Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of PKCOS and Content Analysis
2.3. In Vitro Antioxidant Evaluation of PKCOS
2.4. IPEC-J2 Cell Line and Culture In Vitro
2.5. Effects of PKCOS on Cell Viability and Underlying Mechanisms
2.5.1. Effects of PKCOS and LPS on IPEC-J2 Cell Viability
2.5.2. Mechanistic Exploration of PKCOS’s Effects on the Survival Rate of IPEC-J2 Cells with or without LPS
2.6. Cell Survival Rate Assay
2.7. Bioinformatics Analysis and qPCR
Gene | Version | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|---|
β-actin | XM_021086047.1 | AACTACCTTCAACTCCATCAT | GATCTCCTTCTGCATCCTGT |
TNF-α | NM_214022.1 | CACGCTCTTCTGCCTACTGC | ACGATGATCTGAGTCCTTGG |
IL-6 | NM_214399.1 | GCTTCTGGTGATGGCTACTG | GCCGAGGATGTACTTAATGAGTTC |
PIK3AP1 | NM_001244503.1 | TCCAGCACAGCAAGCAG | GTAACCTCGGGCACTTCATT |
CASP3 | NM_214131.1 | GGACTGCTGTAGAACTCTAACTGG | CAAGAAGTCTGCCTCAACTGGTA |
CMKLR1 | NM_001123100.1 | CAAGAAAGAAGTCGGGGAACAC | CTCTGGGAGCTGGCTGTGAT |
FOS | NM_001123113.1 | CCCCAGAAGAAGAAGAGAAAAGG | GTCTGTCTCCGCTTGGAGTGT |
SOCS3 | NM_001123196.1 | ATCCCTCTGGTGTTGAGCCG | GCCGTTGACTGTTTTCCGAC |
MAP3K5 | XM_021072505.1 | CACCGGGATATAAAGGGTGACAA | CAAATGTCTGCTGCCTTCCC |
BCL2L1 | XM_021077294.1 | GTGAACTGGGGTCGCATTGT | CCTTGTCTACGCTCTCCACG |
LIF | NM_214402.2 | TGTACCGCATCATCGCCTAC | CAGGTTCACAGCACCAGGAT |
SLC5A1 | XM_021072101.1 | TCATCATCGTCCTGGTCGTCTCC | TGAATGTCCTCCTCCTCTGCATCC |
SLC2A2 | NM_001097417.1 | TGCTCTGGTCTCTGTCTGTGTCC | ATTCTTCCAAGCCGATCTCCAAGC |
MPI | NM_001253921.1 | ACCTTTCTGACGAAGGTGCC | AGATCCGCTTCACCAACAGG |
PMM2 | XM_021086654.1 | CCGAAACGGGATGTTGAACG | GCTGATCTGGCCTCCTATGG |
SOD1 | NM_214201.1 | CGTGCAACCAGTTTGGACAT | AGCATGAAGTTGGGCTCGAA |
SOD2 | NM_214127.2 | CTTGCAGATTGCCGCTTGTT | CGGCGTATCGCTCAGTTACA |
GPX1 | XM_021081498.1 | TGTACCCGCTATTCTGGGGA | TCACACAGGCGTTTCCTCTC |
GPX4 | NM_001190422.1 | AACCAGATGACTTGGGCAGA | AGACCATGGCATGAGGGAAT |
CAT | NM_214407.1 | TGTGGTTTACGGATTCTGG | CCTTGGGCTGGACTTTCA |
NRF2 | XM_005654811.3 | TACATGCACTTTGGGGAGGT | AGATCGTCCCGGCTAATGAG |
KEAP1 | XM_021075132.1 | AGAGCCCAGTCTTCATTGCT | TGTCCTGTTGCATACCGTCT |
2.8. Statistical Analysis
3. Results
3.1. Contents of PKCOS
3.2. Evaluation of Antioxidant Activity of PKCOS In Vitro
3.3. Effect of PKCOS or LPS on IPEC-J2 Cell Viability
3.4. PKCOS Enhanced Cell Viability and Altered Gene Transcription Expression
3.5. PKCOS Attenuated IPEC-J2 Cell Apoptosis Induced by LPS
3.6. PKCOS Promotes the Glycolysis of Cells via HK and MPI Enzymes
3.7. PKCOS Readjusted the Antioxidant Genes’ mRNA Expressions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, H.H.; Casas, G.A.; Abelilla, J.J.; Liu, Y.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 2015, 6, 56. [Google Scholar] [CrossRef]
- Kwon, W.B.; Park, S.K.; Kong, C.; Kim, B.G. The effect of various inclusion levels of β-mannanase on nutrient digestibility in diets consisting of corn, soybean meal and palm kernel expellers fed to growing pigs. Am. J. Anim. Vet. Sci. 2015, 10, 9–13. [Google Scholar] [CrossRef]
- Tao, R.; Chen, Q.Y.; Li, Y.; Guo, L.; Zhou, Z.Q. Physicochemical, nutritional, and phytochemical profile changes of fermented citrus puree from enzymatically hydrolyzed whole fruit under cold storage. LWT-Food Sci Technol 2022, 169, 114009. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhang, M.; Mujumdar, A.S. New technology to overcome defects in production of fermented plant products-a review. Trends Food Sci. Technol. 2021, 116, 829–841. [Google Scholar] [CrossRef]
