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Abstract: Bone defects caused by trauma, tumor resection, and infections are significant clinical
challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may
impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due
to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory
activities, antioxidants play an indispensable role in the maintenance and protection of bone health
and have gained increasing attention in recent years. This narrative review aims to give an overview
of the main research directions on the application of antioxidant compounds in bone defect repair over
the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery
systems in bone repair are summarized to provide new insights for exploring antioxidant-based
strategies for bone defect repair.
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1. Introduction

Bone defects are common and serious clinical problems for orthopedists. The damage
inflicted by bone defects primarily impacts the patient’s mobility, and in severe cases, it
may even lead to limb deformities and loss of function. These defects not only diminish
individual quality of life, but also impose a substantial economic burden on public health
systems, with annual healthcare costs reaching billions of dollars for treatments related to
bone defects [1].

There are various causes of bone defects, such as comminuted fractures; open fractures;
and large bone tissue defects due to trauma, osteonecrosis, and bone separation as a result
of systemic inflammation, as well as bone defects caused by tumor resection or surgery. It
is necessary to increase the amount of new bone by promoting the osteogenic activity at
the site of a bone defect to achieve the purpose of treating bone defects.

The complex process of bone defect healing encompasses cellular proliferation and
differentiation, inflammatory responses, and management of oxidative stress. The sponta-
neous healing capacity of bone defects depends on the defect’s size, with minor defects
potentially being able to heal independently. However, when defects surpass a critical
size, they require medical intervention to facilitate and expedite the healing process. This
is due to challenges such as inadequate blood supply and local infections, which hinder
natural regeneration [2]. Numerous studies have been dedicated to exploring more effective
treatments for large bone defects [3].
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Free radicals, encompassing reactive oxygen species (ROS) and reactive nitrogen
species (RNS) like hydrogen peroxide (H2O2), superoxide ions (O2-, hydroxyl radical
(OH-), and nitrogen oxide (NO), arise from routine cellular activities as well as external
environmental factors such as mitochondria, ischemia, or radiation exposure [4,5]. While
these radicals are essential for bactericidal activities and exert influence over cellular
proliferation and differentiation, their excessive production or insufficient elimination can
induce oxidative stress (OS). This disrupts various physiological processes and contributes
to the pathogenesis of various diseases, including cancer, cardiovascular diseases, and
skeletal system disorders [5–7]. During bone defect repair, osteoblasts, osteoclasts, and
osteocytes interact in a coordinated manner with various growth factors and cytokines
to maintain continuous bone formation. Abnormalities in redox status disrupt this bone
regeneration process, while ROS activate differentiation of pre-osteoclasts as well as induce
apoptosis of osteoblasts and osteocytes [8]. In addition, ROS alter the receptor activator
κB ligand (RANKL)/osteoprotegerin (OPG) ratio through signaling pathways such as
extracellular signal-regulated kinases (ERK1/2) and c-Jun-N terminal kinase (JNK) [9–11].
These cellular and molecular alterations lead to an imbalance between osteogenic and
osteoclastic activities in the defect area, ultimately delaying the process of bone repair.

Scavenging free radicals is important for promoting bone repair, which requires an-
tioxidants to function. Common antioxidants, such as polyphenols, astaxanthin, α-lipoic
acid, vitamin E, and flavonoids, have undergone extensive study for their therapeutic
potential [12–16]. These compounds can be administered through various routes, including
oral ingestion, injection, or incorporation into implantable devices, to address a multitude
of conditions, such as cartilage and bone repair, by restoring the equilibrium between
ROS production and elimination [17–20]. Indeed, achieving the delicate balance between
mitigating harmful ROS as mediators of tissue damage and preserving their advantageous
functions, such as antimicrobial properties, presents a significant challenge. This under-
scores the need for further research to unravel the intricate dynamics between antioxidants
and ROS in therapeutic interventions.

While existing reviews have touched on the role of inhibiting oxidative stress in bone
repair, their discussion has focused mainly on the role of biomaterials in ROS [7,21]. This
review summarizes the application of antioxidant compounds in bone repair therapy over
the past decade to elucidate various approaches for delivering antioxidant compounds
to the healing sites of bone defects and describing their respective advantages and disad-
vantages. Our perspective is intended to guide the future research direction for clinical
application and pave the way for the study of more effective and targeted antioxidant
treatment strategies for bone defects.

2. Methods

To identify articles on the application of antioxidant compounds in bone defect repair,
a literature search was performed in PubMed using various combinations of a set of
keywords: “Reactive Oxygen Species”, “Antioxidants”, “Antioxidant Compounds”, “Bone
Defect”, and “Bone Repair”. English articles published between 2014–2024 were selected.
In addition, selected articles published before 2014 on the role of ROS/antioxidants in the
human skeletal system were included. The initial search and screening retrieved 377 articles.
Articles that did not involve in vivo models or antioxidant compounds, or which were
non-original research articles, were excluded. Finally, 42 articles were included (Figure 1).
The inclusion of articles on the effects and mechanisms of ROS on bone repair was not
strictly restricted by the type of article or time of publication.
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Figure 1. The literature search and selection process.

3. ROS and Oxidative Stress in Bone Repair Process

The most critical substance for oxidative stress is ROS, so most of the literature on
promoting bone loss repair addresses oxidative stress impediments to bone healing by
removing ROS [7]. ROS are predominantly generated within mitochondria as by-products
of energy metabolism [22]. When maintained at controlled levels, ROS play a crucial
role in normal cellular signaling mechanisms involved in bone regeneration, significantly
influencing cellular communication and regulating fundamental cellular processes such
as proliferation, differentiation, apoptosis, repair processes, and inflammation [23,24].
Through their involvement in cell signaling, ROS contribute to orchestrating activities
between different cell types within the bone microenvironment, facilitating communication
and cooperation necessary for effective bone repair and regeneration [25]. This delicate
balance is maintained by a complex endogenous antioxidant system composed of enzy-
matic and non-enzymatic proteins capable of neutralizing reactive species or ensuring low
production. However, when this balance is disrupted due to excessive ROS production
or insufficient antioxidant defenses; for example, in an inflammatory state, OS occurs,
potentially impacting bone repair [26,27].

