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Abstract: The prevalence of non-alcoholic fatty liver disease (NAFLD) has dramatically increased
in recent years, and it is highly associated with metabolic diseases, as well as the development of
hepatocellular carcinoma. However, effective therapeutic strategies for the treatment of NAFLD
are still scarce. Although hydrogen-rich water shows beneficial effects for hepatic steatosis, the
inconvenience limits the application of this antioxidant. In light of this, hydrogen-rich coral calcium
(HRCC) was developed due to its convenience and quantifiable characteristics. However, the effects
of HRCC on NAFLD are still unknown. In the present study, we found that HRCC treatment
improved methionine-and-choline-deficient diet (MCD)-induced hepatic steatosis, increased aspartate
aminotransferase and alanine aminotransferase levels, and elevated hepatic inflammatory factor
expressions in mice. In addition to the increased expressions of antioxidative enzymes, we found
that HRCC increased the expressions of bile acid biosynthesis-related genes, including Cyp8b1
and Cyp27a1. Increased hepatic bile acid contents, such as muricholic acids, 23 nor-deoxycholic
acid, glycoursodeoxycholic acid, and cholic acids, were also confirmed in MCD mice treated with
HRCC. Since the biogenesis of bile acids is associated with the constitution of gut microbiome, the
alterations in gut microbiome by HRCC were evaluated. We found that HRCC significantly changed
the constitution of gut microbiome in MCD mice and increased the contents of Anaerobacterium,
Acutalibacter, Anaerosacchariphilus, and Corynebacterium. Taken together, HRCC improved MCD-
induced NAFLD through anti-inflammatory mechanisms and by increasing antioxidative activities.
Additionally, HRCC might alter gut microbiome to change hepatic bile acid contents, exerting
beneficial effects for the treatment of NAFLD.

Keywords: antioxidant; hepatic steatosis; hydrogen-rich coral calcium; methionine and choline
deficient diet; microbiome

1. Introduction

In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has
dramatically increased due to the growing obese population, and NAFLD is highly asso-
ciated with metabolic diseases, including diabetes [1]. A recent meta-analysis examining
NAFLD in Asia reported an incidence rate of 50.9 per 1000 person-years. Mainland China
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had the highest rate at 63 per 1000 person-years, while Japan had the lowest at 29 per
1000 person-years [2]. In South Korea, the NAFLD incidence was approximately 45 cases
per 1000 person-years [3].

NAFLD is a spectrum ranging from simple steatosis, hepatitis, fibrosis, and cirrhosis,
to the development of hepatocellular carcinoma [4]. Within this spectrum, hepatic steatosis,
or fatty liver, is termed NAFL, while non-alcoholic steatohepatitis (NASH) is a more severe
condition characterized by inflammation and hepatocyte damage, often accompanied by
pericellular fibrosis that can progress to cirrhosis. Although imaging and clinical features,
such as metabolic comorbidities and abnormal lab tests, can strongly suggest NAFL or
NASH, a definitive diagnosis of NASH requires a liver biopsy. Recently, additional sub-
groups of NASH have been identified [5]. NASH can lead to severe liver-related outcomes
like cirrhosis, liver failure, and hepatocellular carcinoma, while non-liver-related adverse
outcomes are mainly linked to increased cardiovascular disease and cancer [6]. Multiple
molecular pathways contribute to the development of NASH, and it is uncertain whether
NASH always follows NAFL. The pathogenic mechanisms likely vary among patients,
resulting in diverse clinical manifestations [7]. Although NAFLD may be multifactorial,
oxidative stress is widely considered as the initiation of hepatocellular injury, leading to
steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma [8]. Risk factors for NAFLD
include poor nutrition, insufficient exercise, and inadequate sleep, with obesity being a
significant risk factor. However, NAFLD has also been observed in lean individuals [9].
Another potential risk factor is the evolution of the human microbiome, influenced by
dietary changes and the widespread use of antibiotics in agriculture and medicine. Evi-
dence from mouse studies shows that a NASH phenotype can be transmitted through the
microbiome [10]. Studies have found that the gut microbiome in NASH patients is less
diverse than in healthy individuals, and weight loss can alter the microbiome [11,12].

