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Abstract: Oxidative stress (OS) affects men’s health and impairs spermatogenesis. Micronutrient an-
tioxidants are available for male infertility as complemental support; however, their efficacy remains
debatable. This study aimed to investigate whether antioxidants can help to reduce sperm OS and
improve semen analysis and quality. We included 171 male partners of couples planning to undergo
assisted reproductive technology (ART). Male partners, aged 29–41 years, of couples intending to
conceive were self-selected to take daily antioxidants (n = 84) containing folic acid and zinc, or not
to take antioxidants (n = 52) for 6 months. We analyzed the alterations in serum oxidant levels,
sperm parameters, OS, and deoxyribonucleic acid fragmentation after 3 and 6 months. Additionally,
implantation, clinical pregnancy, and miscarriage rates after vitrified–warmed embryo transfer were
compared between those taking antioxidants and those not taking them after 6 months. In men with
high static oxidation–reduction potential (sORP), we observed a significant improvement in sperm
concentration and sORP. The high-quality blastocyst rate tended to increase, and implantation and
clinical pregnancy rates also significantly increased after 6 months of intervention. The micronutrient
antioxidants could improve sperm function by reducing OS and improving ART outcomes. Therefore,
micronutrient antioxidants may be a viable treatment option for male infertility.

Keywords: folic acid; zinc; antioxidant; semen; reactive oxygen species; male infertility

1. Introduction

Infertility is a widespread problem affecting 8–12% of the global population [1]. In
approximately 50% of these cases, a male factor, including abnormal semen parameters,
such as oligozoospermia, asthenozoospermia, and teratozoospermia; a combination of all
three (oligo-astheno-teratozoospermia); or azoospermia, is involved. A male factor alone or
in combination is responsible for 30–50% of couples with infertility [2,3], with a severe male
factor requiring an intracytoplasmic sperm injection (ICSI) occurring in only up to 30% of
couples with male infertility [4,5]. Abnormal spermatogenesis can have multiple origins,
such as genetic, environmental, or lifestyle factors [6], with oxidative stress (OS) being the
most considerable factor, as implicated in 30% to 80% of all cases [7]. OS, which occurs due
to the excessive production of reactive oxygen species (ROS) [8], is a potential marker for
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the assessment of sperm quality. An association between OS and the poor clinical outcome
of in vitro fertilization (IVF) procedures has been observed. ROS in seminal plasma is
negatively associated with the fertilization rate, embryo development, and pregnancy
rate [9].

All cells in the human body undergo oxidation. Oxidation, which is the loss of
electrons from a substance, can lead to the formation of free radicals or ROS, which can
damage spermatozoa. Reduction, which is the opposite of oxidation, involves substances
gaining electrons. Redox refers to the process of oxidation–reduction. Antioxidative agents
can prevent ROS production or deactivate them before they damage cells, deoxyribonucleic
acid (DNA), or other cellular components. OS, which results from an imbalance between
oxidation (ROS production) and antioxidant levels, is responsible for several detrimental
effects, including impaired spermatogenesis, germ and somatic cell apoptosis, oxidative
DNA damage, the disruption of gene expression and post-transcriptional gene regulation,
and ATP depletion [10,11]. As a result, spermatozoa are functionally impaired, including
insufficient phosphorylation of the sperm tail axoneme, lipid peroxidation, and decreased
motility and viability [12].

Based on this theory, antioxidants could prevent or treat OS in sperm cells, thereby
improving male fertility. Oral supplementation with antioxidants may be used to improve
male fertility by reducing OS [13,14]. The updated Cochrane review of antioxidants for male
subfertility indicated a small increase in live birth rates with antioxidant use. However, the
evidence level is limited because of scarce reports on clinical outcomes [15]. The critical role
of OS in male fertility remains a subject of debate among experts. Additionally, excessive
antioxidant use may impair fertility through reductive stress [16,17], adding controversy to
their use in treating male infertility.

Zinc, which is involved in DNA transcription, is a critical nutrient for spermatogenesis [18].
ROS scavenging has been associated with zinc. Sperm is particularly vulnerable to ROS at-
tack due to its high oxidative phosphorylation activity and low cytoplasmic content, which
may lead to reduced sperm quality [19]. Additionally, vitamin E, which is a naturally oc-
curring fat-soluble compound, is a powerful chain-breaking antioxidant that can neutralize
free radicals and reduce ROS-induced lipid peroxidation, protecting cell membranes. It also
inhibits the lipid peroxidation cascade, enhancing the functions of other antioxidants [20].
In men with infertility, vitamin E inhibits ROS production and protects the components of
the sperm plasma membrane against lipid peroxidation [21].

Folic acid acts as a coenzyme in many important one-carbon metabolic reactions
that are essential for DNA and ribonucleic acid synthesis, as well as various methyla-
tion reactions, and has antioxidant, anticarcinogenic, cardiovascular, and neuroprotective
properties [22]. For example, folic acid is an important co-substrate in the remethylation
of homocysteine (HCY) to the amino acid methionine [23]. The antioxidant properties of
folic acid are mediated by a variety of mechanisms, including a reduction in the plasma
concentration of HCY, which can increase the total antioxidant capacity and reduce the
formation of ROS [22]. Folic acid, alone or combined with other B vitamins, effectively
lowers plasma HCY levels [24–31]. Moreover, antioxidant vitamins, such as vitamins C
and E, may have an adjunctive role in preventing HCY-mediated OS [32–35]. Therefore,
due to the relationship between OS and sperm DNA damage that inhibits methylation,
scientific evidence indicates that folic acid supplementation as a potent antioxidant protects
cells from free radical-induced damage. This supplementation may also improve male
fertility by enhancing DNA methylation during spermatogenesis [36], regulating MTHFR
expression levels, and reducing testicular apoptotic gene expression in male mice [37].

