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Abstract: The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is
frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion,
and photoperiod regulates melatonin levels by promoting its production and secretion at night in
response to darkness. This hormone is becoming more and more understood for its functions as an
immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major
effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep
disturbances, and mood disorders, according to recent research. This has raised interest in investi-
gating the possible therapeutic advantages of melatonin in the treatment of diabetic complications.
In addition, several studies have described that melatonin has been linked to the development of
diabetes, cancer, Alzheimer’s disease, immune system disorders, and heart diseases. In this review,
we will highlight some of the functions of melatonin regarding vascular biology.
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1. Introduction

Melatonin, N-acetyl-5-methoxytryptamine, is an indole hormone synthesized from the
essential amino acid tryptophan [1]. It is the main hormone secreted by the pineal gland and
plays important roles in regulating the circadian rhythm [2]. Despite its important functions
in the pineal gland, melatonin is also produced in a number of other organs, such as the
retina, gut mucosa, liver, kidney, pancreas, bone marrow, heart, and endothelial cells [3,4].
Melatonin synthesis seems to occur in the mitochondria within cells [5]. Numerous other
functions are associated with melatonin, namely as an antioxidant, radical scavenger,
anti-inflammatory, blood pressure regulator, and immunomodulator (Figure 1) [6].

The comprehension of the endothelium has evolved significantly over time. Initially
seen as inert barrier, it is now understood to be a dynamic and complex organ with multi-
faceted functions in various physiological processes, including vascular tone regulation,
fluid and solute exchange, hemostasis, coagulation, and inflammatory responses [7–9].
Diseases such as diabetes, hypertension, and atherosclerosis, among others, are associated
with endothelial dysfunction and other major changes in the vascular function [8].

Given the impact of cardiovascular and metabolic disorders on vascular health, it is
crucial to investigate the strategies aimed at restoring endothelial function. This entails
exploring mechanisms and molecules capable of enhancing endothelial function, such as
boosting nitric oxide (NO) production, diminishing the generation of free radicals and
vasoconstrictors, and mitigating inflammation [9]. The current understanding of the role of
melatonin in vascular biology highlights its potential as a modulator of vascular function
and a protector against vascular diseases. Through the mechanisms involving vasodilation,
antioxidant activity, anti-inflammatory effects, blood pressure regulation, protection against
ischemia-reperfusion injury, and lipid metabolism modulation, melatonin contributes
significantly to cardiovascular health. Ongoing research continues to unravel its complex
interactions and therapeutic potential in the vascular system. This review aims to establish
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a connection between the effects of melatonin—a hormone known for its antioxidant and
anti-inflammatory properties—and the beneficial protection in vascular function.
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tophan into 5-hydroxytryptophan by the enzyme tryptophan hydroxylase (TPH). Then, 
the decarboxylation of 5-hydroxytryptophan, in the presence of the aromatic amino acid 
decarboxylase (AADC), generating 5-hydroxytryptamine (serotonin). Serotonin then un-
dergoes acetylation by serotonin N-acetyltransferase (SNAT or AANAT, the acronym for 
arylalkylamine N-acetyltransferase—the rate-limiting enzyme), converting into N-acetyl-
serotonin. Finally, melatonin is produced through the methylation of N-acetylserotonin 
by N-acetylserotonin O-methyltransferase (ASMT, previously identified as hydroxyin-
dole-O-methyltransferase or HIOMT) [2,10–13]. The melatonin synthesis pathway is sche-
matized in Figure 2. 

Melatonin levels in the serum exhibit significant variations across different age 
groups [6,13]. During infancy, the melatonin secretion is minimal, with levels remaining 
low until around 3 months of age. From infancy through adolescence, the melatonin levels 
progressively rise, reaching a plateau, before gradually decreasing as individuals enter 
their late twenties to their fifties. Elderly people produce residual levels of melatonin 
[13,14]. Melatonin levels in early life are crucial for vascular health, promoting vasodila-
tion, reducing oxidative stress, and supporting endothelial function. However, as melato-
nin levels decline in adulthood [15], this may lead to increased oxidative stress, inflamma-
tion, and endothelial dysfunction, increasing the risk of hypertension, atherosclerosis, and 
other cardiovascular diseases. The elderly are more prone to oxidative stress and inflam-
mation, contributing to the progression of vascular diseases [16,17]. 

Figure 1. The beneficial effects of melatonin on cardiovascular health.

2. Melatonin: A Regulator of Circadian Rhythms

The melatonin biosynthetic process begins with the amino acid tryptophan, acquired
through the diet, and occurs in four essential steps [1,10]. First, the hydroxylation of trypto-
phan into 5-hydroxytryptophan by the enzyme tryptophan hydroxylase (TPH). Then, the de-
carboxylation of 5-hydroxytryptophan, in the presence of the aromatic amino acid decarboxy-
lase (AADC), generating 5-hydroxytryptamine (serotonin). Serotonin then undergoes acety-
lation by serotonin N-acetyltransferase (SNAT or AANAT, the acronym for arylalkylamine
N-acetyltransferase—the rate-limiting enzyme), converting into N-acetylserotonin. Finally,
melatonin is produced through the methylation of N-acetylserotonin by N-acetylserotonin
O-methyltransferase (ASMT, previously identified as hydroxyindole-O-methyltransferase
or HIOMT) [2,10–13]. The melatonin synthesis pathway is schematized in Figure 2.
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Melatonin levels in the serum exhibit significant variations across different age
groups [6,13]. During infancy, the melatonin secretion is minimal, with levels remain-
ing low until around 3 months of age. From infancy through adolescence, the melatonin
levels progressively rise, reaching a plateau, before gradually decreasing as individuals
enter their late twenties to their fifties. Elderly people produce residual levels of mela-
tonin [13,14]. Melatonin levels in early life are crucial for vascular health, promoting
vasodilation, reducing oxidative stress, and supporting endothelial function. However,
as melatonin levels decline in adulthood [15], this may lead to increased oxidative stress,
inflammation, and endothelial dysfunction, increasing the risk of hypertension, atheroscle-
rosis, and other cardiovascular diseases. The elderly are more prone to oxidative stress and
inflammation, contributing to the progression of vascular diseases [16,17].