Bone repair is a dynamic and complex biological process involving multiple cell
types and molecular signals, and is primarily achieved through intramembranous and
endochondral ossification mechanisms [28]. This reparative journey unfolds across four
distinct phases: the inflammation phase, cartilage callus phase, hard bone callus phase, and
remodeling phase. Excess ROS affect the process of bone repair by altering the biological
function of the major cells involved in bone remodeling (Figure 2).
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Figure 2. Effects of ROS on the major cells involved in bone repair. Top left panel: Excess ROS inhibit 
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Excess ROS promote osteoclast differentiation, leading to increased resorption pits and bone struc-
tural disorder. Bottom left panel: Excess ROS inhibit sclerostin production by osteocytes and pro-
mote RANKL expression. Bottom middle panel: Excess ROS inhibit chondrocyte differentiation and 
enhance cellular inflammatory response, leading to impaired cartilage maturation. Bottom right 
panel: ROS cause adherens junction breakdown and cell death of endothelial cells. The arrows in 
the figure indicate increasing (red) or decreasing (black). Created with BioRender.com (accessed on 
17 June 2024). 
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phagocytosing cell debris and pathogens [31]. These phagocytes use NADPH oxidase to 
produce high levels of ROS as part of their microbiome-killing mechanism [32]. However, 
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which promote osteogenic differentiation [37,38]. Similarly, it has been reported that ex-
cessive ROS affects the polarization, activation, and function of lymphocytes [39]. 

Endothelial cells lining the blood vessels also play crucial roles during the inflamma-
tory phase [40]. Endothelial cells work to re-establish the vascular network within the 
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Figure 2. Effects of ROS on the major cells involved in bone repair. Top left panel: Excess ROS
inhibit osteoblast proliferation and differentiation, leading to deficient mineral deposition. Top right
panel: Excess ROS promote osteoclast differentiation, leading to increased resorption pits and bone
structural disorder. Bottom left panel: Excess ROS inhibit sclerostin production by osteocytes and
promote RANKL expression. Bottom middle panel: Excess ROS inhibit chondrocyte differentiation
and enhance cellular inflammatory response, leading to impaired cartilage maturation. Bottom right
panel: ROS cause adherens junction breakdown and cell death of endothelial cells. The arrows in the
figure indicate increasing (red) or decreasing (black). Created with BioRender.com (accessed on 17
June 2024).

3.1. Inflammation Phase

The inflammation phase lays the groundwork for subsequent healing phases and bone
regeneration. The inflammation phase commences with hematoma formation resulting
from blood vessel rupture, followed by a cascade of cytokine and growth factor release
aimed at attracting inflammatory cells for debris clearance [29,30]. Among the inflamma-
tory cells recruited to the site are neutrophils, macrophages, and lymphocytes, pivotal in
phagocytosing cell debris and pathogens [31]. These phagocytes use NADPH oxidase to
produce high levels of ROS as part of their microbiome-killing mechanism [32]. However,
the overproduction of ROS can react against these immune cells. Upregulated ROS may
impair the initiation and outcome of phagocytosis, leading to oxidative bursts and the
production of neutrophil extracellular traps [33–35]. In addition, ROS can reduce neutrophil
migration by impairing CXCR2 function [36]. As for macrophages, Zhang et al. reported
that ROS clearance and inhibition block the differentiation of M2 macrophages, which
promote osteogenic differentiation [37,38]. Similarly, it has been reported that excessive
ROS affects the polarization, activation, and function of lymphocytes [39].

Endothelial cells lining the blood vessels also play crucial roles during the inflam-
matory phase [40]. Endothelial cells work to re-establish the vascular network within
the healing bone, essential for delivering nutrients, oxygen, and immune cells to the site.
Excessive levels of ROS can harm vascular endothelial cells and hinder the formation of
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new blood vessels, consequently slowing down bone repair [41]. OS affects angiogenesis in
endothelial cells through several pathways. ROS mediate the lipopolysaccharide-induced
breakdown of the adherens junction, resulting in increased endothelial barrier permeability
and disrupted vascular homeostasis [42]. In addition, excess ROS can induce programmed
death of endothelial cells, including pyroptosis, ferroptosis, and parthanatos [43].

3.2. Cartilage Callus Phase

The cartilage callus phase occurs at the site of chondrogenic osteogenesis. A soft
callus, primarily composed of cartilage, forms around the fracture to stabilize the broken
ends. This cartilage, although not part of the normal bone structure, serves as a temporary
framework for the new bone to grow [44]. In contrast, intramembranous ossification
directly generates new bone at the injury site without a cartilaginous intermediate.

Excessive ROS profoundly influence chondrogenesis within cartilage, impairing chon-
drocyte viability and differentiation, which are critical for cartilage formation during bone
repair [45,46]. In the inflammatory state, ROS accumulate in chondrocytes and mito-
chondria are damaged [47,48]. ROS-induced oxidative stress leads to IκB-ζ stabilization
and increases in IL-6 and MMP13 expression, both related to inflammation and cartilage
degradation [49]. Furthermore, ROS not only directly compromise chondrocyte function,
but may also interfere with essential signaling pathways such as BMP, thereby affecting
cartilage maturation and mineralization, both of which are crucial for bone repair and
regeneration [50,51].

3.3. Hard Bone Callus Phase

The cartilage callus phase is followed by the hard bone callus phase, which is character-
ized by the onset of mineralization. The soft cartilage callus is gradually replaced by a hard
callus of bone in this phase [52,53]. Osteoblastic lineage cells, including osteoblasts and
bone marrow mesenchymal stromal cells (BMSCs), play an important role in this process of
bone formation. Osteoblastic lineage cells are particularly vulnerable to oxidative damage
caused by ROS, which can diminish their viability and function, consequently reducing
the rate of bone regeneration [54]. ROS can directly impair cellular components, including
DNA, proteins, and lipids, hampering osteoblasts’ ability to proliferate and form new bone
matrix [55]. OS has been shown to inhibit the Nrf2/HO-1, PI3K-Akt, and Wnt/β-catenin
signaling pathways, which are critical regulators of osteoblast differentiation and bone
formation [56]. This inhibition leads to decreased expression of osteogenic genes and di-
minished mineral deposition, both essential steps in the bone formation process. Moreover,
high levels of ROS can induce apoptosis of osteoblasts [57,58]. This not only reduces the
pool of cells available for new bone formation, but also skews the balance towards bone
resorption, thus hindering the healing of bone defects.