- Díaz, S.; Ortega, Z.; Benítez, A.N.; Marrero, M.D.; Carvalheiro, F.; Duarte, L.C.; Matsakas, L.; Krikigianni, E.; Rova, U.; Christakopoulos, P.; et al. Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp. Biomass Convers. Biorefin. 2021, 13, 10677–10688. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Bali, V.; Panesar, P.S.; Bera, M.B.; Panesar, R. Fructo-oligosaccharides: Production, Purification and Potential Applications. Crit. Rev. Food Sci. Nutr. 2015, 55, 1475–1490. [Google Scholar] [CrossRef]
- Courtois, J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol. 2009, 12, 261–273. [Google Scholar] [CrossRef]
- Chung, H.Y.; Lee, G.S.; Nam, S.H.; Lee, J.H.; Han, J.P.; Song, S.; Kim, G.D.; Jung, C.; Hyeon, D.Y.; Hwang, D.; et al. Morc2a variants cause hydroxyl radical-mediated neuropathy and are rescued by restoring GHKL ATPase. Brain 2024, awae017. [Google Scholar] [CrossRef]
- Treml, J.; Smejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Liu, F.; Ooi, V.E.C.; Chang, S.T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 1997, 60, 763–771. [Google Scholar] [CrossRef]
- Del-Castillo-Llamosas, A.; Eibes, G.; Ferreira-Santos, P.; Perez-Perez, A.; Del-Rio, P.G.; Gullon, B. Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose. Bioresour. Technol. 2023, 385, 129432. [Google Scholar] [CrossRef]
- Li, Y.X.; Yi, P.; Liu, J.; Yan, Q.J.; Jiang, Z.Q. High-level expression of an engineered beta-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. Bioresour. Technol. 2018, 256, 30–37. [Google Scholar] [CrossRef]
- Cutler, S.A.; Lonergan, S.M.; Cornick, N.; Johnson, A.K.; Stahl, C.H. Dietary Inclusion of Colicin E1 Is Effective in Preventing Postweaning Diarrhea Caused by F18-Positive Escherichia coli in Pigs. Antimicrob. Agents Chemother. 2007, 51, 3830–3835. [Google Scholar] [CrossRef]
- Omonijo, F.A.; Liu, S.; Hui, Q.; Zhang, H.; Lahaye, L.; Bodin, J.C.; Gong, J.; Nyachoti, M.; Yang, C. Thymol Improves Barrier Function and Attenuates Inflammatory Responses in Porcine Intestinal Epithelial Cells during Lipopolysaccharide (LPS)-Induced Inflammation. J. Agric. Food. Chem. 2019, 67, 615–624. [Google Scholar] [CrossRef]
- Merga, Y.; Campbell, B.J.; Rhodes, J.M. Mucosal barrier, bacteria and inflammatory bowel disease: Possibilities for therapy. Dig. Dis. 2014, 32, 475–483. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef]
- Hansson, G.C.; Johansson, M.E.V. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010, 1, 51–54. [Google Scholar] [CrossRef]
- Na, K.; Wei, J.; Zhang, L.; Fang, Y.; Li, X.; Lu, S.; Guo, X. Effects of chitosan oligosaccharides (COS) and FMT from COS-dosed mice on intestinal barrier function and cell apoptosis. Carbohydr. Polym. 2022, 297, 120043. [Google Scholar] [CrossRef]
- Niu, X.; Hu, C.; Chen, S.; Wen, J.; Liu, X.; Yong, Y.; Yu, Z.; Ma, X.; Li, C.; Warda, M.; et al. Chitosan-gentamicin conjugate attenuates heat stress-induced intestinal barrier injury via the TLR4/STAT6/MYLK signaling pathway: In vitro and in vivo studies. Carbohydr. Polym. 2023, 321, 121279. [Google Scholar] [CrossRef]
- Shi, L.; Fang, B.; Yong, Y.H.; Li, X.W.; Gong, D.L.; Li, J.Y.; Yu, T.Y.; Gooneratne, R.; Gao, Z.H.; Li, S.D.; et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr. Polym. 2019, 219, 269–279. [Google Scholar] [CrossRef]