Although the impact of NAFLD on human health is well-defined, effective therapeutic
strategies for its treatment are still scarce [13]. In addition to weight loss and exercise,
diet control is an important strategy for improving NAFLD [14]. Adequate diet intake
improves NAFLD not only through calorie restriction but also through alterations in the
gut microbiome [15]. It is known that metabolites from the gut microbiome play crucial
roles in regulating metabolism in humans. Additionally, the gut microbiome mediates bile
acid biosynthesis in the liver, and these bile acids act on the Takeda G-protein receptor 5
(TGR5) to improve NAFLD [16]. In addition, several antioxidants have reached clinical
trials against NAFLD. Silymarin effectively treated NASH in mice fed a high-fat diet for
12 weeks. The treatment was effective without changes to their dietary habits [17]. Silybin,
an active ingredient of silymarin, significantly reduced serum and liver fat in mice with
high-fat-diet-induced NAFLD over one month and reversed metabolic disorders. It acts
as a peroxisome proliferator-activated receptor (PPARα) partial agonist, contributing to
its lipid-lowering effects. Silybin also ameliorated methionine-and-choline-deficient diet
(MCD)-induced NAFLD in mice through PPARα activation [18,19]. Long-term vitamin C
may improve adiponectin levels and reduce hepatic triglycerides and NASH risk in NAFLD
patients, though the overall benefits of antioxidant vitamins in NAFLD is unclear [8].

Molecular hydrogen has been identified as an effective antioxidant therapy due to its
ability to quickly diffuse across membranes. This enables it to act as an antioxidant for
both preventive and therapeutic purposes by selectively reducing cytotoxic oxygen radicals
without impacting other reactive oxygen species (ROS) [20]. Previous research has shown
that hydrogen serves as an antioxidant, as well as an anti-apoptotic and anti-inflammatory
agent, in various animal models and human clinical trials [21]. There are multiple ways
to administer hydrogen, such as inhaling hydrogen gas, drinking water infused with
hydrogen, and injecting saline containing hydrogen [22]. Regarding NAFLD, mice fed
an MCD diet and treated with hydrogen-rich water or pioglitazone showed reduced
markers of liver damage, inflammation, oxidative stress, and apoptosis. Additionally,
hydrogen-rich water reduced the number and size of hepatic tumors, suggesting it may
be an effective treatment for NASH by mitigating oxidative stress, inflammation, and
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hepatocarcinogenesis [23]. Consumption of hydrogen-rich water not only improves high-
fat-diet-induced type 2 diabetes, but also NAFLD in mice due to its antioxidative and
anti-inflammatory activities [24,25].

Although the beneficial effects of hydrogen-rich water on human health have been
demonstrated for the past few years [26], and the effects of hydrogen water on the improve-
ment of high-fat-diet-induced metabolic diseases have been well-defined, the inconvenience
and unstable characteristics limit its application. Regarding this issue, hydrogen-rich coral
calcium (HRCC) was developed. Coral calcium, derived from coral exoskeletons, mainly
consists of calcium carbonate (CaCO3, 20%) and magnesium (Mg, 10%). An earlier study
found that Mg-doped CaCO3 powder released significantly more hydrogen after high-
pressure hydrogen loading compared with calcitic CaCO3 [27]. By immobilizing hydrogen
on the surface of coral calcium, HRCC can be created, providing a safer and more conve-
nient method of hydrogen delivery [28]. Although it is known that HRCC exerts a stable
antioxidative capacity and shows improvement of alcoholic intoxication and impaired liver
function [29], the effects of HRCC on NAFLD are still unknown.

In the present study, an MCD-induced NAFLD mice model was established to evaluate
the efficacy of HRCC for improving NAFLD. Not only were the effects of HRCC on
antioxidative enzyme expressions determined, but also the effects of HRCC on the alteration
of the gut microbiome and hepatic bile acid contents were clarified

2. Materials and Methods
2.1. Hydrogen-Rich Coral Calcium

Porous coral materials and HRCC were purchased from HoHo Biotech Co., Ltd.
(Taipei, Taiwan), and the method for the production of HRCC was illustrated in previous
studies [28,30]. Briefly, the porous coral materials were sealed in a high-pressure and
high-temperature chamber filled with 100% hydrogen gas. After thermal expansion, HRCC
was generated and sterilized. The powder was further obtained by grinding.