3.4. Remodeling Phase

During the bone remodeling phase, the hard callus undergoes reshaping as newly
formed bone tissue gradually approximates the original structure and strength of the bone.
This process of fine remodeling depends on the coordination of osteoblasts and osteoclasts,
in which osteoclasts are responsible for bone resorption and perform the same important
function as osteoblasts [59]. Derived from hematopoietic precursors, osteoclasts dissolve
old or damaged bone through the secretion of acidic substances and proteolytic enzymes,
facilitating the removal of bone components [60–62]. Elevated ROS levels within a certain
range play a pivotal role in the differentiation of osteoclasts, leading to an acceleration in
bone resorption [63]. Specifically, ROS have been shown to activate the NF-κB and MAPK
signaling pathways, two classical pathways that activate osteoclasts [64,65]. However,
excessive ROS can also cause structural disorders of osteoclasts, dysfunction, and eventually
apoptosis [63].

On the other hand, osteocytes, derived from osteoblasts, constitute the most abundant
cell type in mature bone and play a pivotal role in sensing mechanical stress, thereby
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directing the remodeling process accordingly. They form an intricate lacunocanalicular
network, facilitating the transport of nutrients and signaling molecules. However, when
exposed to oxidative stress, the delicate balance of this finely tuned system can be disrupted.
In addition to causing osteocyte apoptosis, the detrimental effects of OS on osteocytes are
multifaceted [66]. Firstly, it can lead to a decrease in the production of sclerostin, a protein
that osteocytes produce to inhibit bone formation by osteoblasts. This reduction can
disrupt the normal regulatory feedback loop, potentially leading to an imbalance in bone
remodeling [67–69]. Secondly, oxidative stress can augment the expression of RANKL
by osteocytes, promoting osteoclast differentiation and bone resorption [70]. This further
contributes to the imbalance between bone formation and resorption, hindering bone repair
and reconstruction.

3.5. Effects of ROS Induced by Systemic Inflammation on Bone Repair

In specific pathological contexts such as diabetes, osteoporosis, infections, and aging, the
detrimental effects of high levels of ROS on bone repair become more pronounced [71–75].
These conditions not only elevate ROS production, but also diminish the body’s capa-
bility to eliminate ROS, exacerbating oxidative stress. For instance, it has been shown
that the hyperglycemic state of diabetes significantly increases the levels of ROS in the
mitochondria and cytoplasm, affecting all stages of bone repair [76]. Therefore, in diabetic
conditions, clearing excess ROS is critical to reducing oxidative stress, restoring stem cell
mobilization, and promoting osteogenic differentiation [72]. Estrogen plays an important
role in regulating redox balance by increasing the expression of antioxidant enzymes and
restoring the overall antioxidant status, and when women are postmenopausal, ROS levels
throughout the body increase significantly due to estrogen deficiency [77]. Therefore, for
postmenopausal ROS increases, it is important to balance ROS levels by activating the
expression of antioxidant enzymes. In addition, aging and long-term chronic inflammation
can also lead to an increase in the overall levels of ROS in the body, thus affecting bone
healing and repair [78–80].

Endogenous antioxidants such as antioxidant enzymes and non-enzymatic com-
pounds play an essential role in bone homeostasis. Systemic diseases such as inflammation
may increase ROS levels in the body by affecting the body’s endogenous antioxidant system,
thus impeding bone repair activities. Jing Gao et al. found that SOD2 deficiency can cause
mouse osteoblast dysfunction and significantly decrease bone mass by obstructing the
clearance of excess mitochondrial superoxide and protein oxidation [81]. On the other hand,
overexpression of mitochondrial catalase can effectively alleviate the ionizing radiation-
induced reactive bone loss in mice [82]. Restriction of glutathione (GSH) synthesis, an
important endogenous antioxidant, leads to acute degradation of RUNX2, impaired os-
teoblast differentiation, and reduced bone formation [83]. Therefore, when the endogenous
antioxidant system is damaged during bone repair, it is necessary to supplement with
exogenous antioxidants to promote new bone formation and bone healing.

3.6. Effects of NO (Nitric Oxide) and NO Synthase in Bone Repair

In the body, NO and NO synthase are important components of the oxidative stress
system and play complex roles in the metabolic activities of bone tissue. As a free radical,
NO is involved in the regulation of many physiological processes, such as bone metabolism,
vasodilation, neurotransmission, and immune regulation [84–86]. Nitric oxide synthase
(NOS), categorized into a neuronal form (nNOS), endothelial form (eNOS), and inducible
form (iNOS), produces NO from molecular oxygen and guanine nitrogen (the terminal
of the amino acid L-arginine). eNOS promotes osteogenic activity, but iNOS produced in
large quantities in the inflammatory state inhibits osteogenic differentiation and promotes
osteoclastic absorption [86–89]. It has also been reported that iNOS knockout mice had
no change in bone mass [90]. In addition, nNOS knockout mice showed increased bone
mass [91]. Albert Thomas Anastasio et al. reviewed the literature and discussed the delivery
of NO through various biomaterials to promote fracture healing [92].
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4. Classification of Antioxidants

Antioxidants can mitigate the harm of OS directly through reactions with free radicals
or indirectly through inhibition of the activity of free radical-producing enzymes or im-
provement of the activity of intracellular antioxidant enzymes [93]. Common antioxidants
include vitamins like C and E, polyphenolic compounds such as flavonoids and tannins,
and various nanostructures that scavenge ROS. In the context of bone repair, antioxidants
can be broadly categorized into naturally derived and synthetically engineered types. Nat-
urally derived antioxidants predominantly consist of phytochemicals found in medicinal
plants and dietary sources, while synthetic antioxidants are crafted in laboratories and
customized to enhance specific therapeutic properties, such as increased bioavailability or
targeted delivery to the site of bone damage.

4.1. Natural Antioxidants

Natural antioxidants play a crucial role in thwarting oxidation and impeding the
growth of microorganisms [94]. They comprise a diverse array of compounds, such as
flavonoids, polyphenols, natural pigments, vitamins, and antioxidant peptides.

