rate of about 6.6 million, and 50% of survivors being chronically disabled [7–9]. Both in
Europe and the USA, stroke has been the leading neurological disease in terms of disability-
adjusted life years (DALYs) [10–12]. Alarming studies showed a less favorable trend in
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the incidence of stroke in younger vs. older individuals [13–16]. Globally, between 1990
and 2013, there was a significant increase in the absolute number and prevalence rate
of stroke for younger adults [17]. Studies predict that stroke mortality worldwide will
increase by 50%, from 6.6 million in 2020 to 9.7 million in 2050, and that DALYs will
rise over the same period, from 144.8 million in 2020 to 189.3 million in 2050 [1]. Age is
the most important demographic risk factor of stroke, and the lifetime risk of stroke has
increased with aging [18]. Ethnic differences also exist in the prevalence of stroke risk
factors [19,20]. The major risk factors for stroke are previous stroke or transient ischemic
attack, hypertension (being the most significant risk factor for stroke), diabetes mellitus,
obesity, hyperlipidemia, smoking, and drug abuse [21–24].

A stroke occurs when the blood supply to some part of the brain is interrupted or
reduced, depriving brain tissue of oxygen and nutrients. Strokes can be classified into two
major categories: hemorrhagic stroke and ischemic stroke. Both types of strokes impair
the correct functioning of the brain. Hemorrhagic strokes occur when a weakened blood
vessel ruptures and bleeds into the surrounding brain tissue [25–27]. Hemorrhagic stroke
may be further subdivided into two main types including intracerebral hemorrhage (ICH),
when blood spills into the surrounding tissue following the rupture of a blood vessel, caus-
ing damage to nearby cells, and subarachnoid hemorrhage (SAH), when bleeding occurs
into the space between the brain and the surrounding membrane (the arachnoid mem-
brane). Hemorrhagic stroke is associated with severe morbidity and high mortality [28].
The symptoms of a hemorrhagic stroke may include severe increases in blood pressure,
sudden severe headache, vomiting, agitation, and mydriatic pupil [29]. The treatment for
hemorrhagic stroke may involve surgery to repair blood vessels, medications to reduce
blood pressure and prevent further bleeding, and supportive care to manage symptoms
and prevent complications [30].

Ischemic stroke, also known as cerebral ischemia, generally accounts for about 80% to
85% of all strokes and is the third leading cause of death worldwide, with nearly 15 million
people affected yearly [29,31]. Ischemic strokes occur when a blood clot blocks or narrows
an artery leading to the brain, reducing blood flow to a part of the brain. There are two
main types of ischemic strokes including thrombotic stroke, when a blood clot (thrombus)
develops within a blood vessel supplying blood to the brain, and embolic stroke, when a
blood clot or other debris forms elsewhere in the body (often in the heart, cardioembolic
stroke, or large arteries) and travels through the bloodstream to the brain. Ischemic stroke
may have various clinical manifestations including vomiting, paresis, paralysis, ataxia,
acute headache, and agitation [29].

The main therapeutic approaches in patients with acute cerebral ischemia are reperfu-
sion treatments, either via mechanical thrombectomy or more commonly via intravenous
thrombolysis. Intravenous thrombolysis or intravenous alteplase, with tissue-type plas-
minogen activator (tPA), which is aimed at restoring the cerebral blood flow, is restricted
to few patients because of a narrow therapeutic window of 4.5 h and a high hemorrhagic
risk [32,33]. Understanding the mechanisms involved in the pathophysiology of stroke is
crucial for developing effective interventions to prevent and treat ischemic stroke. The in-
terruption of blood flow deprives the affected brain tissue of oxygen and nutrients, leading
to cellular dysfunction and death. A cascade of pathophysiological and interconnected
changes occurs, including pathological permeability of the blood–brain barrier (BBB), neu-
roinflammation, neuronal apoptosis, autophagy, excitotoxicity, and ionic imbalance, as well
as oxidative stress.