2.2. Animals

Eight-week-old C57BL/6 male mice were obtained from the Laboratory Animal Center,
College of Medicine at National Cheng Kung University, and housed in an environment
at a temperature of 23 ± 2 ◦C, humidity 60 ± 10%, and alternating light and dark cycles
every 12 h (lights on at 07:00AM). The mice were randomly assigned to four groups
(N = 5–8 for each group), including [1] paired-control diet (A02082003BY, Research Diets,
New Brunswick, NJ, USA)-fed mice treated with 210 mg/kg porous coral calcium dissolved
in 3% carboxymethyl cellulose (Sigma-Aldrich, St. Louis, MO, USA) (CC group) via oral
gavage; [2] MCD-fed (A02082002BR, Research Diets) mice treated with 210 mg/kg porous
coral calcium (MC group); [3] MCD-fed mice treated with 210 mg/kg HRCC (low-dose
group; ML); and [4] MCD-fed mice treated with 420 mg/kg HRCC (high-dose group;
MH). After the pre-treatment of coral calcium or previously indicated doses of HRCC
once daily for one week, NAFLD was induced by feeding the mice with MCD for another
two weeks, and the body weight of each group of mice was recorded every week. At
the end of the experiment, each group of mice was anaesthetized and then the blood
and liver samples were harvested for further experiments (Figure 1). Serum aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) (Abcam, Cambridge, UK), as
well as serum endotoxin levels (Thermo Scientific, Lenexa, KS, USA), were determined
using commercialized assay kits.
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Figure 1. Flowchart of the experimental procedure. Non-alcoholic fatty liver disease was induced
in C57BL/6 mice by feeding with a methionine-and-choline-deficient diet (MCD) for two weeks,
and the animals were randomly assigned into four groups (N = 5–8 for each group). Mice were
pre-treated once daily with indicated doses of hydrogen-rich coral calcium (HRCC) by oral gavage
for one-week, and then NAFLD was induced by feeding the mice with MCD for another two weeks.
The body weight of each group of mice was recorded every week. At the end of the experiment, the
fecal samples were collected using metabolic cages, and the blood and liver samples were harvested
for further experiments.

2.3. Hematoxylin and Eosin Stain

At the end of the experiments, the liver tissues from each group of mice were removed
and then fixed in 10% formalin. Five-µm thick sections were deparaffinized, and stained
with hematoxylin for 3–8 min and eosin solution for another 1–3 min. After dehydration,
the sections were sealed and observed under a light-field microscope.

2.4. Western Blot Analysis

The protein samples from liver tissues were extracted and mixed with radioimmuno-
precipitation lysis buffer (VWR Chemical, Solon, OH, USA), containing protease inhibitors
(Sigma-Aldrich, St. Louis, MO, USA). After centrifugation at 13,000 rpm at 4 ◦C for 10 min,
the supernatant was collected and the protein concentration was determined using a bicin-
choninic acid assay kit (Visual Protein, Taipei, Taiwan). The proteins were separated by
10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and then transferred to
polyvinylidene difluoride membranes (Biomate, Taipei, Taiwan). The membranes were
blocked with 10% skim milk for one hour at room temperature, and then incubated with a
1:1000 dilution of primary antibodies (Table 1), including superoxide dismutase [Cu-Zn]
(SOD1; Novus Biologicals, Centennial, CO, USA), glutathione peroxidase-1 (GPx; Ab-
cam), catalase (Cell Signaling Technology, Danvers, MA, USA), or TGR5 (Abcam) at 4 ◦C
overnight. α-Tubulin was used as an internal control (Abcam). Afterwards, the membranes
were washed with Tris-buffered saline with Tween 20 (TBS-T) (10 mM Tris (pH 7.6), 150 mM
NaCl, and 0.05% Tween 20), and then the blots were incubated with a 1:5000 dilution of
horseradish peroxidase-conjugated secondary antibodies at room temperature for one hour.
The protein bands were detected using Immobilon (Millipore, Billerica, MA, USA), and the
signal intensity was quantified using ImageJ software (https://imagej.nih.gov/nih-image/,
accessed on 1 October 2021).

Table 1. Antibodies used for Western blots.

Antibody Molecule Weight (KiloDalton, KD) Company, Catalog Number

SOD1 16 Novus, NBP1-31204
GPx 22 Abcam, ab108427
catalase 60 Cell signaling, 14097
TGR5 35 Abcam, ab72608
α-Tubulin 50 Abcam, ab7291

Abbreviations: superoxide dismutase [Cu-Zn] (SOD1), glutathione peroxidase-1 (GPx), Takeda G protein-coupled
receptor 5 (TGR5).

https://imagej.nih.gov/nih-image/
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2.5. Ribonucleic Acid (RNA) Extraction

RNA from each sample was extracted using GENEzol reagent (Geneaid Biotech, New
Taipei City, Taiwan), according to the manufacturer’s instruction. Briefly, 100 mg of liver
sample was homogenized with 1 mL GENEzol Reagent and 200 µL chloroform. After
vigorously vortex for 10 s, the samples were centrifuged at 12,000× g for 15 min at 4 ◦C
to separate the phases. The upper aqueous phase was mixed with 1 mL isopropanol for
10 min at room temperature, and then centrifuged at 12,000× g for 10 min at 4 ◦C. After
careful removal of the supernatant, the RNA pellet was washed with 70% ethanol, air-dried
for 5–10 min at room temperature, and then resuspended with RNase-free water.