Plants serve as abundant sources of exogenous antioxidants. Notably, fruits, veg-
etables, and select beverages like tea and wine are rich in flavonoids, polyphenols (e.g.,
epigallocatechin-3-gallate [EGCG], and resveratrol), and natural pigments (including an-
thocyanins and lycopene) [95,96]. These compounds possess the ability to counteract free
radicals and modulate enzyme activity associated with OS. Moreover, well-recognized
antioxidants like Vitamins C and E play pivotal roles. Ascorbic acid, or Vitamin C, directly
scavenges free radicals, while vitamin E, a lipid-soluble antioxidant, shields cell membranes
against oxidative harm [97,98].

Apart from the aforementioned exogenous antioxidants, there exist endogenous coun-
terparts such as lipoic acid, uric acid, glutathione, and specific amino acids. For example,
α-lipoic acid and its reduced form, dihydrolipoic acid, demonstrate direct free radical
scavenging properties, and supplementation has been demonstrated to alleviate OS while
replenishing diminished levels of other antioxidants [14,99]. Similarly, research has eluci-
dated the pivotal role of GSH in maintaining cellular redox equilibrium. The thiol group
within the cysteine amino acid is central to its function, acting as a potent reducing agent.
This allows GSH to partake in a continuous cycle of reversible oxidation–reduction reac-
tions, crucial for neutralizing ROS and preserving cellular health. Cells uphold a substantial
concentration of the reduced form of glutathione through the assistance of glutathione
reductase. Consequently, GSH can, in turn, reduce other enzymes and metabolites [100].

4.2. Synthetic Antioxidants

Synthetic antioxidants, engineered to replicate or even surpass the effects of natural
antioxidants, have demonstrated significant potential in biomedical applications [101]. In
2007, Gao et al. initially reported on the intrinsic peroxidase activity of magnetic Fe3O4
NPs. These nanoparticles have garnered attention for their nanomaterial properties and
enzyme-mimicking catalytic functions, and are termed Nanozymes [102]. Cerium oxide
(CeO2 NPs) showcases remarkable catalytic prowess owing to oxygen vacancies within
its lattice, facilitating redox cycling between Ce3+ and Ce4+ oxidation states [103]. This
attribute enables CeO2 NPs to emulate diverse redox enzymes, including superoxide
dismutase (SOD) and catalase, effectively scavenging ROS. Zinc-based antioxidants have
also emerged as focal points of research, notably for their capacity to modulate cellular
redox balance [104]. Zinc protects protein sulfhydryls or reduces the formation of free
radicals by antagonizing the redox activity of metals such as iron and copper [105].

5. Administration of Antioxidants in Bone Repair

Most antioxidants, especially natural antioxidants, can be used directly in vivo to
perform their function of clearing ROS and promoting bone repair (Figure 3 and Table 1).
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For bone defects, topical drug treatment promotes bone healing and only applies to
specific superficial sites. However, for repairing alveolar bone defects after tooth extrac-
tion, local drug administration proves highly suitable. Meng et al. demonstrated that
topically applying N-acetylcysteine (NAC), a precursor for GSH, to alveolar defects in
rats effectively reduces ROS levels, showing clinical potential for stem cell-based alveolar
bone regeneration [106]. Nonetheless, some findings suggest that, while NAC may offer
protective effects against OS, its impact on mesenchymal stem cell chondrogenesis and
cartilage matrix development is complex and context-dependent [107]. Lei Huang et al.
explored the administration of punicalagin, an active pomegranate polyphenol with an-
tioxidant and anti-inflammatory properties, via daily local injections to treat bone defects
at the condylar site of the femur in rats [108]. Their experimental results revealed that
punicalagin effectively enhanced the osteogenic ability of BMSCs, promoted angiogenesis
in endothelial cells, mitigated oxidative stress, and facilitated bone healing through the
Nrf2/HO-1 pathway [108]. However, administering drugs locally through daily injections
poses several inconveniences.

Oral ingestion or in vivo injection routes represent the most common methods of
administering antioxidants for bone repair, allowing for the adjustment of dosing to reg-
ulate ROS levels in the body at various stages of bone healing. The physicochemical
and pharmacokinetic properties of the drug determine whether to administer it orally or
through injection. Genistein, a dietary polyphenol predominantly found in soy products,
possesses antioxidant properties akin to quercetin, kaempferol, and resveratrol [109–112].
Govinda Bhattarai et al. employed intraperitoneal administration of genistein to shield
gingival fibroblasts from LPS-induced stress, mitigating mitochondrial damage and ROS
accumulation while preventing alveolar bone mass loss [109]. Similarly, Bingkun Zhao
et al. utilized intraperitoneal injection of leonurine to activate mitochondrial autophagy,
safeguarding BMSCs from oxidative stress and enhancing skull defect healing [113]. By
subcutaneously injecting resveratrol, Govinda Bhattarai et al. curbed the production of
inflammatory proteins, osteoclast formation, and circulating ROS in rats with periodontitis,
effectively ameliorating alveolar bone loss [112]. Xiao Yang et al. stimulated osteogenic
differentiation of stem cells and facilitated fracture healing through intramuscular injection
of Troxerutin, a semi-synthetic derivative of the natural bioflavonoid rutin, renowned for
its antioxidant effects [114]. In addition, icariin, an exogenous antioxidant extracted from
the traditional Chinese medicine Herba Epimedii, has been reported to significantly reduce
ROS levels in osteoblasts and inhibit iron-induced cell death via the NRF2/HO-1 signaling
pathway when administered to rats via intragastric administration, thereby promoting
osteoporotic fracture healing [115]. While oral methods are more convenient for clinical
application compared to intraperitoneal injection, systemic administration affects the entire
body. Therefore, the study of bone-targeted modification of antioxidant compounds is a
very important research direction. For instance, Willson et al. utilized 3-hydroxy-4-pyrazole
carboxylic acid as a carrier, coupled with diethylstilbestrol analogues, to develop com-
pounds with bone-targeting ability. These compounds not only bind to hydroxyapatite in
bone tissue, but also retain weak estrogen activity [116].