The 2012 update of the European Association of Urology guidelines for male infertility
suggested therapies such as follicle-stimulating hormone, folate, zinc, or anti-estrogens as
potentially advantageous for some patients, although scientific evidence to support this
empirical approach is limited and the most effective treatment remains unclear [38]. In
addition, interventional studies that investigated the efficacy of folic acid and zinc supple-
mentation in the treatment of male infertility are limited. Despite ongoing updates, reports
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on the efficacy of folic acid and folic acid plus zinc antioxidants in the treatment of male
infertility remain controversial and require further clarification. The micronutrient antioxi-
dants for men (Menevit®) used in this study contain folic acid, zinc, and the antioxidant
vitamins C and E. We hypothesized that micronutrient antioxidants reduce ROS-induced
sperm quality damage, thereby improving male fertility and pregnancy outcomes. There-
fore, this study aimed to investigate whether antioxidants can help to reduce sperm OS
and improve semen analysis and sperm quality. Our findings suggest that in individuals
with high sperm oxidative stress, the consumption of micronutrient antioxidants improved
serum oxidants and semen parameters, resulting in increased implantation and clinical
pregnancy rates compared with those not taking antioxidants.

2. Materials and Methods
2.1. Study Design and Participants

This single-center, longitudinal, prospective study was performed from 3 October
2020 to 31 March 2022 at the Sendai assisted reproductive technology (ART) clinic in Japan.
Figure 1 outlines the study design.
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We recruited 171 male partners of couples experiencing infertility after at least 1 year
of unprotected intercourse, and thus, requiring IVF-ICSI treatment. Male partners with
non-obstructive azoospermia, obstructive azoospermia scheduled for microsurgery, severe
oligozoospermia (sperm count less than 1 × 106/mL), an identifiable cause of infertility
(leukocytospermia and/or positive sperm culture, epididymal-orchitis, prostatitis, inguino-
scrotal surgery, cryptorchidism, varicocele, etc.), higher BMI (>30), endocrine, metabolic,
autoimmune, or neoplastic diseases and those already taking antioxidants such as high-
dose vitamin-related supplementation were excluded in this study. Female partners with
diminished ovarian reserve (serum Anti-Müllerian Hormone concentration < 1 ng/mL)
were excluded. As a lifestyle factor, there were none of the heavy smokers defined as
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smoking ≥30 cigarettes (or 1.5 packs) per day according to self-report. Of the 161 male
partners who fulfilled the inclusion criteria, 101 chose to begin the daily micronutrient an-
tioxidants intervention (Menevit®, Bayer Yakuhin, Ltd., Tokyo, Japan), whereas 60 declined.
Menevit® tablets contain 6 mg lycopene, 30 mg vitamin E, 1.3 mg vitamin B6, 2.4 µg vitamin
B12, 180 mg vitamin C, 12 mg zinc, 60 µg selenium, 400 µg folic acid, and 50 mg L-carnitine.
Three tablets daily are the recommended dosage. Twenty-five participants did not complete
the study, nine were lost to follow-up, and 16 were excluded for failing to comply with the
intervention or for having incomplete measurements. Therefore, 136 participants/couples
completed the study and were included in the statistical analyses. The oral administration
of Menevit® was not associated with any adverse effects. Male partners underwent routine
infertility evaluation, including basal follicle-stimulating hormone, luteinizing hormone,
testosterone, and basic semen analysis, during the initial visit. Furthermore, serum ox-
idants, including folate, zinc, vitamin E, and HCY, were analyzed, and zinc, creatinine,
spermine, and testosterone, which influence sperm quality, were measured. Male patients
underwent examinations of serum oxidants and semen parameters every 3 months from
the initial visit.

IVF/ICSI procedures, including ovarian stimulation, oocyte retrieval, and insemina-
tion using IVF or ICSI, were performed as previously described [39]. A frozen–thawed
embryo transfer (FET), typically utilizing a hormone replacement cycle, was performed as
previously described [40]. Briefly, an FET was planned, the endometrium was prepared
with a hormone replacement cycle, and transdermal estradiol (0.72 mg, Estrana TAPE,
Hisamitsu Pharmaceutical, Tokyo, Japan) was started on CD 3. Progesterone treatment
with vaginal progestin tablets (300 mg/day, LUTINUS, Ferring Pharmaceuticals Co., Ltd.,
Tokyo, Japan; 600 mg/day, Utrogestan, Fuji Pharmaceuticals Co., Ltd., Tokyo, Japan; or
800 mg/day, Luteum, ASKA Pharmaceuticals Co., Ltd., Tokyo, Japan) was started at an
endometrial thickness of 8 mm. An FET was scheduled to be performed 5 days after the
start of progesterone treatment. We analyzed the IVF/ICSI outcomes regarding the num-
ber of oocytes retrieved, number of oocytes in the metaphase II (MII) stage, fertilization
rate, and high-quality blastocyst (defined as 4BB or above according to Gardner’s grading
scale [41]) rate. The MII rate is the number of oocytes at MII divided by the number
of oocytes retrieved. The fertilization rate was calculated as the number of embryos
divided by the number of oocytes retrieved for IVF or the number of oocytes retrieved
at the MII stage for ICSI. The number of high-quality embryos divided by the number
of embryos was used to calculate the high-quality blastocyst rate. We also examined
the pregnancy outcomes as a secondary outcome to analyze whether an intervention
with micronutrient antioxidants would improve the course of pregnancy after the FET.
Therefore, we compared pregnancy outcomes, including implantation, clinical pregnancy,
and miscarriage rates, at 6 months after the male patients began taking micronutrient
antioxidants from the initial visit between the 84 men with the micronutrient antioxidants
and 52 men without the antioxidants. Implantation was defined as the detection of serum
human chorionic gonadotropin > 100 mIU/mL, and clinical pregnancy was defined as the
detection of an intrauterine sac by transvaginal ultrasound. Miscarriage was defined as
the disappearance of a clinical pregnancy, as indicated by the absence of an intrauterine
sac on a transvaginal ultrasound.