Melatonin production and release are stimulated by darkness and suppressed by light.
In humans, melatonin secretion initiates shortly after sunset, peaks in the middle of the
night, and gradually diminishes during the latter half of the night [18]. Approximately 80%
of melatonin is synthesized during the nighttime, resulting in serum levels ranging from 80
to 120 pg/mL. Conversely, during the daylight hours, serum concentrations remain low,
typically between 10 and 20 pg/mL [2,18].

Melatonin synthesis occurs, as previously outlined, not only in the pineal gland but
also in other tissues. The complex signaling cascade that results in the production of
melatonin begins with the recognition of light, which takes place in specific retinal cells:
the intrinsically photosensitive retinal ganglion cells (ipRGCs) [4]. These retinal cells send
the light information to the suprachiasmatic nucleus (SCN) via the retinohypothalamic
tract. From there, a neural pathway begins from the SCN to the paraventricular nucleus,
traversing through the brainstem, the spinal cord, and ultimately reaching the pineal gland
via the superior cervical ganglion (SCG) [4,19–21]. Norepinephrine (NE) is released into the
synapse by adrenergic neurons projecting from the SCG. Upon release, NE binds to both
beta-1 (β1) and alpha-1 (α1) receptors located on the cell membrane of the pinealocytes. On
the one hand, NE induces the activation of the α1-adrenergic receptors, thereby resulting
in an increase in the cytoplasmic calcium ion concentrations. On the other hand, the
stimulation of the β1-adrenergic receptors by NE initiates a signaling cascade, activating
adenylate cyclase (AC) to elevate cytoplasmic cyclic adenosine-3,5-monophosphate (cAMP).
This increase in cAMP levels triggers the activation of cAMP-dependent protein kinase
A (PKA), which stimulates the production of AA-NAT (by stimulate the transcription of
AA-NAT RNA), promoting melatonin biosynthesis [3,4,19–21].

2.1. Insights from Research in Non-Pineal Tissues

The synthesis of melatonin in non-pineal tissues underscores its diverse physiological
roles beyond the regulation of sleep. Tryptophan is converted into melatonin in the pineal
gland and by practically every organ in the body because the mitochondria are involved in
the process [22]. Indeed, the mitochondria are crucial for melatonin synthesis, metabolism,
and activity [5]. It has been demonstrated that the mitochondria, as opposed to the
circadian (light/dark) cycle, stimulate melatonin production in response to cellular needs.
In comparison with the blood, the mitochondria have a higher concentration of melatonin.
This is because the mitochondria with electron transport chains have higher requirements
for an antioxidant pool [23–25].

Melatonin contributes to tissue-specific functions, including protection against oxida-
tive stress, the modulation of immune responses, and the regulation of circadian rhythms [6].
Notably, elevated melatonin levels are beneficial to health and the aging process [26]. The
gastrointestinal tract is a major extrapineal source of melatonin. The enterochromaffin cells
in the gut can produce melatonin independently of the pineal gland. This melatonin is
involved in regulating gut motility, modulating immune responses, and protecting the
gastrointestinal mucosa from damage caused by oxidative stress and inflammation [27].

Melatonin production in immune cells, such as lymphocytes and macrophages, sug-
gests its role in modulating immune responses [28,29]. Recent research has focused on
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how the melatonin produced by these cells influences inflammation, autoimmunity, and
the overall immune response, highlighting its potential in treating inflammatory and au-
toimmune diseases [28–30]. In addition, melatonin synthesis in bone marrow cells has
been implicated in hematopoiesis and the regulation of circadian rhythms in bone marrow-
derived cells. This area of research is expanding our understanding of the role of melatonin
in bone health and its potential therapeutic applications in hematological disorders [31].

Understanding these mechanisms opens new avenues for therapeutic interventions,
targeting various conditions ranging from gastrointestinal disorders to immune-related
pathologies including vascular diseases.

2.2. Melatonin Receptors

The functions of melatonin may occur due to interactions with receptors and targets, as
well as through receptor-independent mechanisms (Figure 3) [32]. The melatonin receptors
MT1 and MT2 are transmembrane receptors, belonging to the class of G-protein-coupled
receptors. The MT1 receptor is encoded on chromosome 4 and consists of 350 amino
acids, while the MT2 receptor is encoded on chromosome 11 and consists of 362 amino
acids [33–35]. Melatonin binds and activates the MT1/MT2 receptors, resulting in the
inhibition of the AC/cAMP/PKA/CREB (cAMP response element-binding protein) and
GC/cGMP/PKG signaling pathways, which reduces cAMP and cyclic guanosine-3,5-
monophosphate (cGMP) levels, leading to the activation of calcium signaling by calmodulin
kinases and protein kinase C. This allows the melatonin to regulate hormone synthesis and
activate the antioxidant defense system [11,32,35,36]. Additionally, the melatonin activation
of the MT1/MT2 receptors initiates other signaling pathways, such mitogen-activated
protein kinases and extracellular-signal-regulated kinase (ERK1/2). These pathways play a
role in several regulatory processes, including the cell responses to various injuries and
chronobiological regulation [32,35–37].
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Intracellularly, melatonin has the capacity to interact with the MT3 receptor, identified
as a cytosolic receptor with a minimal affinity for melatonin. Functioning as a quinone
reductase 2, it possesses the ability to neutralize free radicals [11,32,36]. Melatonin can also
bind to nuclear receptors known as retinoid orphan receptors or retinoid Z receptors, which
play roles in immune modulation and the regulation of antioxidant enzymes; however,
a consensus has not yet been reached [11,36,38]. The receptor-independent action of
melatonin consists of its direct antioxidant capacity, its effects on different protein targets,
and its mitochondria protection (Figure 3) [36].
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The important role played by melatonin in the sleep–wake cycle is due to the presence
of the MT1 and MT2 receptors in the SCN (the circadian clock) [2,21]. Although the
production and release of melatonin occurs in the pineal gland, under SCN regulation, this
molecule feeds back to the SCN through the MT1 and MT2 receptors, to reduce neuronal
firing or induce a change in the circadian phase. Melatonin is also capable of affecting the
expression of the clock genes in the SCN [1,21,39].