2.6. Real-Time Quantitative Polymerase Chain Reaction

The gene expressions of proinflammatory cytokines (Table 2), including interleukin-6
(Il6), tumor necrosis factor alpha (Tnfa), the C-C motif chemokine ligand 2 (Ccl2), cy-
tochrome P450 7a1 (Cyp7a1), cytochrome P450 8b1 (Cyp8b1), and cytochrome P450 27a1
(Cyp27a1) in mouse liver, were examined using real-time quantitative polymerase chain
reaction. Reverse transcription was performed to generate complementary DNA using
the MMLV Reverse Transcription Kit (Protech, Placentia, CA, USA), and the real-time
fluorescence quantitative polymerase chain reaction instrument (StepOnePlus Real-Time
PCR Detection System, Applied Biosystems, Foster City, CA, USA) was used to quantify
relative messenger RNA expression levels with the 2−∆∆ct method.

Table 2. Primers used in the present study for the determination of proinflammatory cytokines.

Gene Forward Reverse

Il6 AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC
Tnfa CCCTCACATCAGATCATCTTCT GCTACGACGTGGGCTACAG
Ccl2 CCACTCACCTGCTGCTACTCA TGGTGATCCTCTTAGCTCTCC
Nox2 ACTCCTTGGGTCAGCACTGG GTTCCTGTCCAGTTGTCTTCG
Cyp7a1 ACAACTAAACAACTGCCATACTA GTCCGGATATTCAAGGATGCA
Cyp8b1 ACGCTTCCTCTATCGCCTGAA GTGCCTCAGACGCAGAGGAT
Cyp27a1 CGGGGACCGGAACGCTAC AGTCCCAAAGGAGGTTGTCCA
18s CATGGCCGTTCTTAGTTGGTGG CGCTGAGCCAGTCAGTGTAG

Abbreviations: interleukin-6 (Il6), tumor necrosis factor alpha (Tnfa), the C-C motif chemokine ligand 2 (Ccl2),
NADP oxidase 2 (Nox2), cytochrome P450 7a1 (Cyp7a1), cytochrome P450 8b1 (Cyp8b1), and cytochrome P450
27a1 (Cyp27a1)

2.7. Gut Microbiome Analysis by Full-Length 16S Ribosomal RNA Sequencing

Full-length 16S ribosomal RNA sequencing was used to analyze the gut microbiome
(Toolsbiotech, Xizhi, New Taipei City, Taiwan). Briefly, 250 mg fecal matter from each
group of mice was collected in metabolic cages during an overnight fast. Total genomic
deoxyribonucleic acid from the fecal samples was extracted using the column-based method
(QIAamp PowerFecal DNA Kit, Qiagen, Hilden, Germany). The full-length 16S genes (V1–
V9 regions) were amplified by barcoded 16S gene-specific primers, and the SMRTbell
library was prepared according to the amplification of the full-length 16S gene. The feature-
classifier and classify-consensus-vsearch algorithm in QIIME2 (v2022.11) were employed
to annotate taxonomy classification based on the information retrieved from the National
Center for Biotechnology Information 16S ribosomal RNA database.

2.8. Determination of Bile Acid Content in the Liver

Twenty milligrams of each sample were extracted with 1 mL extraction buffer (methanol:
acetonitrile:H2O:formic acid = 2:2:1:0.8) containing an internal standard mixture. After
vortex for 30 s, the samples were homogenized at 35 Hz for 4 min and sonicated for 5 min
in an ice-cold water bath. Then, the samples were incubated for one hour at −20 ◦C and
centrifuged at 12,000 rpm for 15 min at 4 ◦C. The supernatant was then transferred for bile
acid analysis. The analysis was performed using Waters ultra-high performance liquid
chromatography coupled with Waters Xevo TQS MS (Waters Corp, Milford, MA, USA).
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Briefly, the chromatographic separation was performed on a Waters ACQUITY BEH C8
column (2.1 mm × 100 mm × 1.7 mm) at 60 ◦C. The mobile phase A was 10% acetonitrile
with 0.01% formic acid and the mobile phase B was isopropanol/acetonitrile (50:50, v/v)
with 0.01% formic acid. Mass analysis was performed using the Waters Xevo TQ-S system
in positive-ion electrospray ionization mode, and the capillary voltage was set at 1.5 KV.
The desolvation gas flow rate was set at 1000 L/h, and cone gas flow was maintained at 150
L/h. The desolvation and source temperatures were set at 600 ◦C and 150 ◦C, respectively.
A QC sample (laboratory quality control) and mix QC sample (a mixture of all samples)
were prepared and analyzed during the analytical runs after every 10th sample. The
data were then processed using TargetLynx to integrate signal strength and convert it to
concentration.