2.2. Semen Sample

Semen samples were collected via masturbation on the first day of the visit, fol-
lowing World Health Organization (WHO) criteria for volume, liquefaction time, pH,
white blood cell concentration, spermatozoa concentration, motility progression, mor-
phological (Kruger criteria), and viability [42]. Immediately after completing the semen
analysis, an aliquot of semen was collected, and 10 × 106 spermatozoa were used for
8-hydroxy-2′-deoxyguanosine (8-OHdG) and acrosome reaction analysis (in fresh semen),
and 2 × 106 spermatozoa were frozen (−70 ◦C) for the sperm chromosome structure assay.
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2.3. Measuring Static Oxidation–Reduction Potential (sORP) Using MiOXSYS

Fresh semen samples were used to measure the ORP after liquefaction at room temper-
ature for 30 min. The MiOXSYS® system (Englewood, CO, USA), which is a highly specific
in vitro diagnostic tool for measuring the sORP in human semen, was used, as previously
described by Agarwal et al. [43,44]. Briefly, 30 µL of liquefied semen sample was applied
to the sensor chip and measured with the MiOXSYS® analyzer. The raw ORP value was
calculated after 2 min. The raw value was normalized to the total sperm concentration
(sORP). In this study, 1.38 mv/106 mL was used as the cut-off value for semen sORP to
differentiate between normal and abnormal sperm, and 1.41 mv/106 mL was used as the
cut-off value to classify sperm as infertile or fertile based on previous reports and the
MiOXSYS system user manual [14,43,45,46]. Higher sperm DNA fragmentation and low
fertilization rates were observed in patients with an sORP higher than 1.38 mv/106 mL,
which is indicative of male infertility [43,46,47]. However, these cut-off values correlate
with sperm parameters but not with the clinical outcomes of ART. Conversely, this interven-
tional study investigated the clinical outcome following IVF-ET and considered different
cut-off values. A well-designed study involving Japanese men with infertility reported
a cut-off value of 2.59 mv/106 mL, which correlated with semen findings and clinical
outcomes. As previously reported [48], a cut-off value of 1.9 mv/106 mL for the sORP
correlates with clinical outcomes, resulting in a fertilization rate of 50% or less following
ICSI. Therefore, we adopted sORP values of 1.9 mv/106 mL and compared the sperm
quality, serum oxidants, 8-OHdG, DNA fragmentation index (DFI), and semen parameters.
Furthermore, we analyzed the fertilization, embryo development, embryo quality, and
pregnancy outcomes.

2.4. Detection of 8-OHdG Levels

The level of 8-OHdG, which is an indicator of oxidative DNA damage, was measured
in the seminal plasma to assess OS in a similar method to that previously described [49].
The process involved creating an 8-OHdG–bovine serum albumin complex by dispensing
50 µL of 8-OHdG antigen into a 96-well microplate and incubating it for 1 h at room
temperature. Subsequently, the wells were washed four times with a washing solution and
blocked with a 1% bovine serum albumin/phosphate-buffered saline solution for 1 h at
room temperature. The wells were washed four more times with the washing solution.
Subsequently, 50 µL of the specimen or serially diluted standard sample was dispensed into
each well, and 50 µL of HRP-labeled anti-8-OHdG antibody (Japan Institute for the Control
of Aging, Tokyo, Japan) was continuously dispensed into each well. After mixing, 100 µL of
3,3′,5,5′-tetramethylbenzidine solution was dispensed into each well of the microplate, and
the mixture was allowed to react for 1 h at room temperature. The microplate was sealed
after washing the wells four times with the washing solution and incubated for 15 min
at room temperature in the dark. Finally, 50 µL of 1 M of phosphoric acid was dispensed
into each well, and the absorbance was measured using a microplate reader (TECAN,
Infinite® 200 PRO, Männedorf, Switzerland) at a measurement wavelength of 450 nm and
reference wavelength of 570 nm. The concentration of the sample was calculated from the
calibration curve.

2.5. Measuring Sperm DNA Fragmentation

DNA fragmentation testing was carried out on a frozen-prepared semen sample by
means of the Sperm Chromosome Structure Assay, as described in the WHO Laboratory
Manual for the Examination and Processing of Human Semen, 6th ed. (WHO Press: Geneva,
Switzerland, 2021; available online: https://www.who.int/publications/i/item/978924
0030787; accessed on 27 July 2021). Briefly, 400 µL of an acid solution (0.1% Triton X-100,
0.15 M NaCl, and 0.08 N HCI, pH 1.20, 4 ◦C) was added to 200 µL of sperm suspension
(1 × 106 sperm/mL Tris-NaCl-EDTA (TNE) buffer [0.01 M Tris, 0.15 M NaCl, 1 mM EDTA])
for 30 s, followed by the addition of 1.20 mL acridine orange (AO) dye solution (containing
6 mg purified AO/L (Invitrogen™, Thermo Fisher Scientific), AO buffer (370 mL stock
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0.1 M citric acid, 630 mL stock solution of 0.2 M Na2HPO4, 1 mM disodium EDTA, and
0.15 M NaCl, pH 6.0, 4 ◦C). Upon excitation at 488 nm, AO bound to double-stranded DNA
emits green fluorescence, whereas AO bound to single-stranded DNA emits red fluores-
cence. The percentage of DNA fragmentation of the total sperm population (percent of the
DNA fragmentation index (% DFI)) was determined from cytograms of non-fragmented
(green fluorescence) versus fragmented DNA (red fluorescence), quantified by the ratio of
red/[red + green] fluorescence. A reference sample (≤15% DFI) was used as a control at
the beginning of each experiment to verify the threshold between unfragmented (main cell
population) and fragmented sperm.

2.6. Ethical Statement

The Ethics Review Committee of Sendai ART Clinic and Fukushima Medical Univer-
sity, Fukushima, Japan, approved this study. After a detailed description of the purpose of
this study, written informed consent was obtained from all participants. All experimental
procedures were conducted according to the tenets of the Declaration of Helsinki.

2.7. Statistical Analysis

Statistical analysis was performed using EZR version 1.51 statistical software [50].
Continuous variables with a normal distribution were presented as the mean ± standard
deviation (p > 0.05 in the Kolmogorov–Smirnov test or Shapiro–Wilk test [n < 30]). Continu-
ous variables with a non-normal distribution were presented as a median. The continuous
variables were compared using Student’s t-test or the Mann–Whitney U-test depending
on whether they were parametric or non-parametric values, respectively. Comparisons
between intervention (51.90 and >1.9) and non-intervention or baseline, 3 months, and
6 months were performed using Frieman’s test and the Kruskal–Wallis test for data with a
non-normal distribution. Statistical significance was set at p < 0.05.