Melatonin receptors are distributed across both the central and peripheral tissues,
including the cardiovascular system (the peripheral blood vessels, aorta, and heart). The
physiological effects of melatonin depend on the localization and types of the melatonin
receptors [2,34]. The MT1 and MT2 receptors are integral to the cardiovascular protec-
tive effects of melatonin. Through mechanisms involving the regulation of vascular tone,
anti-inflammatory and antioxidant actions, circadian regulation, and antithrombotic ef-
fects, these receptors help to maintain cardiovascular health and protect against various
cardiovascular diseases.

2.2.1. MT1 Receptors

MT1 receptors are involved in the regulation of vascular tone. In humans, the activa-
tion of MT1 receptors on vascular smooth muscle cells leads to vasoconstriction [40,41].
MT1 receptors enhance the antioxidant defenses by upregulating the expression of an-
tioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase. By
reducing the oxidative stress, MT1 receptors protect the vascular endothelium from the
damage caused by reactive oxygen species (ROS), thereby preserving endothelial function
and preventing vascular diseases [41].

MT1 receptors also modulate immune responses and reduce inflammation [28]. Acti-
vation of these receptors can inhibit the release of pro-inflammatory cytokines and suppress
the activation of inflammatory pathways such as nuclear factor-κB (NF-κB). Reduced in-
flammation in the vascular endothelium helps to prevent endothelial dysfunction and
atherosclerosis, which are critical in maintaining cardiovascular health [7,42,43].

2.2.2. MT2 Receptors

In contrast to the MT1 receptors, the activation of MT2 receptors causes vasodilation.
This leads to the stimulation of NO production in the endothelial cells through the activation
of endothelial nitric oxide synthase (eNOS). The increase in NO production results in
vasodilation and improved blood flow, which is beneficial for maintaining optimal vascular
function and reducing blood pressure [44].

In addition, MT2 receptors play a crucial role in the regulation of circadian rhythms,
which include the circadian regulation of the blood pressure and heart rate. The proper
functioning of circadian rhythms helps in maintaining cardiovascular health by prevent-
ing circadian disruption-related cardiovascular events such as hypertension and heart
attacks [16,35].

MT2 receptor activation has also been associated with antithrombotic effects. These
receptors can inhibit platelet aggregation and reduce the risk of thrombosis. By preventing
excessive platelet aggregation, MT2 receptors help in reducing the risk of thrombotic events
such as stroke and myocardial infarction [45].

2.2.3. Combined Effects of MT1 and MT2 Receptors

Melatonin, through its receptors, reduces the progression of atherosclerosis by prevent-
ing endothelial dysfunction, reducing oxidative stress, and inhibiting inflammation. These
effects are mediated by the coordinated action of the MT1 and MT2 receptors [46]. In the
context of ischemia-reperfusion injury, melatonin receptor activation has shown protective
effects on the heart. Both MT1 and MT2 receptors help in reducing myocardial damage by
mitigating oxidative stress, inflammation, and apoptosis during reperfusion [47].

Understanding the roles of the MT1 and MT2 receptors in cardiovascular protection
opens up potential therapeutic avenues. Melatonin or selective melatonin receptor agonists
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could be used to treat hypertension, prevent atherosclerosis, and protect against ischemic
heart diseases [48]. The variations in melatonin receptor expression and function among
individuals suggest that personalized approaches to melatonin-based therapies could
optimize cardiovascular outcomes.

3. Antioxidant Properties of Melatonin

Free radicals are continually produced in normal aerobic functions and are involved
in several biological processes [49]. ROS comprise various molecules, from the superoxide
anion radical (O2

•−), primarily generated within the cytosol, mitochondria, and endoplas-
mic reticulum, to hydrogen peroxide (H2O2), which is synthesized in peroxisomes, and the
hydroxyl radical (•OH) and singlet oxygen (1O2), which are also highly reactive species.
Alongside ROS, reactive nitrogen species can contribute to cellular damage, exemplified
by nitric oxide (•NO) and generated by NO-synthases. Nitric oxide reacts with O2

•− to
produce peroxynitrite (ONOO−), a potent oxidative and nitrosative agent [50,51]. The con-
centration of these substances is strongly controlled by the different antioxidants present in
cells, considering that they also serve as second messengers for different cellular processes
(as in the case of nitric oxide) [51]. The disturbances that occur in the balance between the
concentration of radical species and antioxidant defenses result in a state of oxidative stress,
which can cause cellular damage, with a loss of function and integrity [52].

Oxidative stress is associated with various cardiovascular pathologies, such as atheroscle-
rosis and hypertension, through different mechanisms, namely the promotion of inflamma-
tion and endothelial dysfunction [53,54].