3. Oxidative Stress and Ischemic Stroke

During an ischemic stroke, the lack of oxygen and nutrients supplied to the brain cells
can lead to the production of free radicals, resulting in oxidative stress. Free radicals are
highly reactive molecules that contain oxygen and can cause damage to cells, proteins,
lipids, and DNA. This oxidative stress can exacerbate the damage caused by the stroke and
contribute to further injury to brain tissue. Oxidative stress, characterized by the overpro-
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duction of reactive oxygen species (ROS) and impaired antioxidant defenses, represents a
hallmark feature of ischemic stroke pathology [34–36]. Reactive nitrogen species (RNS) are
also predominantly involved in the pathogenesis of stroke. The brain is particularly vulner-
able to ROS and RNS compared with other organs because of high oxygen consumption,
low neuronal antioxidant activity, high levels of peroxidizable lipids, and high concen-
trations of iron [37,38]. Ischemia–reperfusion injury triggers the excessive production of
ROS, including superoxide anions (O2

−), hydroxyl radicals (OH−), and hydrogen peroxide
(H2O2), primarily through the activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, xanthine oxidase, and mitochondrial dysfunction [39]. In physiological
conditions, antioxidant defenses (enzymatic or non-enzymatic) protect brain tissues against
oxidative stress cytotoxicity [40,41]. Enzymatic antioxidant defenses include superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). SOD catalyzes the con-
version of superoxide radicals into hydrogen peroxide, which is less toxic than superoxide
radicals. CAT catalyzes the decomposition of hydrogen peroxide into water and oxygen,
thereby preventing the formation of hydroxyl radicals [42]. CAT is particularly abundant in
peroxisomes and helps to protect neurons from oxidative damage during stroke. GPx uti-
lizes glutathione as a co-factor to reduce hydrogen peroxide and lipid hydroperoxides into
their corresponding alcohols [43]. GPx is crucial for maintaining cellular redox balance and
protecting neurons from oxidative stress-induced damage. Non-enzymatic antioxidants
include vitamins E (α-tocopherol) and C (ascorbic acid), glutathione (GSH), carotenoids,
and flavonoids [44,45]. The Nf2 (nuclear factor erythroid 2-related factor 2) pathway is
also considered one of the most critical antioxidant transcription factors in cells [45,46].
Mitochondrial dysfunction plays a significant role in the pathophysiology of ischemic
stroke. Oxidative stress disrupts mitochondrial homeostasis, impairing electron transport
chain function, causing electron leakage, reducing ATP production, and promoting cy-
tochrome c release, thereby initiating apoptotic cascades and exacerbating neuronal death.
So, upon reperfusion, the sudden reintroduction of oxygen amplifies ROS generation by
dysfunctional mitochondria, exacerbating tissue injury.

4. Lipids and Ischemic Stroke
4.1. Lipids and the Brain

Lipids, as essential components of brain structure and function, play pivotal roles in
stroke pathophysiology. The brain is highly enriched in lipids and contains high concen-
trations of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid [47,48].
Docosahexaenoic acid (22:6n-3, DHA), the most abundant PUFA in neuronal membranes,
is a bioactive nutrient essential for brain development, learning ability, and memory [49,50].
Lipids play critical roles in maintaining the structural integrity of neuronal membranes,
influencing membrane fluidity, permeability, and normal functioning of receptor proteins.
PUFAs can be oxygenated into oxylipins, either via a non-enzymatic free radical-catalyzed
pathway or an enzymatic pathway, which regulate several biological processes within
the brain.