- Soto-Heredero, G.; Gomez de Las Heras, M.M.; Gabande-Rodriguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis—A key player in the inflammatory response. FEBS J. 2020, 287, 3350–3369. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, Z.; Pan, R.; Su, X.; Wang, H.; Xue, J.; Zhuang, K.; Gao, J.; Chen, Z.; Lin, H.; et al. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to beta-amyloid clearance. Nat. Metab. 2022, 4, 1287–1305. [Google Scholar] [CrossRef]
- Huang, C.Y.; Kuo, W.T.; Huang, C.Y.; Lee, T.C.; Chen, C.T.; Peng, W.H.; Lu, K.S.; Yang, C.Y.; Yu, L.C. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischaemic gut. J. Physiol. 2017, 595, 505–521. [Google Scholar] [CrossRef]
- Hang, S.Q.; Zeng, H.; Zhu, W.Y. A method and Application of Lactobacillus plantarum LY19 and Its Co-Fermentation for Enzymatic Hydrolysis of Palm Kernel Cake. Patent CN116676223A, 1 September 2023. [Google Scholar]
- da Silva, I.M.; Rabelo, M.C.; Rodrigues, S. Cashew juice containing prebiotic oligosaccharides. J. Food Sci. Technol. 2014, 51, 2078–2084. [Google Scholar] [CrossRef]
- Xiang, X.; Yang, L.; Hua, S.; Li, W.; Sun, Y.; Ma, H.; Zhang, J.; Zeng, X. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography. Food Chem. 2008, 111, 215–219. [Google Scholar] [CrossRef]
- Yao, L.; Shi, X.; Chen, H.; Zhang, L.; Cen, L.; Li, L.; Lv, Y.; Qiu, S.; Zeng, X.; Wei, C. Major Active Metabolite Characteristics of Dendrobium officinale Rice Wine Fermented by Saccharomyces cerevisiae and Wickerhamomyces anomalus Cofermentation. Foods 2023, 12, 2370. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, S.R.; Azam, M.; Shaibu, A.S.; Abdelghany, A.M.; Feng, Y.; Huai, Y.; Feng, H.; Liu, Y.; Ma, C.; et al. Profiling seed soluble sugar compositions in 1164 Chinese soybean accessions from major growing ecoregions. Crop J. 2022, 10, 1825–1831. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef]
- Cui, L.; Zeng, H.; Hou, M.; Li, Z.; Mu, C.; Zhu, W.; Hang, S. Lactiplantibacillus plantarum L47 and inulin alleviate enterotoxigenic Escherichia coli induced ileal inflammation in piglets by upregulating the levels of alpha-linolenic acid and 12,13-epoxyoctadecenoic acid. Anim. Nutr. 2023, 14, 370–382. [Google Scholar] [CrossRef]
- Kim, K.C.; Sin, S.I.; Ri, M.R.; Jo, C.H.; Mun, S.H. Effect of dietary Pinus densiflora bark extract on activity and mRNA expression of antioxidant enzyme in weaning piglets. Livest. Sci. 2022, 260, 104931. [Google Scholar] [CrossRef]
- Zhou, X.J.; Wang, L.Q.; Zhang, Z.Y.; Qin, X.Y.; Qiu, B.Q.; Cao, J.D.; Han, D.D.; Wang, J.J.; Zhao, J.B. 25-Hydroxyvitamin D3 improved growth performance, bone characteristics and polyunsaturated fatty acid deposition by activating calcium ion channel proteins expression in growing pigs. J. Funct. Foods 2023, 105, 105581. [Google Scholar] [CrossRef]
- Guo, Q.B.; Xiao, X.Y.; Lu, L.F.; Ai, L.Z.; Xu, M.G.; Liu, Y.; Goff, H.D. Polyphenol-Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health. Annu. Rev. Food Sci. Technol. 2022, 13, 59–87. [Google Scholar] [CrossRef]
- Jovanovic-Malinovska, R.; Kuzmanova, S.; Winkelhausen, E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrason. Sonochem. 2015, 22, 446–453. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, X.; Yang, D.; Si, T.; Pan, S.; Yang, F. Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions. EXCLI J. 2016, 15, 119–133. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, W.; Li, X.; Lu, X.; Li, N.; Gao, X.; Song, J. Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr. Res. 2005, 340, 685–692. [Google Scholar] [CrossRef]