The antioxidant power of melatonin has been described in the literature for several
years [55]. This molecule can exert its antioxidant activity directly, through radical scav-
enging, or indirectly, through the activation of antioxidant enzymes and the inhibition of
pro-oxidant enzymes [36]. The intense antioxidant activity of melatonin is due, on the one
hand, to its high intracellular concentration in the mitochondria, which allows for better
functioning of the respiratory chain, with less generation of free radicals (radical avoid-
ance) [23,24]. On the other hand, the intermediate compounds (cyclic 3-hydroxymelatonin,
N1-acetyl-N2-formyl-5-methoxykynuramine, and N-acetyl-5-methoxykynuramine), pro-
duced through the reaction of melatonin with different radical species, are also strong
antioxidants [56]. In this way, melatonin can neutralize up to ten ROS, when traditional
antioxidants typically neutralize one ROS [24,36]. Melatonin has also been shown to be
capable of inhibiting metal-induced oxidation, in processes such as lipid peroxidation,
through the formation of chelates with different transition metals [57,58]. Melatonin also
has the ability to activate different enzymes, responsible for catalyzing antioxidant reactions,
eliminating free radicals. By binding to the MT1 and MT2 receptors, melatonin can stimu-
late the expression and activity of enzymes such as superoxide dismutase (SOD—which
reduces the superoxide radical O2

•− to H2O2), catalase (which decomposes hydrogen per-
oxide into water and oxygen), and glutathione peroxidase and glutathione reductase (which
catalyze the GSSH/GSH reaction that is responsible for activating the antioxidant activity of
glutathione, which decomposes hydrogen peroxide). In terms of inhibiting the pro-oxidant
enzymes, melatonin is responsible for suppressing lipoxygenase activity [23,24,51,59,60].

Pimenta and co-workers conducted experiments to evaluate the effect of melatonin
on the production of ROS and vascular dysfunction induced by cyclophosphamide and
reported that melatonin demonstrated vasoprotective effects. It inhibits NADPH oxidase
activity, enhances SOD activity, and elevates reduced glutathione (GSH) levels, while also
reducing the production of pro-inflammatory cytokines [61]. Ren et al. reported that
melatonin had a protective effect against the harmful effects of oxidative stress in the
diabetic aorta, obtained using an STZ-induced diabetic animal model and vascular smooth
muscle cells (VSMCs). In this study, melatonin, in addition to demonstrating its antioxidant
role, managed to activate the Notch1 signaling pathway and reduce the expression of
pro-apoptotic proteins [62].
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3.1. Comparison of Melatonin with Other Antioxidants

The antioxidant properties of melatonin play a crucial role in protecting against
oxidative stress and related diseases. To highlight the unique benefits of melatonin, it is
useful to compare it with other well-known antioxidants, such as vitamin C and vitamin
E, glutathione, and coenzyme Q10. This comparison can elucidate the distinctive features
of melatonin and the advantages in the context of antioxidant defense and cardiovascular
protection.

3.1.1. Melatonin vs. Vitamin C

Vitamin C primarily acts in the aqueous compartments of the cell (cytosol and plasma).
It neutralizes free radicals by donating electrons and is effective in reducing oxidative
stress [63]. Melatonin functions in both aqueous and lipid environments. It directly scav-
enges a wide range of reactive oxygen and nitrogen species (ROS/RNS) and upregulates
antioxidant enzymes [23,24,55]. Vitamin C is limited to the aqueous phases and needs
transporters for cellular uptake [64]. Melatonin is highly lipophilic, allowing it to cross all
the cellular membranes, including the blood–brain barrier, providing widespread protec-
tion [65].

Vitamin C can be regenerated from its oxidized form (dehydroascorbate) by cellular
reductants such as glutathione [64]. Unlike vitamin C, melatonin is not regenerated after
scavenging free radicals. Its metabolites continue to exhibit antioxidant properties, leading
to a cascade of antioxidant actions [56].

3.1.2. Melatonin vs. Vitamin E

Vitamin E is primarily an antioxidant with limited additional cellular effects. It func-
tions primarily in lipid environments, protecting cell membranes from lipid peroxidation
by donating a hydrogen atom to the lipid radicals [64]. Melatonin provides antioxidant
protection in both the lipid and aqueous phases and also protects against protein oxidation
and DNA damage [66].

Vitamin E requires co-antioxidants such as vitamin C to regenerate its active form after
neutralizing free radicals, while melatonin does not rely on regeneration. Its metabolites
(e.g., N1-acetyl-N2-formyl-5-methoxykynuramine) continue to exhibit antioxidant activity.
Besides being an antioxidant, it has anti-inflammatory, circadian rhythm-regulating, and
immune-modulating properties [25,28,67].

3.1.3. Melatonin vs. Coenzyme Q10 (Ubiquinone)

Coenzyme Q10 functions within the mitochondrial membrane, participating in elec-
tron transport and reducing oxidative damage by acting as a lipid-soluble antioxidant [68].
Melatonin protects the mitochondria from oxidative stress and enhances mitochondrial
function, directly scavenging radicals and reducing mitochondrial ROS production [69].

Coenzyme Q10 is concentrated within the mitochondria while melatonin is widely
distributed, including in the mitochondria, cytosol, and cellular membranes. Coenzyme
Q10 is directly involved in ATP production and cellular energy metabolism [69]. Melatonin
indirectly supports energy metabolism by protecting the mitochondrial integrity and
function [22].

3.1.4. Melatonin vs. Glutathione

Glutathione is a tripeptide, present in high concentrations in cells (primarily in the
cytosol, mitochondria, and nucleus), which acts as a major intracellular antioxidant, directly
neutralizing the free radicals and regenerating other antioxidants. Glutathione levels
can be depleted under conditions of severe oxidative stress [70]. Melatonin can work
synergistically with glutathione by increasing its synthesis and activity. In contrast to
glutathione, melatonin is present in lower concentrations but is more widely distributed
across all cellular compartments. Melatonin stimulates the activity of the enzymes involved
in glutathione regeneration and synthesis, helping to maintain glutathione levels [71].
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Noteworthy, the unique benefits of melatonin, including its broad-spectrum antioxi-
dant and anti-inflammatory activities, metabolite efficacy, circadian regulation, and multi-
compartment distribution, distinguish it from other antioxidants. These features make
melatonin particularly effective in providing comprehensive cardiovascular protection
and enhancing overall health. Incorporating melatonin in therapeutic strategies offers a
promising approach to mitigating oxidative stress and related vascular diseases across
different age groups.