4.1.1. Enzymatic Metabolism of PUFAs

Three main enzymes are involved in the production of oxylipins including cyclooxyge-
nases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases (CYP450) [51–53]
(Figure 1). The biosynthesis of oxilipins is initiated by the initial release of PUFAs from mem-
brane phospholipids, mainly by the action of phospholipase A2 (PLA2) [54,55]. COX, also
named prostaglandin endoperoxide H synthases, possesses both oxygenase and peroxidase
activity. COX catalyzes the formation of PGG2, a 15-hydroperoxide converted into its 15-
hydroxyl derivative PGH2 by hydroperoxidase [56,57]. PGH2 is then further metabolized to
other prostaglandins (D, E, F, I, or prostacyclin), thromboxanes, levuglandins, and hydroxy
fatty acids [52,58]. There are two major human isoforms of cyclooxygenase, COX-1, which
is constitutively expressed in most tissues, and COX-2, which is induced by inflammatory
and proliferative stimuli [59,60]. The main PUFA metabolized by COX is arachidonic
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acid (AA, 20:4n-6), but COX also oxygenates omega-3 PUFAs like eicopapentaenoic acid
(EPA, 20:5n-3). Another prostanoid precursor is dihomo-gamma-linolenic acid (DGLA,
20:3n-6). Lipoxygenase enzymes are a family of dioxygenases, including 5-lipoxygenase
(5-LOX), 12-LOX, 15-LOX, and 12/15-LOX isoforms, that catalyze the oxidation of AA,
linoleic acid (LA, 18:2n-6), EPA, and DHA, to produce leukotrienes (LTs from AA and EPA),
hydroxyperoxyeicosatetraenoic acids (HpETEs) than can be reduced to hydroxyeicosate-
traenoic acid (HETEs), lipoxins (from AA), and SPMs (including resolvins Rvs from EPA
and DHA; protectins PDs from DHA; and maresins MaRs from DHA) [61,62]. A further
class of metabolites generated from omega-3 PUFAs by LOX are the electrophilic fatty
acid oxo-derivatives (EFOX), with 7-oxo-DHA, 7-oxo-DPAn-3, and 5-oxo-EPA produced
from DHA, DPAn-3, and EPA, respectively [63]. CYP450 oxidases can produce different
epoxyeicosatrienoic acids (EETs) and hydroxy-eicosatetraenes (HETEs) from AA, epoxye-
icosatetraenoic acids (EpETEs) and hydroxyeicosapentaenoic acids (HEPEs) from EPA, and
epoxydocosapentaenoic acids (EDPs) and hydroxydocosahexaenoic acids (HDoHEs) from
DHA [64,65].
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4.1.2. Peroxidation of Lipids

Lipid peroxidation is a complex process involving the oxidative degradation of PUFAs,
leading to the formation of various reactive lipid products and playing a pivotal role in
various physiological and pathological conditions. Lipid peroxidation occurs in three
consecutive phases [66] as follows: initiation, propagation, and termination. Initiation
involves the abstraction of hydrogen atoms from PUFA carbon atoms by ROS or RNS, at the
origin of a PUFA radical. Subsequent propagation reactions involve the interaction of lipid
radicals with molecular oxygen, forming lipid peroxyl radicals and lipid hydroperoxides.
These reactive intermediates can propagate lipid peroxidation through autocatalytic cycles,
causing extensive damage to cellular membranes and organelles. The termination of
lipid peroxidation occurs through various mechanisms, including radical scavenging by
antioxidants, enzymatic degradation of lipid hydroperoxides, and reaction of radical species
with each other to give non-radical or non-propagating species.

Isoprostanes (IsoPs) and neuroprostanes (NPs) are prostaglandin (PG)-like compounds
that are produced by free radical non-enzymatic peroxidation of AA and DHA, respec-
tively [67,68]. F2-isoprostanes and F4-NPs are primarily formed in situ from AA esterified
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in phospholipids and subsequently released [69]. Their formation proceeds via PGH2-like
bicyclic endoperoxide intermediates, which are reduced to form F-ring IsoPs (F2-IsoPs) [67]
or undergo rearrangement to form E-ring and D-ring IsoPs [70] and isothromboxanes [71].
Analogous to the formation of IsoPs, the formation of NPs also proceeds through bicyclic
endoperoxide intermediates that not only are reduced to F4-ring compounds but also un-
dergo rearrangement in vivo to form D4- and E4-ring NPs [68,72]. Furthermore, a series of
highly reactive γ-ketoaldehydes termed isoketals (IsoKs) and neuroketals (NKs) are formed
via the isoprostane and neuroprostane pathways, respectively [73–75]. IsoKs and NKs
have a remarkable proclivity to form covalent adducts in vivo with proteins by binding the
ε-amino group of lysine residues, forming lactam and Schiff base adducts, and to crosslink
proteins. These γ-ketoaldehydes also covalently modify aminophospholipids, forming pyr-
role and Schiff base adducts with phosphatidylethanolamine [76]. All these molecules are
detected in the human brain [74]. Malondialdehyde (MDA) and hydroxyalkenals are also
aldehydes that are formed during n-3 and n-6 fatty acid peroxidation. 4-hydroxynonenal
(4-HNE) is an end-product of the peroxidation of LA, AA, and 15-hydroperoxy arachidonic
acid [77]. 4-hydroxy-2E-hexenal (4-HHE) is described as a major degradation product of
n-3 PUFA peroxidation, such as DHA [78]. All these reactive aldehydes derived from lipid
peroxidation have been suggested to be key mediators of oxidant injury because of their
capacity to covalently modify proteins, lipids, and DNA [79–84].