3. Results
3.1. Baseline Characteristics of the Study Participants

Table 1 shows a comparison of the clinical characteristics between the 136 men with
infertility who took antioxidants (n = 84) and those who did not (n = 52). The median age
differed significantly between the participants who took antioxidants and those who did
not (p = 0.0114), whereas the mean BMI showed no significant difference between the two
groups (p = 0.131). Regarding the serum hormones, significant differences were observed in
follicle-stimulating hormone and luteinizing hormone levels between the antioxidant and
no-antioxidant groups (p = 0.00217 and p = 0.0341, respectively), whereas the testosterone
levels did not significantly differ (p = 0.309). The serum oxidants, including folate, zinc,
vitamin E, and total HCY, did not significantly differ between the antioxidant and no-
antioxidant groups (p = 0.0778, p = 0.83, p = 0.845, and p = 0.957, respectively). Among
the semen parameters, significant differences were observed in sperm concentration, total
motility, progressive motility, sORP, DFI, zinc, and spermine between the antioxidant and
no-antioxidant groups (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p = 0.014, p = 0.0191, and
p = 0.0337, respectively).

Table 1. Patient characteristics.

Oral Antioxidants (n = 84) No Antioxidants (n = 52) p-Value

Age (median, range) 37 (31–41) 33 (29–37) 0.0114 a

Body mass index (mean ± SD) 23.5 ± 3.2 24.4 ± 2.9 0.131 b

Serum hormone
FSH (mIU/mL, mean ± SD) 4.3 (3.2–5.9) 3.4 (2.4–4.6) 0.00217 a

LH (mIU/mL, mean ± SD) 2.9 (2.3–4.1) 2.6 (2.1–3.1) 0.0341 a

Testosterone (ng/mL, mean ± SD) 5.1 (4.2–6.7) 4.9 (3.8–6.3) 0.309 a
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Table 1. Cont.

Oral Antioxidants (n = 84) No Antioxidants (n = 52) p-Value

Serum oxidants
Folate (ng/mL) 6.9 (5.1–9.0) 5.8 (5.0–7.7) 0.0778 a

Zinc (µg/dL) 80.0 (73.5–92.0) 84.5 (69.8–91.5) 0.83 a

Vitamin E (mg/dL) 1.10 (0.94–1.30) 1.19 (1.00–1.43) 0.0845 a

Total homocysteine (nmol/mL) 12.4 (10.8–14.8) 12.0 (10.8–15.0) 0.957 a

Semen parameters
Semen volume (mL) 3.0 (2.0–4.0) 2.5 (2.0–3.7) 0.239 a

Sperm concentration (106 per mL) 28.7 (10.8–66.0) 90.0 (64.7–127.6) <0.001 a

Total motility (%) 55.0 (34.0–75.5) 81.5 (71.0–92.3) <0.001 a

Progressive motility (%) 44.0 (25.0–61.0) 64.0 (53.5–77.3) <0.001 a

Normal forms (%) 3.0 (2.0–5.0) 4.0 (3.0–5.0) 0.0523 a

sORP (mV/106) 0.81 (0.23–2.77) 0.27 (0.12–0.45) <0.001 a

OHdG (ng/mL) 13.4 (10.5–18.1) 11.9 (9.6–15.6) 0.072 a

DFI (%) 13.8 (9.0–21.6) 10.1 (7.3–13.8) 0.014 a

Zinc (mg/dL) 11.4 (6.5–16.8) 15.4 (9.2–21.1) 0.0191 a

Creatinine (µg/mL) 162.2 (122.1–209.3) 158.7 (135.5–210.1) 0.677 a

Spermine (mM) 0.70 (0.56–0.85) 0.54 (0.34–0.83) 0.0337 a

Testosterone (ng/mL) 23.5 (15.8–30.9) 21.4 (14.9–28.6) 0.478 a

a: Mann–Whitney U-test, b: Student’s t-test.

3.2. Serum Oxidants and Semen Parameters

The serum oxidants are summarized in Table 2. The serum folate levels did not differ
significantly between the men with sORP ≤ 1.9 mv/106 mL that took oral antioxidants,
those with sORP > 1.9 mv/106 mL that took antioxidants, and those without antioxidants
at baseline. However, the serum folate levels were significantly higher in the men that took
the oral antioxidants after 3 and 6 months than in those that did not take the antioxidants.
Additionally, a significant increase in the serum folate levels was observed in the men that
took the antioxidants after 6 months. The serum zinc levels did not significantly differ
between the three groups at baseline and did not increase significantly after 3 or 6 months,
regardless of antioxidant use. The serum vitamin E levels did not differ significantly
between the men with sORP ≤ 1.9 mv/106 mL that took oral antioxidants, those with
sORP > 1.9 mv/106 mL that took antioxidants, and those that did not take antioxidants at
baseline. However, the serum vitamin E levels were significantly higher in the men that
took oral antioxidants only after 6 months than in those that did not take anti-antioxidants.
Additionally, a significant increase in vitamin E levels was observed in the men that took
antioxidants, whereas a significant decrease in vitamin E levels was observed in those that
did not take antioxidants. The semen parameters are summarized in Table 3. The serum
total HCY levels did not significantly differ between the men with sORP ≤ 1.9 mv/106 mL
that took oral antioxidants, those with sORP > 1.9 mv/106 mL that took antioxidants, and
those that did not take antioxidants at baseline. However, the serum total HCY levels
significantly decreased in the men that took oral antioxidants after 3 or 6 months than in
those that did not take antioxidants. Additionally, a significant decrease was observed in
the total HCY in the men that took antioxidants. The semen volume did not significantly
change between the three groups after 3 or 6 months. The semen volume, total motility,
and progressive motility did not significantly change between the three groups after 3 or
6 months. In contrast, the men with sORP > 1.9 mv/106 mL that took antioxidants had
significantly lower sperm concentrations than those with sORP ≤ 1.9 mv/106 mL that
took oral antioxidants and those that did not take antioxidants at baseline. However, the
sperm concentration levels in men with sORP > 1.9 mv/106 mL that took antioxidants
after 6 months significantly improved more than those at baseline (p < 0.05). The sORP
in the men with >1.9 mv/106 mL that took antioxidants was significantly higher than the
other groups at baseline, and the sORP in the men with sORP >1.9 mv/106 mL that took
antioxidants significantly improved after 6 months (p < 0.05). However, no significant
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change was observed in the men with sORP ≤ 1.9 mv/106 mL that took oral antioxidants
after 6 months (p = 0.441). Furthermore, 8-OHdG did not change between the three groups
at baseline, and no significant improvement was observed in the antioxidant and no-
antioxidant groups. Additionally, the DFI in the men with sORP > 1.9 mv/106 mL that took
antioxidants was significantly higher than the other groups at baseline, and no significant
improvement in the DFI was observed in the antioxidant and no-antioxidant groups.