4. Anti-Inflammatory Effects

Inflammation is a normal response of organisms to recover from tissue damage or
infections; however, chronic and uncontrolled inflammation can cause extensive tissue
damage [72]. Inflammation and oxidative stress are closely linked, being preponderant
in several cardiovascular diseases [53,54]. Diseases such as obesity and diabetes increase
the cardiovascular risk, due to an increase in ROS and inflammation, and are considered
chronic diseases with a low level of inflammation [72,73].

In cardiovascular inflammation, there is frequently an elevation in inflammatory
cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-18 (IL-18), and
tumor necrosis factor-α (TNFα), released by resident and infiltrating immune cells. This is
accompanied by a parallel decrease in anti-inflammatory cytokines such as interleukin-4
(IL-4), interleukin-10 (IL-10), and transforming growth factor beta [72,74,75].

Patients with metabolic syndrome often experience decreased levels of potent vasodila-
tors, such as NO, alongside increased levels of endothelin-1, a vasoconstrictor [72]. These
alterations coincide with the release of pro-inflammatory cytokines. The dysregulated
production of pro-inflammatory cytokines exacerbates tissue injury through mechanisms
that involve leukocyte recruitment, ROS generation, mitochondrial dysfunction, fibrosis,
and cell death [72,76].

In animal studies, melatonin administration has demonstrated the ability to decrease
the inflammatory response, through the reduction of pro-inflammatory cytokines such
as IL-1β and TNF-α and an increase in anti-inflammatory cytokine IL-4 levels in the
serum. Melatonin also inhibited the expression of cyclooxygenase and inducible nitric
oxide synthase and decreased the production of other inflammatory mediators such as
prostanoids, leukotrienes, chemokines, and adhesion molecules [77–79].

In an animal model of atherosclerosis, Chen and collaborators demonstrated that
melatonin exhibited an antiatherogenic effect by inhibiting the S100a9/NF-κB signaling
pathway-mediated vascular inflammation. Melatonin additionally reduced atherosclerotic
lesions, promoted stable phenotypic sclerotic plaques, inhibited macrophage infiltration,
and suppressed the production of proinflammatory cytokines [80].

In a study involving animal models of type 2 diabetes, Yu and co-workers showed that
prolonged administration of melatonin mitigated the progression of diabetic cardiomyopa-
thy (characterized by inflammation, fibrosis, and impairing cardiac function) and lowered
myocardial susceptibility to myocardial ischemia reperfusion (MI/R) injury. This effect
was achieved by reducing mitochondrial fission and boosting mitochondrial biogenesis
and mitophagy through the reactivation of the SIRT6 and AMPK-PGC1α-AKT signaling
pathways [81].

The interaction of melatonin with common inflammatory markers highlights its po-
tential as a powerful anti-inflammatory agent in vascular diseases. By reducing the levels
of C-reactive protein (CRP), TNF-α, IL-6, IL-1β, matrix metalloproteinases, and adhesion
molecules, melatonin helps to mitigate inflammation, stabilize atherosclerotic plaques, and
improve endothelial function [77–79]. Furthermore, to reduce the inflammatory processes
at the cellular level, melatonin may also downregulate NF-κB, a proinflammatory transcrip-
tion factor [80], and upregulate nuclear factor erythroid 2-related factor 2 (Nrf2) [82,83],
an anti-inflammatory transcription factor. Similarly, this indoleamine promotes the polar-
ization of macrophages from a proinflammatory phenotype (M1 phenotype) to an anti-
inflammatory phenotype (M2 phenotype) and stimulates the release of anti-inflammatory
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cytokines such as IL-4 and IL-10 [17]. Melatonin also suppresses proinflammatory events,
and cyclooxygenase-2 and NLR family pyrin domain containing 3 (NLRP3) inflammasome
activation [84]. It also upregulates the expression of Klotho [85], an antiaging protein with
powerful antioxidant, anti-inflammatory, and antiapoptotic properties. These properties
underscore the therapeutic potential of melatonin in cardiovascular protection and the
management of vascular diseases. Since cardiometabolic diseases and aging [86] are typi-
cally linked to chronic proinflammatory processes—which are a result, at least partially,
of reductions in endogenous melatonin secretion—all these actions together significantly
contribute to the protective effect of exogenous melatonin [17].

5. Endothelial Function and Nitric Oxide Production

The endothelium is a layer of cells that lines the inside of the blood vessels, forming
a semipermeable barrier between the blood and the surrounding tissues. It performs
several essential functions that are important in cardiovascular health and vascular home-
ostasis, such as regulating vascular tone, and controlling blood flow and inflammatory
responses [7,8]. In physiological conditions, endothelial cells carefully regulate the balance
between ROS production and the scavenging activity of endogenous antioxidants. How-
ever, in certain pathophysiological states such as hyperlipidemia, ischemia-reperfusion
injury, and shear stress injury, this equilibrium can be disrupted. This disturbance leads to
oxidative stress, which can induce endothelial dysfunction, thus exacerbating the progres-
sion of cardiovascular diseases [7,50,87].

In endothelial cells, NO plays a crucial role in maintaining vascular homeostasis. It is
generated within endothelial cells through the conversion of L-arginine to L-citrulline by
the enzyme eNOS. Subsequently, NO diffuses to VSMCs, where it triggers the activation
of soluble guanylate cyclase, leading to an elevation in the levels of cGMP and inducing
the relaxation of VSMCs [7,88]. A decrease in NO availability, caused by either reduced
NO production or increased NO degradation, is indicative of the onset of endothelial
dysfunction [8].