In addition to direct ROS scavenging, antioxidants play a significant role in modulating
the inflammatory response associated with bone injury. Inflammation, while it is a natural
part of the healing process, can exacerbate oxidative stress and impede recovery if left
uncontrolled [62]. Antioxidants with anti-inflammatory properties, such as curcumin,
offer further benefits to bone repair by downregulating pro-inflammatory cytokines and
upregulating the Nrf2/ARE pathway, thus creating a more conducive microenvironment
for bone tissue regeneration [117]. Moreover, studies have shown that curcumin enhances
osteogenesis and cellular resilience against oxidative stress by modulating the Akt/Erk
signaling pathways and preserving mitochondrial function in both rat BMSCs and human
periodontal ligament stem cells [118,119]. These effects effectively reduce ROS levels,
prevent hydrogen peroxide-induced damage, and promote cell survival, underscoring
curcumin’s potential in regenerative bone therapies.
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Table 1. Administration of antioxidant compounds in bone repair.

Antioxidant Compound Application Method Animal Model Biological Effects Ref.

N-acetylcysteine Topical injection Alveolar defects in rats • Upregulates PI3K/AKT signaling
• Enhances osteogenesis of dental follicle stem cells [106]

Punicalagin Topical injection Femoral condyle defects in
rats

• Reduces oxidative stress via Nrf2/HO-1 pathway
• Enhances osteogenic differentiation in BMSCs and angiogenesis in HUVECs
• Promotes the polarization of M2 macrophages

[108]

Genistein Intraperitoneal
injection

Periodontitis bone defects
in mice

• Protects human gingival fibroblasts from LPS-mediated cellular ROS
accumulation [109]

Resveratrol Subcutaneous injection Periodontitis bone defects
in rats

• Inhibits the production of inflammatory proteins, osteoclast formation, and
circulating ROS [112]

Leonurine Intraperitoneal
injection Skull defects in rats • Protects the proliferation and differentiation of BMSCs from oxidative stress by

activating mitochondrial autophagy [113]

Troxerutin Intramuscular injection Femur defects in rats
• Increases the alkaline phosphatase activity, calcium nodule formation and

osteogenic marker genes expression
• Activates Wnt/β-catenin signaling

[114]

Icariin Intragastric administration Fracture model in rats
• Inhibits osteoblast ferroptosis via Nrf2/HO-1 signaling
• Promotes callus formation and enhances the transition from fibrous to osseous

callus
[115]
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from the traditional Chinese medicine Herba Epimedii, has been reported to significantly 
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6. Antioxidants Incorporated in Biomaterials for Bone Repair

In addition to direct administration for bone repair, antioxidant compounds have
been extensively investigated in conjunction with biomaterials for the purpose of repairing
bone defects. Commonly employed biomaterials include hydrogels, 3D scaffolds, micro-
spheres/nanoparticles, electrospun fibers, etc. This integration can effectively enhance the
healing of larger bone defect areas while also confining the effects of antioxidants to the
specific site of the bone defect (Figure 4).
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and biomaterials can exert multi-targeted effects: (1) ROS scavenging; (2) anti-inflammation by de-
creasing the expression of proinflammatory cytokine; (3) immunoregulation by guiding macrophage
polarization to the M2 phenotype; (4) osteogenesis by promoting the growth, proliferation, and
differentiation of stem cells. The arrows in the figure indicate increasing (red) or decreasing (black).
Created with BioRender.com (accessed on 17 June 2024).
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6.1. Hydrogels

Hydrogels, as injectable multifunctional scaffolds for bone regeneration, exhibit
biodegradable properties and yield superior therapeutic outcomes when paired with
antioxidants. This combination capitalizes on hydrogels’ inherent characteristics—such
as biocompatibility, porous structure for cell infiltration, ability to mimic the extracellu-
lar matrix, and controlled release of bioactive compounds—alongside the antioxidative
capabilities of various compounds to more effectively promote bone healing and tissue
regeneration than either component alone [120]. Antioxidants embedded within hydrogels
can scavenge ROS and modulate the inflammatory response, fostering an environment
conducive to bone healing and regeneration.

Epigallocatechin-3-gallate (EGCG), when incorporated into hydrogels, scavenges
ROS, bolsters cell survival, and fosters osteogenic differentiation under oxidative stress
conditions [121]. An injectable thermosensitive hydrogel poly (D, L-lactide)-poly (ethylene
glycol)- poly (D, L-lactide) system containing resveratrol and dexamethasone was injected
and filled with irregular bone defect areas, creating a microenvironment conducive to
osteogenesis, effectively scavenging excess free radicals at the damaged site by the power-
ful anti-inflammatory effects of resveratrol, and guiding macrophage polarization to the
M2 phenotype [122]. Tannic acid embedded in hydrogels alleviates oxidative stress and
guides macrophages toward an anti-inflammatory M2 phenotype, facilitating remodeling
of implant-infected bone tissue [123]. Zhao et al. developed a self-assembled system incor-
porating Fucoidan, which aids in cartilage extracellular matrix (ECM) metabolism and ROS
scavenging, fostering chondrocyte–ECM harmony through NRF2 pathway activation [124].
Moreover, hydrogels serve as a platform for the controlled and sustained release of an-
tioxidants at the injury site, ensuring prolonged therapeutic effects. Ye et al. created a
MnO2@Pol/HA hydrogel that delivers controlled antioxidant release and sustains ROS
scavenging, preserving BMSC viability and osteogenic potential while inducing an anti-
inflammatory shift in macrophage polarization, thereby effectively mitigating oxidative
stress within the osteoporotic microenvironment [18]. In addition, the photosensitive
hydrogel containing baicalin, a natural flavonoid with antioxidant capacity, designed by
Li et al. can down-regulate the level of sclerosin in bone cells, promote osteogenic and
vasogenic activities, and effectively promote the healing of bone defects of critical size in
the skull [125]. Combining antioxidants with hydrogels can also alter the physical proper-
ties of the scaffold, including its stability and mechanical strength, making it suitable for
bearer applications in bone tissue engineering. Wu et al. engineered the BPDAH-GPEGD
hydrogel incorporating polydopamine/heparin nanoparticles, boasting enhanced mechani-
cal properties with compressive strength exceeding 700 kPa and robust ROS scavenging
capability, making it a promising scaffold for mandibular bone regeneration by addressing
both structural integrity and oxidative stress [57].