Table 2. The alteration of serum oxidant between those that took oral antioxidants and those that did
not take antioxidants.

Oral Antioxidants (n = 84)
No Antioxidants

(n = 52)
p-ValuesORP: ≤1.9 mv/106 mL

(n = 52)
sORP: >1.9 mv/106 mL

(n = 32)

Serum Oxidants

Folate Baseline 6.8 (5.3–9.0) 7.0 (5.1–8.5) 5.8 (5.0–7.7) 0.183 **
After 3 months 16.3 (13.0–19.7) 17.4 (15.4–20.0) 6.3 (5.1–8.2) <0.001 **
After 6 months 15.5 (11.5–20.0) 16.9 (14.0–19.0) 5.6 (4.5–7.2) <0.001 **

p-value <0.001 * <0.001 * 0.073 *

Zinc Baseline 85.0 (76.8–92.3) 76.0 (71.5–91.3) 84.5 (69.8–91.5) 0.344 **
After 3 months 85.0 (79.8–97.3) 83.0 (73.8–94.3) 79.0 (69.5–90.8) 0.257 **
After 6 months 87.5 (77.3–101.0) 80.5 (73.0–92.8) 82.0 (70.3–92.5) 0.191 **

p-value 0.136 * 0.050 * 0.432 *

Vitamin E Baseline 1.10 (0.95–1.30) 1.10 (0.90–1.32) 1.19 (1.00–1.43) 0.249 **
After 3 months 1.24 (1.10–1.40) 1.125 (1.06–1.42) 1.11 (0.97–1.32) 0.107**
After 6 months 1.24 (1.05–1.37) 1.28 (1.06–1.44) 1.10 (0.97–1.23) <0.05 **

p-value <0.001 * <0.001 * <0.001 *

Total homocysteine Baseline 13.0 (11.2–14.8) 12.3 (10.7–14.2) 12.0 (10.8–15.0) 0.843 **
After 3 months 10.7 (9.75–12.0) 10.5 (9.5–11.7) 12.5 (10.8–15.7) <0.001 **
After 6 months 11.0 (9.68–12.1) 11.3 (10.2–12.2) 13.5 (11.0–16.1) <0.001 **

p-value <0.001 * <0.001 * 0.518 *

* Frieman’s test, ** Kruskal–Wallis test.

Table 3. The alteration of semen parameters between those that took oral antioxidants and those that
did not take antioxidants.

Oral Antioxidants (n = 84)
No Antioxidants

(n = 52)
p-ValuesORP: ≤1.9 mv/106 mL

(n = 52)
sORP: >1.9 mv/106 mL

(n = 32)

Semen Parameters

Semen volume (mL) Baseline 2.7 (2.0–3.4) 3.6 (2.6–5.0) 2.5 (2.0–3.7) <0.05 **
After 3 months 2.6 (2.0–3.5) 3.3 (2.8–4.6) 2.4 (1.8–3.5) <0.05 **
After 6 months 2.6 (2.0–3.2) 3.6 (2.3–4.4) 3.0 (2.0–3.7) 0.096 **

p-value 0.691 * 0.227 * 0.889 *

Sperm concentration
(106 per mL) Baseline 53.3 (28.5–91.3) 8.4 (4.1–17.6) 90.0 (64.7–127.6) <0.001 **

After 3 months 48.3 (26.6–81.2) 10.0 (6.6–18.7) 89.8 (55.2–130.2) <0.001 **
After 6 months 49.3 (28.6–68.9) 14.3 (5.3–25.9) 76.7 (50.9–130.2) <0.001 **

p-value 0.186 * <0.05 * 0.272

Total motility (%) Baseline 64.5 (42.5–78.3) 50.5 (25.0–67.3) 81.5 (71.0–92.3) <0.001 **
After 3 months 63.5 (41.8–77.3) 45.0 (30.3–61.0) 83.0 (66.8–93.3) <0.001 **
After 6 months 58.0 (38.8–71.8) 45.5 (25.5–66.3) 80.5 (67.8- 91.0) <0.001 **

p-value 0.858 0.306 0.520

Progressive motility (%) Baseline 50.0 (27.8–62.8) 40.0 (17.3–52.0) 64.0 (53.5–77.3) <0.001 **
After 3 months 51.0 (29.5–64.3) 37.0 (19.8–52.3) 62.5 (51.0–75.5) <0.001 **
After 6 months 44.5 (29.8–58.3) 36.5 (20.8–58.5) 62.5 (51.8–75.7) <0.001 **

p-value 0.966 * 0.798 * 0.227
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Table 3. Cont.

Oral Antioxidants (n = 84)
No Antioxidants

(n = 52)
p-ValuesORP: ≤1.9 mv/106 mL

(n = 52)
sORP: >1.9 mv/106 mL

(n = 32)

sORP Baseline 0.33 (0.15–0.70) 3.66 (2.00–7.06) 0.27 (0.12–0.45) <0.001 **
After 3 months 0.34 (0.12–0.65) 2.78 (1.58–5.00) 0.24 (0.10–0.61) <0.001 **
After 6 months 0.40 (0.17–0.66) 1.53 (1.06–5.19) 0.36 (0.18–0.57) <0.001 **

p-value 0.441 * <0.05 * 0.095 *

8-OHdG Baseline 14.4 (10.6–18.1) 13.2 (9.3–17.9) 11.9 (9.6–15.6) 0.196 **
After 3 months 14.1 (10.9–16.7) 14.3 (11.4–16.5) 14.1 (9.9–17.9) 0.926 **
After 6 months 14.6 (11.2–17.7) 13.5 (10.2–16.0) 11.9 (8.6–16.2) 0.084 **