- Lais Alves Almeida Nascimento, A.; Sampaio da Silveira de Souza, M.; Lorrane Rodrigues Borges, L.; Renon Eller, M.; Augusto Ribeiro de Barros, F.; Correa Mendonca, A.; Azevedo, L.; Araujo Vieira do Carmo, M.; Dos Santos Lima, A.; da Silva Cruz, L.; et al. Influence of spontaneous and inoculated fermentation of acai on simulated digestion, antioxidant capacity and cytotoxic activity. Food Res. Int. 2023, 173, 113222. [Google Scholar] [CrossRef]
- Macias-Cortes, E.; Gallegos-Infante, J.A.; Rocha-Guzman, N.E.; Moreno-Jimenez, M.R.; Cervantes-Cardoza, V.; Castillo-Herrera, G.A.; Gonzalez-Laredo, R.F. Antioxidant and anti-inflammatory polyphenols in ultrasound-assisted extracts from salvilla (Buddleja scordioides Kunth). Ultrason. Sonochem. 2022, 83, 105917. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Bouaziz, F.; Helbert, C.B.; Nouri-Ellouz, O.; Maktouf, S.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R. Structural, functional, and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 2018, 112, 1146–1155. [Google Scholar] [CrossRef]
- Fejer, J.; Kron, I.; Grulova, D.; Eliasova, A. Seasonal Variability of Juniperus communis L. Berry Ethanol Extracts: 1. In Vitro Hydroxyl Radical Scavenging Activity. Molecules 2020, 25, 4114. [Google Scholar] [CrossRef]
- Ai, Y.L.; Wang, W.J.; Liu, F.J.; Fang, W.; Chen, H.Z.; Wu, L.Z.; Hong, X.; Zhu, Y.; Zhang, C.X.; Liu, L.Y.; et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P. Cell Res. 2023, 33, 904–922. [Google Scholar] [CrossRef]
- Jang, K.B.; Kim, S.W. Role of milk carbohydrates in intestinal health of nursery pigs: A review. J. Anim. Sci. Biotechnol. 2022, 13, 6. [Google Scholar] [CrossRef]
- Li, Y.; Yu, F.; Liu, Y.; Liang, Q.; Huang, Y.; Xiang, Q.; Zhang, Q.; Su, Z.; Yang, Y.; Zhao, Y. Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells. J. Periodontol. 2020, 91, 975–985. [Google Scholar] [CrossRef]
- Li, P.; Gan, Y.; Xu, Y.; Song, L.; Wang, L.; Ouyang, B.; Zhang, C.; Zhou, Q. The inflammatory cytokine TNF-alpha promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway. Sci. Rep. 2017, 7, 42938. [Google Scholar] [CrossRef]
- Matsuoka, K.; Bakiri, L.; Bilban, M.; Toegel, S.; Haschemi, A.; Yuan, H.; Kasper, M.; Windhager, R.; Wagner, E.F. Metabolic rewiring controlled by c-Fos governs cartilage integrity in osteoarthritis. Ann. Rheum. Dis. 2023, 82, 1227–1239. [Google Scholar] [CrossRef]
- Kwon, H.W.; Shin, J.H.; Rhee, M.H.; Park, C.E.; Lee, D.H. Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets. J. Ginseng Res. 2023, 47, 706–713. [Google Scholar] [CrossRef]
- Wang, X.; Tan, X.; Zhang, J.; Wu, J.; Shi, H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun. Signal. 2023, 21, 200. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Z.; Yuan, S.; Li, H. BCL2L1 is identified as a target of naringenin in regulating ovarian cancer progression. Mol. Cell. Biochem. 2022, 477, 1541–1553. [Google Scholar] [CrossRef]
- Moriishi, T.; Kawai, Y.; Fukuyama, R.; Matsuo, Y.; He, Y.W.; Akiyama, H.; Asahina, I.; Komori, T. Bcl2l1 Deficiency in Osteoblasts Reduces the Trabecular Bone Due to Enhanced Osteoclastogenesis Likely through Osteoblast Apoptosis. Int. J. Mol. Sci. 2023, 24, 17319. [Google Scholar] [CrossRef]