In summary, hydrogels combined with antioxidants offer a multifaceted approach
to bone repair, integrating enhanced osteogenesis, improved mechanical properties, and
reduced oxidative stress and inflammation. This synergistic effect, akin to a “1 + 1 > 2” out-
come, underscores the potential of these combinations in advancing bone tissue engineering
and regeneration strategies.

6.2. 3D Scaffolds

Three-dimensional scaffolds infused with antioxidants create a structural and bio-
chemical milieu conducive to bone regeneration, neutralizing ROS and fostering osteogenic
differentiation while providing additional benefits. Qian et al. discovered that MnO2,
integrated into a β-tricalcium phosphate and polycaprolactone scaffold, catalyzes the
decomposition of hydrogen peroxide, thereby reducing local ROS levels and promoting os-
teogenic differentiation of BMSCs. This amalgamation can emulate the natural bone healing
environment, furnishing a functionalized artificial periosteum [126]. Similarly, Wang et al.
fabricated scaffolds via 3D printing technology, incorporating Reduced Glutathione Grafted
Gelatine Methacrylate (GelMA-g-GSH). This scaffold activated the PI3K/Akt signaling
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pathway, augmenting cell proliferation and differentiation through the sustained release of
reduced glutathione, thereby promoting osteogenesis under diabetic conditions [127].

Furthermore, the integration of metal ions such as zinc and cobalt within scaffold con-
structs confers additional advantages. Zinc-based scaffolds, modified with tannin, deliver
antibacterial ions and support osteogenesis synergistically, addressing the multifaceted
requirements for repairing infected bone defects [128]. Considering that inflammatory
factors such as IL-1, IL-1β, IL-6, TNF-α, and ROS are widely expressed after cartilage
degeneration and contribute to the inflammatory response, Wu et al. developed a hybrid
scaffold using PLGA filled with a hyaluronic acid methacrylate hydrogel containing ROS-
sensitive hyperbranched polymers with thioketal linkages to scavenge ROS, effectively
promoting cartilage repair and regeneration [129]. In addition, Yuxiao Lai, Tianlin Liu,
Xiaowei Xie et al. also constructed 3D scaffolds containing icariin, which can significantly
promote bone defect repair [130–132]. This shows that icariin has good compatibility with
a variety of biological materials. Tissue can also be an excellent scaffold material combined
with antioxidants. Li et al. prepared small intestinal submucosal scaffolds combined with
icariin, which significantly enhanced osteogenic activity and promoted the healing of skull
defects in mice [133]. Similarly, collagen can be used as an excellent scaffold. Song et al.
mixed duck paw collagen with quercetin and hydroxyapatite to prepare a scaffold, which
promoted cell proliferation and osteogenic differentiation, as well as skull defect healing,
in rats [134]. Different quercetin contents in scaffolds led to different biological effects.
Song et al. found that low concentrations of quercetin in scaffolding can promote cell
proliferation and osteogenic differentiation, while high concentrations of quercetin inhibit
cell proliferation [135].

6.3. Electrospun Fibers

Electrospinning stands as a versatile and straightforward technique for fabricating
ultrathin fibers, offering a fiber membrane with a high specific surface area that promotes
cell adhesion and allows for the continuous and controlled delivery of drugs at local
points [136,137]. Incorporating specific antioxidants into electrospun fibers can significantly
accelerate the repair of bone defects and promote the range of bone healing.

Gao et al. devised polaprezinc-loaded polycaprolactone/gelatin hybrid electrospun
nanofibers to craft a guided bone regeneration membrane with controlled polaprezinc re-
lease. This membrane exhibited antioxidant and osteogenic capabilities under both normal
and oxidative stress conditions by upregulating Nrf2/HO-1/SOD1 signaling molecules in a
concentration-dependent manner [138]. Lee et al. employed catechin, a plant flavonoid, for
surface modification of polycaprolactone nanofiber membranes to enhance their biological
function, creating a multifunctional matrix for repairing severe skull defects in mice [139].
Their study demonstrated efficient catechin coating on material surfaces, significantly
increasing hydrophilicity and biocompatibility. This coating promoted adhesion, prolif-
eration, and osteogenic differentiation of human adipose-derived stem cells, primarily
through antioxidative and calcium-binding properties. Catechin-functionalized polymer
nanofiber membranes notably enhanced in vivo bone formation in a critical-sized calvar-
ial bone defect model [139]. Moreover, incorporating curcumin into electrospun fibers
effectively inhibited critical factors like NF-κB and RANKL, pivotal in the inflammatory
process and oxidative stress generation, thereby enhancing osteogenic differentiation [140].
The antioxidant icariin was added to electrospinning to achieve a continuously controlled
release effect of icariin, which effectively promoted the skull defects in rats [141].
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6.4. Microspheres/Nanoparticles

Due to their remarkable specific surface areas, nanosystems such as microspheres and
nanoparticles enhance cell adhesion and proliferation, rendering them effective carriers
for drug delivery systems [142,143]. The combination of antioxidant compounds with
nanomaterials, leveraging their increased surface area, fully harnesses the functions of
antioxidants, efficiently clearing ROS and promoting bone regeneration.

Moreover, nanosystems enable the precise delivery and controlled release of antiox-
idants at the injury site, ensuring sustained therapeutic effects. Wang et al. introduced
injective programmable proanthocyanidin-coordinated zinc-based microsphere compos-
ite hydrogels for infected bone repair, emphasizing their ROS-responsive disintegration,
antimicrobial activity, and support for osteogenesis [144]. Another study explored the syn-
ergistic antibacterial and anti-inflammatory effects of branched Au–Ag nanoparticles con-
taining procyanidins for periodontitis treatment [145]. Qiu et al., by injecting tailor-made
ROS-cleavable amphiphilic polymer nanoparticles coated with NAC into the periodontitis
area, cleared ROS in the tissue, reduced inflammation, weakened osteoclasts, and promoted
the regeneration of periodontal bone tissue [146]. Constructing an icariin delivery system
by preparing micro/nano hybrid structured hydroxyapatite granules can significantly
enhance osteogenesis and angiogenesis to repair bone defects [147]. In addition, Yuning
Zhou et al. constructed hydroxyapatite bioceramic microspheres with a micro-nano hybrid
surface containing quercetin, which could significantly heal femur defects of critical size in
ovariectomized rats [148].