p-value 0.841 * 0.519 * 0.174 *

DFI Baseline 10.9 (7.9–17.2) 15.2 (12.1–23.8) 10.1 (7.3–13.8) <0.001 **
After 3 months 12.6 (7.3–18.2) 15.3 (10.4–22.7) 9.5 (6.5–14.2) <0.001 **
After 6 months 13.0 (7.7–21.5) 15.3 (10.8–23.9) 10.2 (6.5–18.6) <0.001 **

p-value 0.116 * 0.261 * 0.334 *

Zinc Baseline 10.5 (6.3–16.5) 13.4 (9.8–18.8) 15.4 (9.2–21.1) <0.05 **
After 3 months 11.7 (7.1–16.7) 14.5 (11.1–17.1) 14.8 (9.7–19.5) 0.0583 **
After 6 months 11.2 (7.2–14.1) 12.4 (9.5–16.8) 15.1 (11.1–18.8) <0.05 **

p-value 0.584 * 0.911 * 0.779 *

Creatinine Baseline 176.7 (135.4–208.6) 150.7 (112.0–219.0) 158.7 (135.5–210.1) 0.390 **
After 3 months 162.1 (116.9–196.0) 130.6 (111.7–202.4) 154.8 (128.4–211.1) 0.650 **
After 6 months 159.7 (126.2–191.3) 138.1 (98.2–201.4) 159.8 (126.9–193.1) 0.432 **

p-value 0.050 * 0.911 * 0.050 *

Spermine Baseline 0.725 (0.630–0.853) 0.635 (0.488–0.863) 0.540 (0.335–0.832) 0.066 **
After 3 months 0.695 (0.355–0.862) 0.630 (0.408–0.820) 0.880 (0.388–0.873) 0.881 **
After 6 months 0.695 (0.478–0.873) 0.625 (0.345–0.885) 0.615 (0.430–0.875) 0.733 **

p-value 0.827 * 0.902 * 0.061 *

Testosterone Baseline 23.6 (15.8–31.9) 22.6 (16.1–30.6) 21.4 (14.9–28.6) 0.676 **
After 3 months 25.8 (15.8–37.3) 20.7 (16.2–27.1) 19.9 (14.1–35.8) 0.728 **
After 6 months 23.1 (15.8–32.4) 21.5 (14.8–28.4) 21.7 (15.5–30.7) 0.650 **

p-value 0.694 * 0.102 * 1.000 *

* Frieman’s test, ** Kruskal–Wallis test.

3.3. Clinical Outcomes of IVF-ET

The alteration of the ART outcome between taking oral antioxidants and not taking
antioxidants are summarized in Table 4. At baseline, no significant differences were
observed between the men with sORP ≤ 1.9 mv/106 mL that took oral antioxidants,
those with sORP > 1.9 mv/106 mL that took antioxidants, and those with no antioxidants
regarding the number of oocytes retrieved, number of MII oocytes, fertilization rate, and
high-quality blastocyst rate. Moreover, no changes were observed in those with or without
oral antioxidants after 6 months. Furthermore, the implantation and clinical pregnancy rates
did not significantly differ between the three groups before the intervention, although the
intervention with oral antioxidants for 6 months significantly improved the implantation
and clinical pregnancy rates in the men with sORP > 1.9 mv/106 mL that took antioxidants
(p < 0.05 and p < 0.05, respectively). The men with sORP > 1.9 mv/106 mL that took
antioxidants had the highest improved implantation and clinical pregnancy rates compared
with the other groups (p < 0.05 and p < 0.05, respectively). No significant differences were
observed in miscarriage rates between the three groups at baseline, and no change was
observed in those that took or did not take oral antioxidants after 6 months.
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Table 4. The alteration of ART outcome between those that took oral antioxidants and those that did
not take antioxidants.

Oral Antioxidants (n = 84)
No Antioxidants

(n = 30)
p-ValuesORP: ≤1.9 mv/106 mL

(n = 52)
sORP: >1.9 mv/106 mL

(n = 32)

Number of total
oocytes retrieved Baseline 6.0 (4.0–10.0) 6.0 (2.0–10.0) 7.0 (3.5–13.5) 0.728 **

After 6 months 4.0 (2.0–6.0) 2.5 (1–9.8) 5.0 (4.0–7.0) 0.296 **
p-value <0.001 * 0.166 * 0.606 *

Number of MII oocytes Baseline 5.0 (3.0–8.0) 5.0 (2.0–9.0) 6.0 (3.5–10.0) 0.733 **
After 6 months 3.0 (2.0–5.0) 2.0 (1.0–7.5) 4.0 (3.0–6.0) 0.324 **

p-value <0.001 * 0.154 * 0.538 *
Fertilization rate (%) Baseline 80.0 (60.0–100.0) 75.0 (50.0–92.5) 84.6 (66.7–88.2) 0.496 **

After 6 months 66.7 (50.0–100.0) 70.7 (50.0–100.0) 77.5 (75.0–83.3) 0.592 **
p-value 0.0988 * 0.808 * 0.979 *

High-quality blastocyst rate (%) Baseline 20.0 (0–50.0) 33.3 (0–55.3) 43.8 (0–62.8) 0.425 **
After 6 months 20.0 (0–60.0) 50.0 (26.8–50.0) 40.0 (8.4–79.9) 0.695 **

p-value 0.726 * 0.709 * 0.712 *
Implantaion rate (%) Baseline 38.9% 47.1% 35.9% 0.529 ***

After 6 months 53.8% 76.2% 33.3% <0.05 ***
p-value 0.132 *** <0.05 *** 1.00 ***

Clinical pregnancy rate (%) Baseline 25.9% 38.2% 28.2% 0.395 ***
After 6 months 35.9% 71.4% 22.2% <0.05 ***

p-value 0.301 *** <0.05 *** 0.753 ***
Miscarraige rate (%) Baseline 57.1% 38.5% 18.2% 0.0724 ***

After 6 months 21.4% 26.7% 50% 0.572 ***
p-value 0.05 *** 0.689 *** 0.516 ***

* Frieman’s test, ** Kruskal–Wallis test, *** Fisher exact test.