In cardiovascular diseases, oxidative stress plays a major role in reducing eNOS
activity and NO bioavailability, through reducing the tetrahydrobiopterin or L-arginine
levels. This reduction can lead to eNOS uncoupling, generating superoxide instead of
NO [50]. ROS also have the ability to inactivate NO through the formation of peroxynitrite,
which contributes to the exacerbation of oxidative stress [50,54]. In both humans and animal
models with atherosclerosis, reduced expression and activity of eNOS was demonstrated,
leading to a decline in the NO production [87].

Atherosclerosis is the consequence of cholesterol build-up and chronic inflammation,
in the context of a dysfunctional endothelium [46]. Melatonin exhibits favorable anti-
atherosclerotic properties through several different mechanisms, such as the inhibition
of the formation of endothelium-derived adhesion molecules, the reduction of fatty acid
infiltration into the endothelial layer, the neutralization of free radicals, the reduction of
lipid peroxidation, the inhibition of inflammatory pathways, and the prevention of electron
leakage from the mitochondrial respiratory chain [46,87,89].

Wakatsuki and co-workers have demonstrated, in vitro, that melatonin offers protec-
tion against the inhibition of NO production caused by oxidized low-density lipoprotein
(ox-LDL) [90]. Peng Li and collaborators have shown that melatonin effectively mitigates
ox-LDL-induced damage in endothelial cells by preserving endoplasmic reticulum home-
ostasis, mitochondrial function, and antioxidant processes [91]. Moreover, melatonin has
exhibited protective effects on the local vasculature afflicted with atherosclerotic dam-
age, by suppressing the toll-like receptor 4 (TLR4)/NF-κB pathway, which serves as the
principal regulator of inflammation [92]. Another example brings together the action of
statins and melatonin and has corroborated that melatonin diminishes oxidative stress and
enhances the statins’ ability to stimulate eNOS, consequently augmenting NO production
and eliciting vasodilation [93].
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6. Perivascular Adipose Tissue

Long-term melatonin treatment normalized the anticontractile effects of perivascular
adipose tissue (PVAT) in mice models of accelerated aging. It was also linked to increased
expressions of the vasoprotective markers, decreased oxidative stress, and reduced in-
flammation in PVAT [94]. In a recent study, melatonin treatment reversed the excess ROS
production, restored SOD activity, and increased the NO bioavailability in obese rats,
restoring the anticontractile effect of aortic PVAT [95]. These anticontractile effects of PVAT
contributed to reduced blood pressure.

7. Blood Pressure Regulation

From a physiological standpoint, blood pressure typically stays within a normal range
due to a delicate equilibrium between the factors that may elevate blood pressure and
those that regulate it, functioning as compensatory mechanisms. When this balance is
disrupted, hypertension occurs [96]. The pathophysiology of hypertension entails the over-
production of the vasoconstrictor agents and oxidative stress, culminating in endothelial
dysfunction, which may lead to alterations in both the macro- and micro-structure of the
vasculature. Indeed, arterial stiffening is a primary consequence of chronic stress, induced
by dyslipidemia, aging, and elevated blood pressure [50,53,96].

Reduced melatonin secretion and production are closely associated with the onset of
nocturnal and essential hypertension. Consequently, melatonin is starting to become re-
garded as a possible adjunct anti-hypertensive agent. A correlation has been established in
elderly individuals between reduced nocturnal melatonin secretion and hypertension [97].
The positive effects of melatonin on hypertension may occur due to different mechanisms in-
cluding its antioxidant properties and endothelial-dependent vasodilation actions [98–100].
In addition, melatonin also influences the regulation of blood pressure through its effects
on the autonomic nervous system and the renin–angiotensin system [101–103]. Several
studies have suggested that melatonin may help to lower blood pressure, which is a key risk
factor for many vascular diseases, including stroke and heart disease [104,105], although
some contradictory reports have also been described [88,89]. A summary of the main
mechanisms is presented in Figure 4.

The long-term administration of melatonin (for a duration of 2 months) has been
shown to elevate catalase activity, thereby decreasing the oxidative stress indicators and
mitigating hypertension in individuals with metabolic syndrome [104].

Melatonin has been observed to reduce NF-κB-induced oxidative stress and inflamma-
tion in spontaneously hypertensive rats [106]. In a rat model of pulmonary hypertension,
melatonin therapy ameliorated right ventricular hypertrophy and dysfunction, while also
diminishing interstitial fibrosis and oxidative stress. Remarkably, melatonin supplementa-
tion decreased nocturnal hypertension, blood pressure, platelet aggregation, and circulating
catecholamines [77].

In humans, studies have also revealed a significant influence of melatonin that is
suggestive of vasodilation, including reduced vascular resistance, decreased pulse wave
velocities, and decreased pulsatility indices with a subsequent lowering of the blood
pressure [100,107,108]. In individuals with obstructive sleep apnea, hypertension has been
linked to endothelial dysfunction triggered by chronic intermittent hypoxia. Moreover,
melatonin treatment in rats with chronic intermittent hypoxia has been shown to improve
levels of NO, endothelial-dependent relaxation, and the expression of eNOS and antioxidant
enzymes [109].
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Angiotensin II (Ang II) is recognized as a vasoactive peptide in the renin–angiotensin
system, playing a pivotal role in the pathogenesis of hypertension [110]. Stimulation with
Ang II in human aortic endothelial cells induces an increased generation of ROS and
impedes the phosphorylation of eNOS at Ser1177. In rats infused with Ang II, increased
ROS production within the aortic wall and the impaired endothelial function of the aortic
ring have been observed. Pretreatment with melatonin lowered the oxidative stress and
restored the phosphorylation of eNOS, and the co-administration of melatonin in rats
rescued the harmful effects of Ang II administration [111]. Melatonin may mitigate the
oxidative damage caused by angiotensin by inhibiting the synthesis of inflammatory
cytokines, advanced glycation end products, and reactive oxygen and nitrogen species. By
inhibiting the renin–angiotensin II–aldosterone system, melatonin improves the course of
chronic kidney disease [101].