The presence of antioxidants within nanosystems modulates cellular pathways to fa-
vor bone healing, including promoting stem cell migration and differentiation and reducing
inflammation. Nanosystems loaded with antioxidants overcome the limitations of tradi-
tional bone repair materials by offering higher surface area, promoting osteoblast function,
and providing a conducive environment for bone tissue integration. The addition of an-
tioxidants significantly enhances the bone repair activity of the microsphere/nanoparticle
system, offering a new approach to bone defect repair applications with improved bioavail-
ability of antioxidants.

The application of antioxidant-loaded biomaterials in bone repair are summarized in
Table 2.
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Table 2. Application of antioxidant-loaded biomaterials in bone repair.

Biomaterials Antioxidants Animal Model Biological Effects Ref.

Hydrogel Epigallocatechin-3-gallate
(EGCG) Bone defects in rabbits

• Induce macrophages to polarize toward M2 phenotype
• Suppress inflammatory cytokines expression and improve osteogenesis related

markers
[121]

Hydrogel Resveratrol Femoral defects in rats
• Promote bone regeneration
• Guide macrophage polarization to the M2 phenotype
• Scavenge ROS

[122]

Hydrogel Baicalin Calvarial defects in rats • Promote osteogenesis and angiogenesis [125]

Hydrogel Tannic Acid Implant-associated infection
model in rats

• Scavenging intracellular ROS
• Guide macrophages toward an anti-inflammatory M2 phenotype

[123]

Hydrogel Fucoidan Cartilage defects in rabbits • Promote extracellular matrix production and ROS elimination
• Promote neo-cartilage formation

[124]

Hydrogel Hyaluronic acid Segmental bone defect models
• Eliminate ROS level in bone marrow and bone tissue
• Induce macrophages polarization from M1 to M2 phenotype
• Decrease the expression of pro-inflammatory cytokines

[18]

3D Scaffold Glutathione Calvarial defects in mice • Activate PI3K/Akt signaling pathway
• Augment osteoblasts proliferation and differentiation

[127]

3D Scaffold Tannic acid Femoral condyle defects in
rats

• Scavenge endogenous and exogenous ROS
• Control infection and promote osteogenesis

[128]

3D Scaffold Icariin Calvarial defects in mice • Enhance bone regeneration [133]

3D Scaffold Quercetin Calvarial defect in rats • Increase cell proliferation
• Enhance bone regeneration

[134]

3D Scaffold Icariin Osteonecrosis of the femoral
head in rabbits • Promote osteogenesis and angiogenesis [130]
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Table 2. Cont.

Biomaterials Antioxidants Animal Model Biological Effects Ref.

3D Scaffold Icariin Calvarial bone defects • Repair large-volume bone defects [131]

3D Scaffold Icariin Steroid-associated
osteonecrosis in rabbits

• Facilitate bone regeneration
• Enhance the mechanical properties of new bone tissues
• Improve angiogenesis

[132]

3D Scaffold Quercetin Calvarial defects in rats • Promote cell growth, proliferation, and osteogenic differentiation
• Promote bone regeneration

[135]

Electrospun fiber Polaprezinc Calvarial bone defects • Protect proliferation and differentiation of MC3T3-E1 cells under oxidative stress
• Promote new bone formation

[138]

Electrospun fiber Icariin Calvarial defect in rats • Promote new bone formation [141]

Electrospun fiber Catechin Calvarial defects in mice
• Enhance proliferation, mineralization, and osteogenic differentiation of human

adipose-derived stem cells (hADSCs)
• Promote bone formation by hADSCs transplantation

[139]

Electrospun fiber Curcumin Calvarial defects in mice • Inhibit NF-κB signaling and RANKL expression [140]

Microsphere Proanthocyanidin Femoral condyle defects in
rats • Promote M2 polarization of macrophages [144]

Nanoparticle Procyanidins Periodontitis bone defects in
rats

• Inhibit inflammatory factors
• Regulate macrophage polarization

[145]

Nanoparticle N-acetylcysteine Periodontitis bone defects in
rats

• Increase expression levels of BMP2, RUNX2 and ALP
• Decrease osteoclast activity and local inflammation

[146]

Microsphere Resveratrol Femoral defects in rats • Regulate macrophage polarization to the M2 phenotype
• Promote osteogenic differentiation of mesenchymal stem cells

[122]

Micro/nano hybrid
structured granules Icariin Femoral plug defects in rats • Promote new bone formation and blood vessel formation [147]

Microsphere Quercetin Femur defects in rats • Promote osteogenesis and angiogenesis
• Inhibit osteoclastogenesis

[148]
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7. The Role of ROS/Antioxidants in Human Skeletal System

At present, although antioxidants are rarely used in the clinical treatment of human
bone diseases, many antioxidants are being studied in clinical trials. In a randomized
controlled clinical trial involving 44 patients, the researchers found that 1% melatonin gel
effectively promoted periodontal bone tissue repair and significantly improved periodontal
health [149]. This suggests that the application of antioxidants for the treatment of human
bone defects is clinically promising.