4. Discussion

The present interventional study supported the hypothesis that antioxidants are
associated with a trend toward improving reproductive outcomes in men with infertility
undergoing IVF-ICSI. Concretely, our findings suggest that in individuals with high sperm
OS (high sORP), the consumption of micronutrient antioxidants improved serum oxidants
and semen parameters, resulting in increased implantation and clinical pregnancy rates
compared with those not taking antioxidants.

Micronutrient deficiencies, such as folic acid and zinc, may be involved in male infertil-
ity, which is a complex problem that afflicts many couples all over the world. Investigations
examined the effects of folic acid and folic acid plus zinc antioxidants in reducing ROS to
improve sperm characteristics and pregnancy outcomes in men with infertility. OS, mainly
as a result of elevated ROS levels, can compromise sperm viability and decrease the sperm
count/concentration [51]. Our study results support previous findings that micronutrient
antioxidants, including folic acid and zinc, have a beneficial effect on sperm concentration
but not on sperm count. Ebisch et al. described a significant increase in sperm concen-
tration in infertile men taking folic acid- and zinc-based supplements [52]. Raigani et al.
also showed that folic acid- and zinc-based supplements improve sperm concentration in
infertile men taking only folic acid supplementation [53]. However, a recent meta-analysis
of five randomized controlled trials (RCTs) demonstrated that folic acid- and zinc-based
antioxidants do not have a significant effect on sperm concentration in men with infertility
(MD, 0.95; 95% confidence interval [CI], −4.54 to 6.45; p = 0.73) [54]. This contradictory
result can be attributed to the 6-month duration of treatment with folic acid- and zinc-based
antioxidants in our study, which may have influenced the improvements compared with
the shorter treatment durations examined in previous studies. This finding means that
long-term intervention, such as 6 months with folic acid- and zinc-based antioxidants, may
have improved the turnover of spermatogenesis because one piece of evidence reported
no relation between folic acid- and zinc-based antioxidants and sperm features, especially
for durations shorter than one cycle of spermatogenesis [55]. Moreover, the micronutrient
antioxidants used contained folic acid and coenzymes in the HCY metabolism pathway,
efficiently lowering HCY levels, may have an adjunctive role in preventing HCY-mediated
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OS and can also improve male fertility by enhancing DNA methylation during spermatoge-
nesis. OS can also affect sperm production in the testis, resulting in decreased sperm count
and oligozoospermia [56].

These findings are important, as immature and morphologically abnormal sperm are
considered the main endogenous sources of ROS, potentially leading to reduced sperm
genomic integrity [57]. OS is related to sperm DNA fragmentation, gene mutations, and
genetic disorders [12]. Previously, some researchers reported that OS is associated with
infertility problems in males, such as reduced sperm motility, sperm DNA damage, and
an increased risk of recurrent miscarriages [12,58,59], since excessive OS can have detri-
mental effects on fertility, pregnancy outcomes, and the genetic health of newborns [60].
Furthermore, an equilibrium between elevated ROS and diminished antioxidant defenses
induces oxidative stress, which negatively alters sperm motility and DNA integrity [61].
ORP is a direct measure of OS or redox imbalance in biological samples. As an indi-
cator of OS, ORP has been associated with the severity of pathogenesis owing to the
reflection of cellular damage [62]. Male patients with infertility have higher sORP levels
than fertile individuals [46,63]. Additionally, sORP negatively correlates with total sperm
count, motility, and morphology [7,46,63,64], but positively correlates with sperm DNA
fragmentation [63,64]. Thus, OS in semen may be the cause of infertility associated with
reduced basic semen parameters and the genomic integrity of spermatozoa. In this study,
when the sORP was >1.9 mv/106 mL, the oral intake of micronutrient antioxidants signifi-
cantly gradually reduced the OS in semen over 3 and 6 months. Differences were observed
between the two oxidative markers, sORP and 8-OHdG. The participants were divided
into two groups using 1.9 mv/106 mL as the cut-off value based on their pre-interventional
ORP levels, and the pre- and post-interventional 8-OhdG levels did not differ between
the groups. Additionally, no apparent correlations were observed between the ORP and
8-OhdG in men that underwent pre- and post-intervention. Hence, these two markers
might not represent the same aspect of OS in sperm. ORP, also known as redox balance,
is a direct biomarker of OS, as it describes the relative proportion of ROS and antioxida-
tive substances [65]. In contrast, 8-OHdG is generally recognized as a key biomarker of
oxidative damage [66,67], and sperm 8-OHdG levels have been associated with semen
parameters in patients with infertility [68,69]. In this study, these two markers did not
yield consistent results, consistent with the report of other studies suggesting they cannot
be parallelly used as a single assay to diagnose OS [70,71]. Furthermore, the DFI is a
biomarker used to detect sperm DNA fragmentation or damage and is an advanced test
of sperm function correlated to fertility outcomes [72,73]. Previous reports have shown
that sperm DFI negatively relates to sperm concentration [74,75] and positively correlates
with sORP [76]. Sperm DFI is independent of semen parameters and is a better predictor of
male fertility than routine semen parameters [77]. In a review of 20 studies, Gharagozloo
et al. reported that oral antioxidant supplementation was associated with a significant
reduction in OS, improvement in sperm function parameters, and decreased sperm DNA
fragmentation [78]. In particular, folic acid- and zinc-based antioxidants have a positive
impact on sperm DNA fragmentation [78]. On the other hand, A recent RCT reported a
negative impact; taking folic acid- and zinc-based antioxidants led to a significant increase
in DNA fragmentation compared with taking a placebo (29.7% versus 27.2%; mean dif-
ference 2.4% [95% CI, 0.5–4.4%]) [79]. In this study, pre-interventional DFI levels were
significantly higher in male patients with sORP >1.9 mv/106 mL, but the oral intake of folic
acid- and zinc-based antioxidants did not significantly reduce the DFI. The effect of folic
acid- and zinc-based antioxidants on DNA fragmentation remains controversial, and even
considering the turnover in spermatogenesis, oral intake for 6 months reduced OS but did
not improve the DNA fragmentation. Additionally, even in the group (>1.9 mv/106 mL of
sORP) with the highest DFI in this study, the values did not exceed the standard criteria of
the test, and perhaps because the group originally had relatively low DFI levels, the effect
of micronutrient antioxidants on the DFI may be unclear.
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A recent Cochrane review that comprised 48 RCTs examined the effect of antioxidants
on male infertility elucidated a significant improvement in clinical pregnancy rates (odds
ratio [OR] 3.43, 95% CI 1.92–6.11, p < 0.001) and live birth rates (OR 4.21, 95% CI 2.08–8.51,
p < 0.001) [80]. Some studies also elucidated the beneficial efficiency of folic acid and
zinc antioxidants on pregnancy outcomes in infertile men. Well-designed RCTs, such
as the Folic Acid and Zinc Supplementation RCT (FAZST) in couples that underwent
infertility therapy, reported no significant improvements in semen parameters or pregnancy
outcomes for male partners that took high-dose folic acid- (5 mg) and zinc-based (30 mg)
antioxidants for 6 months than for those that took a placebo [79,81]. However, a further
prospective cohort study found that 3 months of folic acid- (400 mg) and zinc-based (15 mg)
antioxidants in men with infertility that underwent IVF-ICSI resulted in improved semen
parameters or pregnancy outcomes [82]. In this study, pregnancy outcomes after ET before
intervention did not significantly differ between the three groups. However, in the men
with sORP > 1.9 mv/106 mL, the oral intake of micronutrient antioxidants containing folic
acid and zinc for 6 months significantly improved the implantation and clinical pregnancy
rates compared with the other groups. We intervened with folic acid- and zinc-based
antioxidants of approximately the same amount of folic acid (400 mg) and zinc (12 mg)
as those used in the study by Scaruffi et al. [82]. Conversely, the high-dose intake of zinc
lowers sperm quality [54]; therefore, the results of Scaruffi et al. [82] and our study might
differ from those of the FAZST [79]. The folic acid- and zinc-based antioxidants in the
FAZST did not exhibit a positive impact on sperm parameters or pregnancy outcomes [79];
however, we speculated that differences in the study design may have been the reason
for the difference as the intervention was not used for a population with poor semen
quality, such as >1.9 mv/106 mL of sORP. Moreover, folate, zinc, and a combination of
seven types of micronutrients may have contributed to a synergistic effect, including the
reduction in HCY. This study is promising; however, further research is needed to clarify the
appropriate dosage and duration of micronutrient antioxidants, as well as the underlying
mechanisms. Health professionals should consider recommending folic acid- and zinc-
based antioxidants to men with infertility, especially those with high sORP, undergoing
IVF-ICSI while addressing other potential contributing factors to infertility.