4.2. Dysregulation of Lipid Metabolism in the Pathogenesis of Stroke

Emerging evidence suggests that dysregulation of lipid metabolism plays a pivotal
role in stroke pathogenesis and progression. The implication of potent bioactive eicosanoids
derived from the arachidonate cascade in ischemic stroke has been attracting more attention.

The elevation of intracellular calcium and oxidative stress produced by ischemia/reper-
fusion in rats activates enzymes including calcium-dependent cytosolic PLA2 (cPLA2),
leading to a rapid release of AA [85] (Figure 2). The release of brain PUFAs from phos-
pholipids by PLA2 is exacerbated by the deprivation of oxygen in brain tissue. Plasma
PUFAs, including AA, EPA, and DHA, are also increased under ischemic stroke in mice
models [86]. Secretory PLA2 (sPLA2-IIA) is induced in reactive astrocytes in response to
transient focal cerebral ischemia by occlusion of the middle cerebral artery (MCA) in the
rat brain. sPLA2-IIA gene expression is up-regulated in rat brains after transient global
ischemia [87]. The infarct size is reduced after the administration of quercitine, a PLA2
inhibitor, to MCA-occulted rats [88].

COX-2 is also upregulated in the infracted human brain [89] and in vivo models of
stroke by occlusion of the MCA [90]. The selective COX-2 inhibitor NS-398 [91,92] reduces
the accumulation of PGE2 in the post-ischemic brain and ameliorates cerebral ischemic
damage [90]. PGD2, PGE2, PGF2α, and TXA2 are elevated in stroke [3,6,93]. The effects
of PGs on the brain are dependent on their respective receptors. PGE2-EP1 receptors
contribute to the neurotoxicity mediated by PGE2 by increasing the Ca2+ dysregulation
underlying excitotoxic neuronal death [94]. ONO-AE-248, a selective EP3 agonist, signifi-
cantly increased infarct size in the MCA occlusion model and aggravated the lesion caused
by N-methyl-D-aspartic acid-induced excitotoxicity. Conversely, genetic deletion of EP3
receptor provided protection from acute excitotoxicity [95]. FP receptor of PGF2α has been
shown to significantly contribute to excitotoxic brain injury and cerebral ischemia [96].

Lipoxygenase products were also detected in the brain after ischemia [4,97,98]. Con-
centrations of LTC4 and LTD4, which are potent inflammatory mediators [99], increased in
the brain after ischemia [97]. The amounts of 5-, 9-, 11-, and 15-HETEs were significantly
increased in ischemic rat brains after MCA occlusion [4]. The amelioration of stroke dam-
age, by decreasing mortality-adjusted infarct size, was observed in FLAP knockout mice
that do not produce LTs [100].
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Figure 2. Schematic illustration of the major oxidative mechanisms in ischemic stroke leading to lipid
mediators formed by enzymatic or non-enzymatic pathways and playing important roles in various
biological processes.