2.9. Statistics

Graphpad prism 8 was used for illustration and statistical analyses. The data were
presented as mean ± standard error (SEM). Student’s t-test or one-way ANOVA followed
by Tukey’s post hoc test were used. For statistical analysis, significance of all species among
groups at various taxonomic levels was detected using differential abundance analysis with
a zero-inflated Gaussian (ZIG) log-normal model, as implemented in the “fitFeatureModel”
function of the R Bioconductor metagenomeSeq package. Beta-diversity among groups was
analyzed using PERMANOVA and constrained principal coordinates analysis (cPCoA).
The Wilcoxon rank-sum test was used to compare relative abundance of bacteria differences
among groups at the family level. Statistically significance was defined as p < 0.05.

3. Results
3.1. Administration of HRCC Improved MCD-Induced Weight Loss in Mice

In mice fed with an MCD diet, the body weight significantly decreased after one week
of feeding. However, the group of mice fed with a high dose of HRCC showed a slight and
significant improvement in MCD-induced body-weight loss (Figure 2A,B).
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Figure 2. Consumption of hydrogen-rich coral calcium (HRCC) improved methionine-and-choline-
deficient diet-induced weight loss. C57BL/6 mice were pre-treated by oral gavage with 210 mg/kg
HRCC (low-dose group, ML), 420 mg/kg HRCC (high-dose group; MH), or coral calcium (control
group; CC) for seven days. After the pre-treatment, the mice were fed with a methionine-and-choline-
deficient diet (MC) for another two weeks to induce non-alcoholic fatty liver disease, the body weight
of each group of the mice was recorded every week (A), and the changes in body weight were
calculated (B). N = 6–8 mice in each group; * p < 0.05; *** p < 0.001 as compared with indicated groups.

Additionally, MCD-induced lipid accumulation in the liver significantly decreased in
the group of mice fed with a high dose of HRCC compared with the MCD group (Figure 3A).
Moreover, MCD-induced liver dysfunction, as determined by elevated serum levels of
AST (Figure 3B) and ALT (Figure 3C), was improved in both low-dose and high-dose
HRCC-treated groups.
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Figure 3. Hydrogen-rich coral calcium (HRCC) consumption improved methionine-and choline-
deficient-diet-induced non-alcoholic fatty liver disease. C57BL/6 mice were pre-treated by oral
gavage with 210 mg/kg HRCC (low-dose group, ML), 420 mg/kg HRCC (high-dose group; MH),
or coral calcium (control group; CC) for seven days. After the pre-treatment, the mice were fed
with a methionine-and-choline-deficient diet (MC) for another two weeks to induce non-alcoholic
fatty liver disease. At the end of the experiments, the animals were sacrificed and the liver sections
were collected for the determination of fatty liver (magnification 200×) (A). The blood samples were
collected for the measurement of aspartate aminotransferase (AST) (B) and alanine aminotransferase
(ALT) (C) concentrations. N = 6–8 mice in each group; * p < 0.05; ** p < 0.01; *** p < 0.001 as compared
with indicated groups.

3.2. Consumption of HRCC Decreased MCD-Induced Hepatic Inflammation in Mice

In view of the anti-inflammatory activities of hydrogen molecules, we then investi-
gated the effects of HRCC on the expressions of proinflammatory factors. Consistent with
a previous study that showed that MCD increased serum endotoxin levels in mice [31],
administration of HRCC in MCD mice significantly decreased serum endotoxin levels
(Figure 4A). We also found that the gene expressions of proinflammatory factors in the
liver, including Il6 (Figure 4B), Tnfa (Figure 4C), and Ccl2 (Figure 4D), were significantly
decreased, indicating HRCC has an anti-inflammatory activity.
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Figure 4. Hydrogen-rich coral calcium (HRCC) consumption improved methionine-and-choline-
deficient diet-induced inflammation. C57BL/6 mice were pre-treated by oral gavage with 210 mg/kg
HRCC (low-dose group, ML), 420 mg/kg HRCC (high-dose group; MH), or coral calcium (control
group; CC) for seven days. After the pre-treatment, the mice were fed with a methionine-and-choline-
deficient diet (MC) for another two weeks to induce non-alcoholic fatty liver disease. At the end
of the experiments, the blood samples were collected for the determination of serum endotoxin
concentrations (A), and the liver tissues were removed for the determination of interleukin-6 (Il6)
(B), tumor necrosis factor-α (Tnfa) (C), and C-C motif chemokine ligand 2 (Ccl2) (D) gene expression
levels by quantitative-polymerase chain reaction. N = 6 for each group of mice; ** p < 0.01; *** p < 0.001
as compared with indicated groups.
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3.3. Consumption of HRCC Increases Hepatic Antioxidative Enzyme Expressions in
MCD-Induced NAFLD Mice