Oxidative stress induces epigenetic changes in germ cells, altering DNA methylation
and histone modifications [12]. This can impact gene expression, potentially influencing
the health of the next generation, as well as self-fertility. Epigenetic changes in germ cells,
specifically alterations in DNA methylation patterns and histone modifications, can occur
due to these influencing the OS [83,84]. In this study, although either the sperm DFI or
8OHdG levels, which are markers of sperm oxidative DNA damage, were not changed,
intervention with micronutrient antioxidants improved only the sORP. Therefore, it is
possible that micronutrient antioxidants directly improved the outcome of the IVF/ICSI
cycle, although it is also possible that DNA methylation abnormalities caused by OS were
rescued by micronutrient antioxidants and upregulated the high-quality blastocyst rate
and implantation rate.

This study had some limitations. First, this study was a patient-oriented intervention
trial, which is problematic because of the lack of an aligned patient background and
a placebo, which may introduce many confounding factors. Second, sORP was used
as a parameter of sperm quality; however, most participants in our study met WHO
criteria, potentially leading to low sORP levels. Third, the total intake of folic acid and
zinc could not be calculated because of a lack of dietary intake data. Fourth, our study
focused on folic acid and zinc antioxidants; however, other antioxidants, such as vitamins
B and C, may have influenced the results. Fifth, OS influences epigenetic alterations by
impacting histone modifications, such as acetylation and methylation, thereby shaping
the gene expression patterns essential for meiotic progression. The intricate interplay
between meiotic phases and epigenetic alterations significantly influences male fertility,
and the altered epigenetic signature as the malefactor may disturb the embryo following
fertilization [12,83–85]. However, since this study did not analyze epigenetic changes in
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sperm, it is unclarified whether micronutrient antioxidants had an epigenetic effect on
the improved clinical outcome. Sixth, when considering the impacts of folic acid- and
zinc-based antioxidants, the MTHFR gene polymorphism must be considered because
some researchers have reported that two polymorphisms in the MTHFR gene (677CT and
677TT) affect male fertility [86–88]; however, our analysis did not investigate the genetic
background. Further large-scale, prospective, multicenter studies are needed to solidify
our findings because this study was not a real-world analysis, but only an analysis in a
limited population.

Nevertheless, this study had several strengths. It is the strongest point that two well-
designed studies were undertaken using Menevit® as micronutrient antioxidants. One
case–control study described that Menevit® resulted in significant improvements in sperm
DNA integrity and a reduction in seminal ROS production and apoptosis [89]. Another
prospective randomized double-blind placebo-controlled trial described that Menevit®

had a statistically significant improvement in pregnancy rate following the IVF/ICSI
program compared with the control group [90]. However, these two studies investigated the
outcome of sperm quality by Menevit and the clinical outcomes of IVF/ICSI treatment by
Menevit, respectively, and this was the first study to analyze two outcomes, providing more
support for the previous two reports. Furthermore, this study analyzed the monitoring
for various markers after the oral administration of micronutrient antioxidants to confirm
good compliance, and no other study has confirmed the effects of the intervention in detail.
Therefore, the results of this study are valuable because of the veracity of what happened
in vivo.

In conclusion, this prospective interventional study revealed significant improve-
ments in sperm characteristics and pregnancy outcomes following IVF/ICSI-ET when
micronutrient antioxidants were used. The speculated mechanisms are as follows: (1) oral
intake of micronutrient antioxidants systemically increases antioxidants; (2) these antioxi-
dants focally reduce semen OS, but do not prevent DNA damage; and (3) the high-quality
blastocyst rate tends to increase after the intervention, and the pregnancy rate improves.
These findings may support the use of micronutrient antioxidants in male partners who
undergo infertility treatment, although medical professionals should consider other factors
contributing to infertility.
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