- Holme, J.A.; Gorria, M.; Arlt, V.M.; Ovrebo, S.; Solhaug, A.; Tekpli, X.; Landvik, N.E.; Huc, L.; Fardel, O.; Lagadic-Gossmann, D. Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells. Chem.-Biol. Interact. 2007, 167, 41–55. [Google Scholar] [CrossRef]
- Kuo, W.T.; Shen, L.; Zuo, L.; Shashikanth, N.; Ong, M.; Wu, L.; Zha, J.; Edelblum, K.L.; Wang, Y.; Wang, Y.; et al. Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology 2019, 157, 1323–1337. [Google Scholar] [CrossRef]
- Ma, X.Y.; Zhang, M.; Fang, G.; Cheng, C.J.; Wang, M.K.; Han, Y.M.; Hou, X.T.; Hao, E.W.; Hou, Y.Y.; Bai, G. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo. Acta Pharmacol. Sin. 2021, 42, 1101–1110. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.; Zhai, Y.; Liu, Y.; Zeng, J.; Wang, D.; Li, L.; Zhu, Z.; Chang, B.; Deng, F.; et al. D-Mannose ameliorates DNCB-induced atopic dermatitis in mice and TNF-alpha-induced inflammation in human keratinocytes via mTOR/NF-kappaB pathway. Int. Immunopharmacol. 2022, 113, 109378. [Google Scholar] [CrossRef]
- Zhao, J.H.; Li, J.; Zhang, X.Y.; Shi, S.; Wang, L.; Yuan, M.L.; Liu, Y.P.; Wang, Y.D. Confusoside from Anneslea fragrans Alleviates Acetaminophen-Induced Liver Injury in HepG2 via PI3K-CASP3 Signaling Pathway. Molecules 2023, 28, 1932. [Google Scholar] [CrossRef]
- Brumatti, G.; Salmanidis, M.; Ekert, P.G. Crossing paths: Interactions between the cell death machinery and growth factor survival signals. Cell. Mol. Life Sci. 2010, 67, 1619–1630. [Google Scholar] [CrossRef]
- Li, X.; Gui, R.; Wang, X.; Ning, E.; Zhang, L.; Fan, Y.; Chen, L.; Yu, L.; Zhu, J.; Li, Z.; et al. Oligosaccharides isolated from Rehmannia glutinosa protect LPS-induced intestinal inflammation and barrier injury in mice. Front. Nutr. 2023, 10, 1139006. [Google Scholar] [CrossRef]
- Taranu, I.; Pistol, G.C.; Anghel, A.C.; Marin, D.; Bulgaru, C. Yeast-Fermented Rapeseed Meal Extract Is Able to Reduce Inflammation and Oxidative Stress Caused by Escherichia coli Lipopolysaccharides and to Replace ZnO in Caco-2/HTX29 Co-Culture Cells. Int. J. Mol. Sci. 2022, 23, 11640. [Google Scholar] [CrossRef]
- Bodor, C.; Matolcsy, A.; Bernath, M. Elevated expression of Cu, Zn-SOD and Mn-SOD mRNA in inflamed dental pulp tissue. Int. Endod. J. 2007, 40, 128–132. [Google Scholar] [CrossRef]
- Sciskalska, M.; Oldakowska, M.; Marek, G.; Milnerowicz, H. Changes in the Activity and Concentration of Superoxide Dismutase Isoenzymes (Cu/Zn SOD, MnSOD) in the Blood of Healthy Subjects and Patients with Acute Pancreatitis. Antioxidants 2020, 9, 948. [Google Scholar] [CrossRef]
- Kruidenier, L.; Kuiper, I.; van Duijn, W.; Marklund, S.L.; van Hogezand, R.A.; Lamers, C.B.; Verspaget, H.W. Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J. Pathol. 2003, 201, 7–16. [Google Scholar] [CrossRef]
- Chen, H.; Peng, F.; Xu, J.; Wang, G.; Zhao, Y. Increased expression of GPX4 promotes the tumorigenesis of thyroid cancer by inhibiting ferroptosis and predicts poor clinical outcomes. Aging 2023, 15, 230–245. [Google Scholar] [CrossRef]
- Wang, X.; Bao, R.; Fu, J. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue. Biol. Trace Elem. Res. 2018, 181, 331–339. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Chen, Y.Y.; Wang, M.S.; Tong, J.J.; Xu, M.; Zhao, C.; Lin, H.Y.; Mei, L.C.; Dong, J.; Zhang, W.L.; et al. A catalase inhibitor: Targeting the NADPH-binding site for castration-resistant prostate cancer therapy. Redox Biol. 2023, 63, 102751. [Google Scholar] [CrossRef]