Due to the antioxidative activities of the hydrogen molecule, the effects of HRCC
on the hepatic expressions of antioxidative enzymes were also evaluated. As shown in
Figure 5, we first examined the oxidative stress in MCD mice by Nox2, which encoded a
superoxide-generating enzyme to form ROS. Consistent with a previous study [31], an MCD
diet significantly increased the gene expression of the oxidative marker, Nox2; however,
treatment with HRCC reversed MCD-induced Nox2 expressions, indicating HRCC had an
effect in decreasing oxidative stress (Figure 5A). We then evaluated the protein expressions
of antioxidative enzymes, and we found that MCD consumption significantly decreased
the expressions of antioxidative enzymes. However, treatment with HRCC increased the
expressions of hepatic antioxidative enzymes, including SOD1 (Figure 5B), GPx (Figure 5C),
and catalase (Figure 5D).
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Figure 5. Consumption of hydrogen-rich coral calcium (HRCC) increased the hepatic expressions of
oxidative stress-related enzymes. C57BL/6 mice were pre-treated by oral gavage with 210 mg/kg
HRCC (low-dose group, ML), 420 mg/kg HRCC (high-dose group; MH), or coral calcium (control
group; CC) for seven days. After the pre-treatment, the mice were fed with a methionine-and-choline-
deficient diet (MC) for another two weeks to induce non-alcoholic fatty liver disease. At the end of
the experiments, the liver tissues were removed for the determination of NADP oxidase 2 (Nox2)
gene expression by quantitative-polymerase chain reaction (A). In addition, manganese superoxide
dismutase (SOD1) (B), glutathione peroxidase-1 (GPx) (C), and catalase (D) protein expressions were
evaluated by Western blots. N = 6 mice for each group; * p < 0.05; ** p < 0.01; *** p < 0.001 as compared
with indicated groups.
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3.4. Consumption of HRCC Increases Bile Acid Biogenesis Gene Expressions and Hepatic Bile Acid
Content in MCD-Induced NAFLD Mice

It is known that activation of TGR5 by bile acids improves NAFLD, so we therefore
investigated the effects of HRCC on TGR5 expressions. We found that HRCC consumption
showed no significant effects on hepatic TGR5 expression (Figure 6A). However, treat-
ment with HRCC at high doses (MH group) either increased the expression of bile acid
biosynthesis-related genes such as Cyp8b1 in MCD-fed mice or reversed the MCD diet-
induced suppression of the expressions of bile acid biosynthesis-related genes such as
Cyp27a1 (Figure 6B), implying HRCC might alter bile acid content in MCD mice. We then
investigated the hepatic bile acid content in MCD mice and confirmed that the hepatic
bile acid contents, such as α- and β-muricholic acids (MCA), 23 nor-deoxycholic acid
(23 norDCA), glycoursodeoxycholic acid (GUDCA), murocholic acid (MuroCA), and cholic
acid (CA), were increased in MCD mice treated with HRCC (Figure 6C).
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Figure 6. Consumption of hydrogen-rich coral calcium (HRCC) altered the hepatic expressions of
bile acid biogenesis-related genes and bile acid contents. C57BL/6 mice were pre-treated by oral
gavage with 210 mg/kg HRCC (low-dose group, ML), 420 mg/kg HRCC (high-dose group; MH), or
coral calcium (control group; CC) for seven days. After the pre-treatment, the mice were fed with a
methionine-and-choline-deficient diet (MC) for another two weeks to induce non-alcoholic fatty liver
disease. At the end of the experiments, the liver tissues were removed for the determination of Takeda
G-protein receptor 5 (TGR5) protein levels by Western blots (A). Moreover, the bile acid biogenesis-
related gene expressions in the liver of the mice were determined by real time-PCR (B). Furthermore,
the bile acids were extracted from the liver of each group of the mice, and then quantified using
gas chromatography-mass spectrometry (C). N = 5–7 mice for each group; * p < 0.05; ** p < 0.01;
*** p < 0.001 as compared with indicated groups.

3.5. Consumption of HRCC Alters Gut Microbiome Composition in MCD-Induced NAFLD Mice

Since the biogenesis of bile acids is associated with the constitution of the gut mi-
crobiome, the alterations of the gut microbiome by HRCC was evaluated. We found that
treatment with HRCC significantly changed the constitution of the gut microbiome in MCD
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mice (Figure 7A). Among the changed families in the gut microbiome, Lachnospiraceae, Os-
cillospiraceae, and Tannerellaceae showed significant alterations in abundance after treatment
with HRCC in MCD mice (Figure 7B,C). We further investigated the changes in the genus
in the gut microbiome, and we found that the proportion of Anaerobacterium, Acutalibacter,
Anaerosacchariphilus, and Corynebacterium were significantly increased after treatment with
HRCC in MCD mice (Figure 7D).
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Figure 7. Consumption of hydrogen-rich coral calcium (HRCC) altered the composition of gut
microbiome. C57BL/6 mice were pre-treated by oral gavage with 420 mg/kg HRCC (high-dose
group; MH), or coral calcium (control group; CC) for seven days. After the pre-treatment, the mice
were fed with a methionine-and-choline-deficient diet (MC) for another two weeks to induce non-
alcoholic fatty liver disease. The feces of each group of mice were collected, and gut microbiome
composition by principal co-ordinates analysis (A), relative abundance in the family (B,C), and
genus (D) in the gut microbiome using 16S sequencing were determined. N = 6 mice for each group;
* p < 0.05; ** p < 0.01 as compared with CC group or indicated groups. # p < 0.05; ## p < 0.01 as
compared with MC group.
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4. Discussion