More clinical research on the application of antioxidants in humans is being directed
toward the prevention and treatment of osteoporosis in postmenopausal women. Lycopene
has been reported to have the strongest antioxidant capacity among carotenoids, which
upregulates RUNX2, ALP, and type 1 collagen and downregulates RANKL by activating
the WNT/beta-catenin and ERK1/2 pathways [150,151]. In a study of 39 postmenopausal
women, Russo et al. found that consuming tomato paste rich in lycopene significantly
prevented bone loss [151]. In addition, Mackinnon et al. also found a significant reduction
in the risk of osteoporosis in individuals using lycopene capsules through a 4-month clinical
trial of 60 postmenopausal women [152]. Perilla seed oil is extracted from Perilla seeds. It
is commonly used as vegetable oil and is rich in vitamin E, carotene and other antioxidant
substances, with good antioxidant effects [153]. After a 1-year clinical trial, Kentaro Mat-
suzaki et al. found that long-term intake of perilla seed oil can improve age-related bone
loss by inhibiting bone absorption and increasing α-linoleic acid levels [153]. Resveratrol, a
natural polyphenol, was confirmed to be effective in increasing femoro-tibial density in post-
menopausal women and reducing the risk of hip fracture within 10 years after a 24-month
randomized, double-blind, placebo-controlled, two-phase crossover intervention trial [154].
In addition, several studies have shown that postmenopausal women taking antioxidants
such as equol, ascorbic acid, alpha-tocopherol, vitamin E, and N-acetylcysteine can signifi-
cantly relieve bone mass loss and promote the restoration of bone density [155–160]. These
studies confirm the role of various antioxidants in promoting the metabolism of human
bone formation, which provides important support for the application of antioxidants in
the healing process of bone defects in humans.

8. Discussion

This article reviews the effects of ROS, a key substance in oxidative stress, on various
stages of bone repair and describes the effects of various delivery methods of antioxidants
on bone repair. It is worth noting that ROS play different roles in different stages of bone
repair, and the complete elimination of ROS may negatively affect bone repair. Therefore, it
is important to adjust ROS to appropriate levels at different times and in different spaces.

The key advantage of integrating antioxidant delivery systems into bone repair strate-
gies lies in their local application, minimizing systemic side effects and enhancing efficacy
in bone defect areas. These biomaterials, including nanoparticles, hydrogels, scaffolds, and
electrospun fibers, have been meticulously designed to meet the complex requirements of
bone healing, each with its own set of advantages and disadvantages. Nanoparticles and
hydrogels are tailored for the controlled and continuous release of therapeutic drugs, en-
suring precise delivery directly to the injury site. Conversely, stents and electrospun fibers
not only serve as platforms for drug delivery, but also provide essential physical support
for bone tissue engineering. Their structures promote the formation and vascularization of
new bone, while their porosity enhances drug release kinetics [161–163]. Despite their con-
siderable potential, these diverse biomaterials encounter several challenges. For instance,
nanoparticles may present biocompatibility issues and long-term risks of adverse biological
reactions. Additionally, effectively encapsulating therapeutic agents within nanoparticles
poses a significant challenge, potentially limiting their therapeutic effectiveness [164]. The
application of stents and electrospun fibers often necessitates surgical placement, which
may heighten patient trauma and extend recovery periods. Moreover, while scaffolds offer
robust support and strength, closely mirroring the natural hardness of bone and showcas-
ing superior biomimetic and angiogenesis capabilities, scaffolds and electrospun fibers
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may encounter challenges in precisely controlling degradation rates and ensuring that
mechanical properties are tailored to specific bone repair applications [165]. Furthermore,
the requirements for ROS management vary at different stages of bone repair, imposing
temporal and spatial demands on the ability of biomaterials incorporating antioxidant
compounds to clear ROS effectively. Conversely, the direct application of antioxidant
compounds, such as natural antioxidants, in bone defect repair offers convenience, such
as through oral administration. However, their systemic effects lack targeting specificity.
Therefore, the focus of subsequent research for the systemic application of antioxidants lies
in bone-targeted modification. Numerous molecular groups with high affinities for bone
minerals, such as rhein, bisphosphonates, and tetracyclines, have been identified in exist-
ing studies. Hybridizing these molecules with antioxidant compounds holds significant
research potential [166,167].

The role of ROS in bone healing is two-sided, which increases the complexity of the
strategy of regulating ROS to promote bone repair. While excessive ROS are recognized to
impair bone regeneration by hindering osteoblastic differentiation and causing damage
to cellular DNA, a controlled increase in ROS levels can yield beneficial effects, including
antimicrobial activities crucial for treating infectious bone defects. Certain materials, such
as Arginine Carbon Dots (Arg-CDs) and Zinc-Based Tannin-Modified Scaffolds, target
bacteria at infection sites while simultaneously supporting bone regeneration [128,144,168].
These materials release ROS in response to the acidic environment of bone injuries, en-
suring bacterial elimination without compromising osteogenesis. For instance, Arg-CDs
not only eradicate bacteria through ROS, but also promote bone growth by enhancing
osteogenic differentiation and macrophage polarization. These studies introduce a novel
therapeutic strategy for treating bone defects by leveraging the dual action of ROS. This
approach effectively regulates ROS concentrations in defective areas through antioxidant
compounds, solves the problem of infection in bone healing, and promotes effective bone
regeneration. This biomaterial underscores the precise regulation of the temporal and
spatial distribution of ROS, marking a significant advancement in balancing antibacterial
effects with tissue repair.

There are some potential conflicts with antioxidants in bone repair therapy strategies.
Removal of ROS from the bone repair site may not be conducive to the removal of bacteria,
which can lead to delayed bone healing and even exacerbation of infection. In addition,
ROS at a physiological level contribute to cell signaling, whereas the use of antioxidants
may inhibit normal cell signaling [169]. For example, Linrong Lu et al. found that feeding
NAC increased the pathogenicity of T cell-induced autoimmune encephalomyelitis in mice,
suggesting that antioxidant supplementation may carry the risk of promoting the onset
and development of autoimmune diseases [170]. Thus, we should be cautious with the
systemic use of antioxidants as well as the side effects of topical use. Although the clinical
application of antioxidants for promoting bone healing has broad prospects, the mechanism
of their systemic effects needs to be further investigated.

9. Conclusions

In this review, the research progress and mechanism of antioxidant compounds in
bone defect repair were reviewed. In summary, delivery of antioxidant compounds to bone
defect areas via targeted or localized drug delivery systems while precisely coordinating
the spatial and temporal distribution of ROS is a promising therapeutic approach for bone
defect repair. However, the success of these approaches depends on overcoming challenges
related to the targeting and stability of drug delivery systems, as well as clarifying the
complex role of ROS in bone regeneration. Future studies should prioritize the development
of more stable and effective drug delivery platforms and strategies to precisely control ROS
levels and optimize bone healing outcomes. In the application of antioxidants combined
with biomaterials, more clinical trials are needed to support their safety and efficacy in
human applications.
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