- Ren, L.; Zhan, P.; Wang, Q.; Wang, C.; Liu, Y.; Yu, Z.; Zhang, S. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem. Biophys. Res. Commun. 2019, 514, 691–698. [Google Scholar] [CrossRef]
- Kunz, H.E.; Hart, C.R.; Gries, K.J.; Parvizi, M.; Laurenti, M.; Dalla Man, C.; Moore, N.; Zhang, X.; Ryan, Z.; Polley, E.C.; et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am. J. Physiol. Endocrinol. Metab. 2021, 321, E105–E121. [Google Scholar] [CrossRef]
- Han, L.; Qu, Q.; Aydin, D.; Panova, O.; Robertson, M.J.; Xu, Y.; Dror, R.O.; Skiniotis, G.; Feng, L. Structure and mechanism of the SGLT family of glucose transporters. Nature 2022, 601, 274–279. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, R.; Guan, C.; Zhang, Y.; Chen, Z.; Hoerer, S.; Nar, H.; Chen, L. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 2022, 601, 280–284. [Google Scholar] [CrossRef]
- Moran, A.W.; Al-Rammahi, M.A.; Daly, K.; Grand, E.; Ionescu, C.; Bravo, D.M.; Wall, E.H.; Shirazi-Beechey, S.P. Consumption of a Natural High-Intensity Sweetener Enhances Activity and Expression of Rabbit Intestinal Na(+)/Glucose Cotransporter 1 (SGLT1) and Improves Colibacillosis-Induced Enteric Disorders. J. Agric. Food Chem. 2020, 68, 441–450. [Google Scholar] [CrossRef]
- Xiao, P.; Hu, Z.; Lang, J.; Pan, T.; Mertens, R.T.; Zhang, H.; Guo, K.; Shen, M.; Cheng, H.; Zhang, X.; et al. Mannose metabolism normalizes gut homeostasis by blocking the TNF-alpha-mediated proinflammatory circuit. Cell. Mol. Immunol. 2023, 20, 119–130. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, Y.; Dong, W.; Lin, M.; He, J.; Zhang, X.; Tian, T.; Yang, Y.; Chen, K.; Lei, Q.Y.; et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc. Natl. Acad. Sci. USA 2022, 119, e2114851119. [Google Scholar] [CrossRef]
- Liang, W.; Huang, L.; Whelchel, A.; Yuan, T.; Ma, X.; Cheng, R.; Takahashi, Y.; Karamichos, D.; Ma, J.X. Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates wound healing and mitochondrial metabolism in the cornea. Proc. Natl. Acad. Sci. USA 2023, 120, e2217576120. [Google Scholar] [CrossRef]
Items | PKCOS |
---|---|
Freeze-dried powder, mg/g PKC | 96.19 ± 2.21 |
PKCOS acquisition rate, % | 9.62 ± 0.22 |
Sugar, % in powder | 60.75 ± 0.45 |
Mannose, % in powder | 36.80 ± 0.58 |
Protein, % in powder | 0.19 ± 0.005 |
Polyphenols, gallic acid equivalents, mg/g PKCOS | 17.30 ± 0.02 |
Flavone, rutin equivalent, mg/g PKCOS | 5.90 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Miao, J.; Liao, J.; Sui, Z.; Hou, M.; Hang, S. Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants 2024, 13, 682. https://doi.org/10.3390/antiox13060682
Zeng H, Miao J, Liao J, Sui Z, Hou M, Hang S. Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants. 2024; 13(6):682. https://doi.org/10.3390/antiox13060682
Chicago/Turabian StyleZeng, Hui, Jingna Miao, Jinghong Liao, Zhiyuan Sui, Meixin Hou, and Suqin Hang. 2024. "Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro" Antioxidants 13, no. 6: 682. https://doi.org/10.3390/antiox13060682
APA StyleZeng, H., Miao, J., Liao, J., Sui, Z., Hou, M., & Hang, S. (2024). Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants, 13(6), 682. https://doi.org/10.3390/antiox13060682