To the best of our knowledge, the present study is the first to investigate the effects
of HRCC on the improvement of NAFLD. We successfully established a mouse model
of NAFLD induced by an MCD diet to assess the effectiveness of HRCC in improving
NAFLD. We not only investigated the effects of HRCC on the expression of inflammatory
cytokines and antioxidative enzymes but also explored its impact on the changes in the gut
microbiome and hepatic bile acid composition. Our previous study unveiled that HRCC
could not only improve alcohol intoxication, but could also significantly reduce hepatic
inflammation. Since there is already evidence indicating a strong correlation between
the above inflammation markers and NAFLD [32–34], it is plausible that HRCC may not
only be beneficial in improving alcohol intoxication, but should also be of assistance in
ameliorating NAFLD.

Oxidative stress arises from an imbalance between oxidants and antioxidants. ROS are
notably harmful and necessitate detoxification through an antioxidant system comprised
of various enzymes that eliminate ROS [35]. Among the pertinent enzymes are SOD,
catalase, and GPx. The literature has demonstrated an elevation in oxidative stress levels
among NAFLD patients compared with healthy individuals, with the potential for even
greater severity than in patients with chronic viral hepatitis [36,37]. The present study
using an animal model reveals that HRCC has the capacity to alleviate the oxidative
stress associated with NAFLD, suggesting its potential as an antioxidant-based therapy for
NAFLD treatment. In addition, since the coral calcium without hydrogen was used as a
control group, the improvement of NAFLD by HRCC can be supposed due the enrichment
of hydrogen. Also, increased hydrogen levels can be detected in exhaled gas from rats
gavaged with HRCC [30], and the antioxidative activity of HRCC might be a systemic effect
in mice.

Bile acids play a pivotal role in regulating the overall balance of cholesterol in the body,
and act as signaling molecules and metabolic regulators, through activating TGR5 [38].
Since we found that the expression of TGR5 showed no significant changes after the
treatment with HRCC in MCD mice, we further examined the levels of hepatic bile acids.
The interplay between the gut and liver is critically important in converting primary
bile acids into secondary bile acids, maintaining bile acid composition in the pool, and
regulating metabolic balance to prevent conditions such as hyperglycemia, dyslipidemia,
obesity, and diabetes [39]. In the present study, mice subjected to an MCD diet exhibited
alterations in hepatic gene expression associated with bile acid synthesis, leading to a
suppression of bile acid synthesis. Treatment with HRCC might alter bile acid content in
MCD mice by either increasing Cyp8b1 expression or reversing the MCD diet-induced
suppression of Cyp27a1 expression.

Cyp27a1, the gene encoding the key enzyme in the alternative pathway of bile acid
synthesis, has the activity to convert CDCA into α-MCA, and UDCA into β-MCA [40]. It is
known that an increase in Cyp7a1 expression effectively reduces hepatic free cholesterol
and oxidative stress, and reverses hepatic inflammation and fibrosis in MCD diet-fed
Cyp7a1 knockout mice [41]. Although we found that the expression of Cyp7a1 showed
no significant changes after the treatment with HRCC in MCD mice, the expressions of
Cyp8b1 and Cyp27a1were elevated. Overexpression of Cyp27a1 in Kupffer cells reduces
hepatic inflammation [42]. Of note, our results also showed increased levels of GUDCA and
23-norDCA levels in MCD mice treated with HRCC. A previous study showed that GUDCA
improves diabetes and other metabolic conditions, linked with the regulation of the bile
acid and gut microbiota composition [43]. Another study revealed reduced 23-norDCA
is association with pediatric NAFLD [44]. The present study aligns with prior research
indicating that bile acid synthesis may lead to the mitigation of hepatic inflammation,
whereas diminished bile acid synthesis exacerbates MCD-induced hepatic inflammation
and fibrosis [45]. These findings have contributed to the understanding of the regulatory
mechanisms underlying hepatic responses to MCD-induced fatty liver, offering potential
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therapeutic options targeting bile acid synthesis pathways. A significant role of the gut
microbiota is converting primary bile acids into secondary bile acids.