Markers of oxidative damage are increased immediately after ischemic stroke and
remain elevated for several days after stroke onset. IsoPs are increased in different ischemic
stroke models. The level of 8-epi-PGF2α is more elevated in primary rat cortical neurons
exposed to hypoxia followed by reoxygenation as well as in in vivo model (rats submitted
MCA occlusion followed by a reperfusion period) [5]. F2-IsoP levels are increased in the
plasma of acute ischemic stroke patients [101]. 15-A2t-IsoP is abundantly produced in in-
farcted human cortical tissue, and 15-A2t-IsoP led to a rapid induction of the mitochondrial
permeability transition pore and induced the release of cytochrome c from mitochondria
in primary neuronal cultures [102]. 15-A2t-IsoP also induces neuronal apoptosis and po-
tentiates oxidative glutamate toxicity in vitro [103]. The levels of F4-NPs and HETEs were
significantly higher in the plasma of stroke patients [104]. These increases were highest
from 6 to 12 h after stroke onset. Elevated levels of urinary 8-iso- and 2,3-dinor-F2-IsoPs
were observed in stroke subjects, whereas urinary levels of 2,3-dinor-5,6-dihydro-F2-isoPs
were decreased [104]. 4-HNE concentrations were higher in the plasma of experimental
stroke rats with occlusion of the MCA [105]. Moreover, intravenous injection of 4-HNE
increased both brain oxidative stress and infarct area induced by ischemia. Guo et al.
(2013) [106] showed that mitochondrial aldehyde dehydrogenase 2 (ALDH2), an enzyme
detoxifying aldehydes such as 4-HNE, protects against ischemic stroke. Regarding MDA,
plasma and serum levels are positively correlated with stroke outcome [107–109] and
negatively correlated with Mini-Mental State Examination (MMSE) scores [110].

4.3. Lipids as Neuroprotective Agents for Ischemic Stroke
4.3.1. Omega 3 PUFAs

The high level of lipids in the brain delineates their critical role in preserving neuronal
function and synaptic plasticity. Among them, PUFAs are known to optimize synaptic
membrane organization and function, rendering neurons more resistant to neurodegenera-
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tive processes. PUFA brain content varies between 25 and 30% and is composed mainly
of DHA (12–14% of total fatty acids) and AA (8–10% of total fatty acids) [111,112], both
being critical for brain function and contributing to the prevention of age-related neurode-
generation and cognitive deficits [113–115]. Omega-3 PUFAs play a key role in stroke
neuroprotection. A high EPA/AA ratio was associated with good outcomes in ischemic
stroke, suggesting that pre-stroke nutrition habits influence the severity of ischemic stroke
in patients [116]. Low DHA level was also shown to be a potential factor affecting the risk
of depression in stroke patients [117]. The protective effects of omega-3 PUFAs against dam-
age in stroke patients have been shown to involve multiple pathways. The administration
of DHA conferred high-grade neuroprotection in an MCA occlusion model [118,119]. The
protective effects of omega-3 PUFAs against damage in stroke patients have been shown to
involve multiple pathways. DHA reduces oxidative stress (F4-NPs and 8-iso-PGF2) follow-
ing hypoxia–ischemia in the urine of piglets [120]. Post-stroke DHA injection efficiently
reduced brain infarct and ameliorated neurological deficits 3 days after transient MCA
occlusion, inhibiting the infiltration of immune cells and promoting the polarization of
macrophages toward an anti-inflammatory M2 phenotype, therefore reducing central and
peripheral inflammation after stroke [121]. DHA can reduce oxidative stress and cerebral
ischemia–reperfusion injury by reducing COX-2 expression [122]. In rat brain microvascu-
lar endothelial cells under an oxygen- and glucose-deprivation environment (OGD), that
mimics ischemic stroke in vitro, DHA was shown to decrease apoptosis, COX-2 protein
expression, and the secretion of PGE2, PGI2, vascular endothelial growth factor (VEGF), and
angiopoietin-2 (Ang-2, which has been shown to cause blood–brain barrier damage and to
increase endothelial cell apoptosis) [123]. DHA can also decrease hypoxia/reoxygenation
injury by activating Src-suppressed C kinase (SSeCKS), a substrate of protein kinase C that
plays a key role in maintaining cell morphology and tight junctions of the blood–brain
barrier and regulating cell permeability [124,125].

Other PUFAs have been shown to protect against ischemia. EPA inhibits oxidative
damage and the inflammatory response after ischemic brain injury [126]. The deuterated
form of linoleic PUFA (D4-Lnn) enhances its protective properties against oxidative stress
caused by ischemia-like conditions [127]. ALA, the precursor of DHA, was also shown
to reduce the consequence of stroke [128]. ALA, delivered either by intravenous injection
(iv as a pre-treatment or a post-treatment therapy) or by dietary supplementation, has
protective effects against cerebral ischemia [129–132].