Melatonin secretion is reduced in patients with coronary artery disease, and nocturnal
urinary melatonin excretion was found to be inversely correlated with the non-dipper
pattern of hypertensive disease in older hypertensive patients [112]. Administering 5 mg
of melatonin daily has been shown to lower the nocturnal blood pressure in hypertensive
patients and lessen age-related disruptions in their cardiovascular rhythms [105,113]. In
addition, exogenous melatonin has been studied in both healthy and human patients
in relation to the regulation of autonomic and blood pressure. Low doses of melatonin
(1 mg) have been shown to significantly reduce the mean, diastolic, and systolic blood
pressure in healthy men and women. They have also been shown to significantly lower
the NE levels and the internal carotid artery pulsatility index, which is a direct indicator
of vasoconstriction-related blood flow impedance [98,107,108,114]. Similar studies have
found that 2 mg of oral melatonin increased the parasympathetic parameters of heart rate
variability [102], decreased the supine blood pressure, and significantly reduced the supine
plasma NE and dopamine levels. Finally, 3 mg of oral melatonin significantly decreased the
increase in sympathetic activity, as measured using direct sympathetic measures in response
to an orthostatic challenge, a maneuver linked to increased sympathetic activity [103].
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8. Platelet Aggregation

The action of melatonin on platelet aggregation is an important aspect related to vas-
cular health. Melatonin has antithrombotic effects with an impact on platelet aggregation
and activated coagulation [115]. Melatonin can suppress the production of thromboxane,
a potent platelet aggregator and vasoconstrictor. By inhibiting thromboxane synthesis,
melatonin helps to maintain vascular homeostasis and prevent excessive platelet aggrega-
tion. Noteworthy, MT2 receptor activation has been associated with antithrombotic effects.
These receptors can inhibit platelet aggregation and reduce the risk of thrombotic events
such as stroke and myocardial infarction [45,116].

Excessive platelet aggregation is a key factor in the formation of blood clots and
thrombosis, which can lead to cardiovascular events such as heart attacks and strokes. By
inhibiting platelet aggregation, melatonin may reduce the risk of thrombotic events and
improve cardiovascular health. Previous research showed low melatonin levels in people
with type 2 diabetes, insulin resistance, and coronary artery disease [117–119]. In light of
this, melatonin therapy may prove to be a useful tactic in the treatment of atherothrombotic
disease, especially in high-risk individuals with abnormal circadian rhythms, such as shift
workers. Melatonin supplementation has been shown in experimental work to ameliorate
the insulin resistance resulting from internal circadian rhythm disruption [120].

Subjects with coronary artery disease secrete less melatonin at night than healthy
people, as do patients with unstable angina as opposed to stable angina [113,117,121].
Due to the compromised circadian biological rhythmicity and the absence of the calm-
ing effect of melatonin on sympathetic activity, endothelial damage, platelet activation,
and the vulnerability of vulnerable plaques to rupture are all caused by sympathetic ac-
tivation [16,117,122]. The activation of the coagulation cascade and elevated sympathetic
activity in the early morning may be responsible for the well-documented morning peaks
in cardiovascular events in patients with coronary artery disease [123,124]. Furthermore,
elevated sympathetic activity may impact the synthesis of plasminogen activator inhibitor-
1, a critical inhibitor of fibrinolysis, which could lead to hypofibrinolysis and elevate the
risk of vascular events [125].

Melatonin is believed to affect the circadian variation in platelet activity in addition
to the proteins involved in coagulation. Several studies have indicated that melatonin
directly affects platelet function. Melatonin has been linked to the suppression of induced
and spontaneous platelet aggregation [126,127]. Furthermore, some research, but not
all research, indicates that melatonin increases platelet apoptotic events [128,129]. The
process of thrombogenesis may be inhibited by either of these melatonin-induced effects
on platelets, but more research is necessary because the supporting data are inconsistent.

9. Research Findings and Inconsistencies

In a systematic review and meta-analysis of randomized controlled trials, it has been
reported that treatment with exogenous melatonin has positive effects on sleep quality (as-
sessed by the Pittsburgh Sleep Quality Index) in adults with respiratory diseases, metabolic
disorders, and primary sleep disorders, but not with mental disorders, neurodegenerative
diseases, and other diseases [130].

In two other meta-analyses, with the aim of studying the effect of melatonin supple-
mentation on inflammation biomarkers, the authors showed that melatonin supplementa-
tion significantly decreased TNF-α and IL-6 levels, had a marginal effect on CRP levels,
and had a large anti-inflammatory effect on IL-1, IL-6, and IL-8 [131,132].

In a study on the effects of melatonin on metabolic diseases such as diabetes, supple-
mentation with melatonin reduced fasting blood glucose, glycated hemoglobin, and insulin
resistance compared with placebo, in a meta-analysis performed by Delpino et al. [133].

Supplementation with melatonin in controlling blood pressure had some promis-
ing results, with reports that melatonin significantly reduced the nocturnal blood pres-
sure [134,135]; however, there were also contradictory reports, which point to the lack of
significant improvements when compared with the placebo group [67,136]. It is necessary
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to deepen research in this field and expand the study to a greater number of individuals
with different characteristics.

10. Considerations for Melatonin Supplementation

Exogenous melatonin has been investigated as a treatment for a number of different
diseases; however, there are some doubts regarding its optimal dosage and bioavailability,
despite its proven safety.

Melatonin is typically used in short-term sleep disorders or jet lag management,
but its prolonged use should be approached with caution due to the limited long-term
safety data. As a medicinal sleep aid, a typical single daily dose of 1–10 mg is considered
standard, although the optimal dosing and administration route remain unclear for most
indications [130,137,138]. The optimal dosage depends on factors such as age, weight, and
disease severity [139]. Melatonin is commonly accessible in oral immediate-release and oral
prolonged-release formulations [32,138]. It exhibits poor absorption across all formulations,
with a bioavailability ranging from 2.5% to 33% and a protein binding rate of 60% in vitro.
Significant hepatic metabolism occurs, particularly for oral formulations, due to a high
hepatic first-pass effect [32,138]. Melatonin exhibits CYP450 metabolism (CYP1A2) [140].