Previous investigations have established an association between alterations in gut
microbiota and some infectious diseases, immune dysregulation, and obesity [46], and
gut microbiota have a significant impact on bile acids [47,48]. The gut microbiota not only
oversees the metabolism of secondary bile acids but also reduces liver lipid synthesis by
easing Farnesoid X receptor inhibition [49]. Research in both mice and humans indicates
that bile acid transformation by the gut microbiota (including deconjugation, dehydro-
genation, and dehydroxylation) is linked to the progression of NAFLD and NASH [50].
Another study found that pediatric NAFLD is linked to two key changes in the intestinal
microbiome: a decline in α-diversity and increased person-to-person variability in micro-
biome composition. The reduction in α-diversity, indicating fewer different microbial taxa,
did not correspond to a decrease in metabolic potential, unlike findings in adult obesity
studies. Increased person-to-person variability was strongly associated with differences in
microbial metabolic potential, aligning with trends observed in other microbiome-related
disorders under various stressors [51].

Patients with NAFLD exhibit distinct microbial signatures, including increased Pro-
teobacteria and Enterobacteriaceae, and decreased Rikenellaceae and Ruminococcaceae, as com-
pared with healthy controls. At the genus level, there is an increase in Escherichia, Dorea,
and Peptoniphilus, and a decrease in Anaerosporobacter, Coprococcus, Eubacterium, Faecalibac-
terium, and Prevotella. Despite these findings, studies show large discrepancies in microbial
changes at various taxonomic levels. Research specifically on hepatic fibrosis is limited, but
consistent patterns emerge [52]. Patients with less severe liver alterations or healthy con-
trols have decreased Gram-negative bacteria and Fusobacteria, and increased Gram-positive
bacteria, Firmicutes, and Prevotella, as compared with those with advanced fibrosis [53].
In the present study, we found that HRCC effectively changed NAFLD-associated gut
microbiota signatures. HRCC increased the content of Oscillospiraceae and Peptococcaceae at
the family level, and Anaerobacterium (belonging to the family Oscillospiraceae), as well as
non-signature Corynebacterium (belonging to the family Corynebacteriaceae) at the genus level,
while NAFLD signature Enterobacteriaceae showed an inverse trend in HRCC-treated MCD
mice. However, certain NAFLD signatures in the MH group did not manifest significant
changes, including Lachnospiraceae, Clostridiaceae, Bacteroidceae, and Akkmanisiaceae [54–56],
as compared with the MC group. These results indicate distinctions in the microbiota of
the MH group, as compared with both CC and MC groups. Furthermore, although prior
mouse model studies and fecal transplantation experiments show that gut microbiota play
a causal role in NAFLD development, as demonstrated by fecal microbiota transplantation
leading to liver steatosis and inflammation [57], the results should be cautiously interpreted,
since mouse models have limitations in replicating the full spectrum of human NAFLD
histological lesions and associated conditions like being overweight and insulin resistance,
due to differences in gut microbiota composition and digestive tract architecture between
mice and humans [53].

NAFLD is a complex disease affected by genetic, epigenetic, and environmental factors,
and its exact mechanisms remain unclear. Currently, the “multiple-hit” hypothesis offers a
more accurate explanation. Among all factors associated with NAFLD, oxidative stress is
seen a major contributing factor [27]. A prior study of zebra fish model showed the trends
of oxidative stress biomarkers were associated with gut microbiota, especially at the genus
level [58]. Given the prevailing perspective on the nature of NAFLD involving the multiple-
hit hypothesis [59], we infer that the impact of HRCC is comprehensive, significantly
altering the gut microbiota, while not all signatures in the gut microbiota have a pivotal
impact on the pathogenesis of NAFLD. We speculate that HRCC may reverse dysbiosis and
affect bile acid synthesis through the expression of Cyp8b1 and Cyp27a1, treating NAFLD,
together with alleviation of oxidative stress (Figure 8). This study indicates that HRCC may
potentially impact bile acid and gut microbiota while simultaneously improving NAFLD,
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and the metabolites of the intestinal flora might be involved in HRCC-improved NAFLD
in MCD mice and need further analysis to investigate.
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Figure 8. Possible mechanisms of hydrogen-rich coral calcium (HRCC) in improving methionine-
and-choline-deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Administration
of HRCC in mice improved MCD-induced hepatic inflammation and oxidative stress, and altered
gut microbiome to change bile acid content. These beneficial effects might further improve MCD-
induced NAFLD.

5. Conclusions

HRCC exerts anti-inflammation and antioxidation activities and might alter the gut
microbiome to change bile acid content, hence improving MCD-induced NAFLD (Figure 8).
The interplay between these beneficial effects still warrants further elucidation. Although
HRCC might be a potential supplement for the treatment of NAFLD, the effects of HRCC
in humans are still unknown. Thus, it may be worthwhile to conduct clinical trials with
long-term longitudinal follow-up for more solid evidence.
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