4.3.2. PUFA Derivatives from Enzymatic Pathways

The roles of PUFA mediators in stroke neuroprotection are emerging [133]. Neuropro-
tectin D1 (NPD1), a DHA metabolite formed via a 15-LOX-initiated mechanism, has been
shown to be neuroprotective in the ischemic brain [118,119].

NPD1 inhibits leukocyte infiltration mediated by brain ischemia–reperfusion, decreases
proinflammatory gene expression, and increases neurogenesis [118,134]. The combination
of resolvin D1 (RvD1) with NPD1 improves neuroprotection after focal cerebral ischemia in
rats [135]. The exogenous supply of RvD2 via intraperitoneal injection, another derivative
of ω-3 PUFAs, reversed cerebral ischemia–reperfusion injury caused by MCA occlusion
by decreasing inflammation, brain edema, and neurological scores [136,137]. The neuro-
protective actions of lipoxins (LXs) have been well established. Intracerebroventricular
administration of LXA4 decreases infarct volume and neurological deficit after MCA occlu-
sion, partly via PPARg agonistic actions and by decreasing inflammation and neutrophil
infiltration [138–140]. Maresin 1 (MaR1) also protects against ischemia–reperfusion injury
by inhibiting pro-inflammatory cytokines and NF-kB p65 activation [141].

4.3.3. Delivery of Omega-3 PUFAs to the Brain

The brain requires a constant supply of DHA from the blood to maintain DHA levels
within the brain. Several plasma pools have been proposed to supply the brain with DHA,
including plasma lipoproteins, lysophosphatidylcholine (LysoPC), and unesterified fatty
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acids. LysoPC-DHA is a privileged physiological carrier of DHA across the blood–brain
barrier into the brain [142–145]. Studies showed that dietary DHA as LysoPC, but not as free
acid, enriches the brain and improves memory in adult mice [146] and that LysoPC is more
efficient than triacylglycerol or phosphatidylcholine in enriching the brain with DHA [147].
A specific protein expressed in brain endothelium called Mfsd2a has been reported to
bind LysoPC-DHA, but not free DHA, for its uptake into the brain [148–150]. AceDoPC
(1-acetyl,2-docosahexaenoyl-glycerophosphocholine), a stabilized form of LysoPC-DHA,
targets efficiently and specifically DHA to the brain [151–154]. It was shown to prevent
post-ischemic stroke consequences and to decrease oxidative stress in a stroke animal model
of ischemia-reperfusion [155], to decrease the neuroinflammation induced by lipopolysac-
charides in mice and microglia cells [156], and to stimulate neurogenesis in an in vitro
OGD model of ischemia [157]. AceDoPC decreased the level of AA metabolites involved
in oxidative stress and inflammation, including 8-epi-PGF2α, PGD2, PGF2, LTB4, and 15-
HETE, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway [157], a
critical antioxidant transcription factor in cells upregulating enzymes such as heme oxy-
genase 1 [158]. DHA carried in triacylglycerol emulsion exhibits neuroprotectin effects
in mice subjected to hypoxic–ischemic brain injury [159]. Omega3-rich diets, like fish oil
supplementations, combined with intraperitoneal DHA injections, exerted neuroprotective
actions on ischemic brain injury [160].

The bioavailability and the delivery of omega-3 PUFAs or other drugs to the brain
can be improved by nanoparticles. Positive outcomes highlight the efficiency of lipid
nanoparticles and nanostructured lipid carriers to target the brain and protect against
ischemic stroke [161–163]. The intranasal route of PUFAs or other drug delivery via lipid
nanoparticles is also very promising, allowing the drug to directly reach the brain by
bypassing the blood–brain barrier, a structure that restricts the passage of therapeutic
agents and limits the efficacity of the delivery [164–167].