Extensive research, both in animal and human studies, supports the safety of short-
term melatonin usage, even at elevated doses. There is no indication of severe adverse
effects resulting from exogenous melatonin intake. The absence of human studies demands
caution among pregnant and breastfeeding women who are considering the use of exoge-
nous melatonin. Additional research is also needed to assess the long-term safety profile of
melatonin in children and adolescents [3,137].

10.1. The Therapeutic Potential of Melatonin in Treating Vascular Dysfunction

Melatonin has potential in treating vascular dysfunction due to its antioxidant, anti-
inflammatory, and receptor-mediated actions. Melatonin has been shown in almost all
studies to have beneficial effects on cardiovascular physiology and to protect the my-
ocardium from injury following an ischemic heart attack, internal injury, or sepsis [16,113].
Heart arrhythmias and blood pressure can both benefit from melatonin. Melatonin should
be investigated in many more comprehensive clinical trials to determine its effective-
ness in treating a range of cardiovascular disorders because it is cheap and safe when
taken in appropriate amounts. Furthermore, melatonin use in cardiovascular diseases is
linked to a greater variability in its cardioprotective effects, according to certain clinical re-
search [137,141]. Other than dosage and administration issues, previous failures may have
been partially due to the use of young, healthy animals that eventually lacked various car-
diovascular risk factors, comorbidities, and comedications—the characteristics of patients
experiencing an acute myocardial infarction or undergoing cardiovascular surgery [142].
In light of the present setback, more carefully thought-out preclinical and clinical research
is required to better define the cardiovascular benefits of melatonin [143].

Future research directions include understanding the roles of MT1 and MT2 receptors
in vascular health, conducting dose–response and pharmacokinetic studies, comparing the
efficacy of melatonin with other antioxidants and anti-inflammatory agents, conducting
long-term clinical trials, exploring genetic and epigenetic factors in melatonin response
variability, exploring melatonin analogs, integrating melatonin with lifestyle and dietary
interventions, and evaluating the effects of melatonin in specific populations. These
directions aim to provide evidence for comprehensive lifestyle-based treatment strategies
that include melatonin supplementation, and tailor melatonin-based treatments for patients
with specific comorbidities. The ultimate goal is to provide robust evidence for the long-
term safety and efficacy of melatonin in preventing and treating vascular dysfunction.

10.2. Administration of Melatonin and Known Side Effects

Melatonin levels naturally rise in the evening, peak during the night, and fall in the
early morning [18]. The timing of melatonin administration in studies is critical, as it can
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significantly impact its effectiveness and the potential side effects [144]. Aligning melatonin
intake with the natural production cycle of the body enhances its benefits for sleep and
circadian rhythm regulation, while reducing the risk of adverse effects. Understanding
these temporal dynamics is essential, particularly when extrapolating animal research
findings to human applications [14].

In humans, melatonin is typically administered in the evening or at night to align with
the natural production of the body and to promote sleep. Evening administration helps
to synchronize the internal clock with the desired sleep schedule, which is particularly
useful in conditions such as jet lag or shift work disorder [145]. Nocturnal animals, such
as mice, have a different circadian rhythm compared with humans. Their melatonin
levels peak during their active night phase [146]. In studies involving mice, melatonin is
usually given during their night phase to mirror the natural pattern; however, care must
be taken to translate the findings from nocturnal animals to diurnal humans accurately.
Administering melatonin during the day, when its levels are naturally low, can disrupt the
diurnal rhythm [146]. This can lead to the desynchronization of internal clocks, leading to
disturbed sleep patterns and other circadian-related disorders. Irregular melatonin levels
can also affect mood, cognitive functions, and overall well-being, as these are closely tied
to the sleep–wake cycle [147].

Melatonin is generally safe and well tolerated but it is important to be aware of the po-
tential side effects in some individuals, especially when taken in high doses or for extended
periods. Melatonin can cause daytime drowsiness, altered sleep patterns, gastrointestinal
symptoms, headaches, mood changes, hormone effects, and interactions with medications.
It can impair alertness and concentration; disrupt sleep patterns; cause nausea, stomach
cramps, diarrhea, and headaches; and affect hormone levels, including estrogen and testos-
terone. It may also interact with blood thinners, immunosuppressants, and antidepressants,
potentially affecting their effectiveness or increasing their side effects [148].

11. Conclusions

Cardiovascular diseases, such as hypertension and atherosclerosis, are widely asso-
ciated with states of inflammation and oxidative stress, causing a decrease in the produc-
tion of NO, a potent vasodilator and, therefore, endothelial dysfunction. Melatonin is a
pleiotropic molecule, which, in addition to its regulatory function in the sleep–wake cycle,
has proven to be a powerful antioxidant, through its radical scavenging properties, the
activation of antioxidant enzymes, and the inhibition of pro-oxidant enzymes. Through
mechanisms involving vasodilation, antioxidant activity, anti-inflammatory effects, blood
pressure regulation, protection against ischemia-reperfusion injury, and lipid metabolism
modulation, melatonin contributes significantly to cardiovascular health. In this way, mela-
tonin emerges as a possible therapy to help in the treatment of different cardiovascular
diseases. However, although there are many studies that point to the beneficial effects of
melatonin supplementation, there are also some inconsistent results, meaning that more
research is needed in order to draw conclusions about the effectiveness of this molecule.
Ongoing research continues to unravel its complex interactions and therapeutic potential
in the vascular system. A schematic diagram summarizing the key actions of melatonin in
different organs is presented (Figure 5).
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