4.4. Lipid Biomarkers in Ischemic Stroke

Lipid-derived biomarkers in stroke research have gained significant attention because
of their potential roles as diagnosis, prognosis, and therapeutic targets in stroke manage-
ment. Different key lipid-derived biomarkers are studied in relation to stroke. This includes
lipid peroxidation products (MDA, 4-HNE, IsoPs, and NPs), PLA2, and oxylipins, as pre-
viously described. Free FAs, as discussed above, also represent a significant predictive
factor for the prognosis of ischemic stroke patients. For example, the DHA/EPA ratio has
a positive correlation, while the EPA/AA ratio negatively correlates with all prognostic
parameters (clinical, paraclinical, and outcome parameters) [168]. Saturated FAs play a neg-
ative role in long-term cognitive outcomes in stroke patients [169]. Increased low-density
lipoprotein cholesterol (LDL-C) is also considered a relevant marker for ischemic stroke and
was significantly associated with an increased risk of ischemic stroke [170–172]. However,
some studies found no association between high levels of LDL-C and increased risk of is-
chemic stroke [173]. Non-high-density lipoprotein (HDL) cholesterol (meaning cholesterol
of all atherogenic lipoproteins) was shown to be a better marker of risk of ischemic stroke
than LDL-C [174]. The ratio of triglycerides (TGs)/HDL-C was significantly higher in
young patients with ischemic stroke compared with older cases or healthy adults [175]. The
TG/HDL cholesterol ratio was positively correlated and the total cholesterol/TG ratio was
negatively correlated with silent brain infarct lesion burden [176], and the total cholesterol
to HDL-C ratio was associated with an increased risk of ischemic stroke [169]. Another lipid
class considered a biomarker of stroke is LysoPC. Low plasma levels of LysoPC 16:0 are a
potential predictor of stroke recurrence [177]. LysoPC was closely associated with stroke
recovery [178]. All these studies show an interest in lipidomic profile analyses. Indeed,
comprehensive lipidomic analyses have revealed alterations in the overall lipid profiles
of stroke patients. These lipidomic signatures may serve as diagnostic and prognostic
biomarkers for stroke subtypes and severity. Multi-omics approaches are essential for
lipid biomarker research. Opto-lipidomics also opens new opportunities to study lipid
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biomarkers [179]. Research into lipid-derived biomarkers in stroke is ongoing, and further
elucidation of their roles in stroke pathophysiology may lead to the development of novel
therapeutic strategies and personalized treatment approaches.

5. Conclusions

In conclusion, this review sheds light on the roles of oxidative stress and lipids in
ischemic stroke. Lipids play multifaceted roles in stroke pathophysiology, contributing
to neuronal injury, oxidative stress, inflammation, and blood–brain barrier dysfunction.
Elucidating the specific lipid pathways involved in stroke pathogenesis and evaluating
the efficacy of lipid-targeted interventions hold promise for improved outcomes following
ischemic events. The identification of reliable lipid-derived biomarkers remains crucial for
early diagnosis, prognostication, and therapeutic targeting. Different therapeutic options
targeting lipid-derived biomarkers exist such as drugs that target more specifically LDL-C
(statins; ezetimide; evinacumab; PCSK9 inhibitors. . .), the TG/HDL-C ratio (niacin or
omega-3 fatty acids...), and oxylipins (acetylsalicylic acid, aspirin, preventing the produc-
tion of thromboxane by the inhibition of COX and then platelet aggregation; omega-3 fatty
acids; selective COX-2 inhibitors. . .). Edaravone and Dl-3-n-Butylphthalide are two neuro-
protective antioxidants that are approved for clinical use. While many promising novel
drug therapies are in various stages of preclinical and clinical development, translating
these findings into effective treatments for ischemic stroke remains a significant challenge.
Rigorous clinical trials are essential to evaluate the safety and efficacy of these therapies
in human patients and to bring them to widespread clinical use. Ongoing research is
exploring novel therapeutic approaches for ischemic stroke, including stem cell therapy,
neurorecovery agents, anti-inflammatory drugs, and neurovascular protective agents. Lipid
nanoparticles also hold great promise as drug delivery vehicles in the treatment of stroke,
offering targeted delivery, controlled release, and the potential for combination therapy
and diagnostic applications. Further research and development in this field are essential to
validate the clinical utility of lipid biomarkers, explore their potential as therapeutic targets
in ischemic stroke management, and optimize the strategies of administration for stroke
treatments.
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