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Abstract: In this study, soy protein isolate (SPI) films incorporating quercetin-grafted dialdehyde
starch (DAS-QR) and DAS/QR, respectively, were developed. The structural, physical, and functional
properties of the composite films were determined. The results suggested that DAS-QR and DAS/QR
formed hydrogen bonding with the SPI matrix, which improved the structural properties of the
films. The light-blocking capacity, thermal stability, hydrophobicity, tensile strength, elongation
at break, and antioxidant and antibacterial abilities of SPI films were improved by DAS-QR and
DAS/QR. Notably, SPI films incorporated with DAS-QR exhibited better performance than those
with DAS/QR in terms of antioxidant (SPI/DAS-QR: 79.8% of DPPH and 62.1% of ABTS scavenging
activity; SPI/DAS/QR: 71.4% of DPPH and 56.0% of ABTS scavenging activity) and antibacterial
abilities against S. aureus (inhibition rate: 92.7% for SPI/DAS-QR, 83.4% for SPI/DAS/QR). The
composite coating film SPI/DAS-QR effectively maintained appearance quality, delayed the loss of
weight and total soluble solids, postponed malondialdehyde accumulation, and decreased peroxidase
activity and microbial contamination in fresh-cut potatoes. These good performances highlight
SPI/DAS-QR as a promising active packaging material for fresh-cut product preservation.

Keywords: soy protein isolate; dialdehyde starch; quercetin; packaging; fresh cut; preservation

1. Introduction

With the public’s growing attention on environmental protection and food safety in
recent years, biopolymer-based food packaging has received increasing interest due to
its accessibility, biodegradability, and cost-effectiveness [1,2]. Proteins, polysaccharide
polysaccharides, and lipids are prevalent biopolymers used for developing food packaging.
Biopolymer-based food packaging, incorporating antimicrobial and antioxidant compo-
nents, can reduce microbial contamination, oxidation, and food spoilage during storage and
transportation [3]. Soy protein isolate (SPI) is the primary protein found in soybean meal.
SPI is a good choice for producing biodegradable food packaging films due to its excellent
film-forming characteristics, abundant availability, and edible nature [4]. Nonetheless,
neat SPI films have been demonstrated with unsatisfactory mechanical strength, barrier
properties, and hydrophobicity [5]. Incorporating aldehydes such as formaldehyde, gly-
oxal, and glutaraldehyde can boost cross-linking among protein chains. This enhancement
contributes to improving the physical properties of protein films [6]. Dialdehyde starch
(DAS) is an aldehyde obtained by oxidizing starch with sodium periodate. It has been
applied to improve film properties [7]. Wang et al. prepared a gelatin film containing
10% DAS that showed enhanced tensile strength (TS), hydrophobicity, thermal stability,
and UV-blocking properties [8]. Meanwhile, neat SPI films have been demonstrated with
unsatisfactory functional activity. Therefore, they are frequently utilized in combination
with natural bioactive substances to develop packaging materials. Yu et al. demonstrated
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that SPI film containing peppercorn leaf extract exhibited enhanced antioxidant activity,
which extended the shelf life of cherry tomatoes [9].

Phenolic compounds are known for their antioxidant properties, which are attributed
to the efficient quenching of free radicals by phenolic hydroxyl groups [10]. Moreover, they
can cause damage to the cell wall of microorganisms, increase the permeability of the cell
membrane, and thus exhibit antimicrobial activity [11]. In recent years, many researchers
have fabricated active food packaging materials by the combination of phenolic compounds
and a biopolymer matrix. Song et al. fabricated chitosan (CS) film containing magnolol,
which exhibited enhanced antioxidant activity and good efficacy in pork preservation [12].
Tao et al. found that SPI film incorporating carvacrol exhibited antibacterial activity [13].

Quercetin (QR) is a polyphenolic compound widely existing in plants. It can scavenge
oxygen free radicals responsible for initiating lipid peroxidation [14,15]. QR is frequently
incorporated into films to impart antioxidant and antimicrobial properties, thereby preserv-
ing food quality, slowing down spoilage, and prolonging shelf life [14]. Jakubowska et al.
found that the addition of QR caused an increase in antioxidant activity in native CS film
and successfully delayed secondary lipid oxidation processes [16]. Rani et al. found that the
introduction of QR could enhance the antibacterial activity against Listeria monocytogenes
(L. monocytogenes) and Escherichia coli (E. coli) in SPI film [17].

The application forms of natural bioactive substances in bio-based films include (1) di-
rect addition, and (2) grafting with biopolymers to form conjugates, and then adding them.
Both of these methods can improve the performance of films in terms of mechanical proper-
ties, and antioxidant and antimicrobial activities [18]. Some researchers have demonstrated
that packaging films prepared by the latter method are more effective than those produced
by the former method [19,20]. In recent years, DAS–polyphenol conjugates have displayed
promising applications in food packaging. The incorporation of DAS–catechin conjugate
into quaternary ammonium chitosan/poly (vinyl alcohol) could improve homogeneity, me-
chanical properties, and gas- and vapor-blocking capacities [21]. Chitosan in combination
with DAS–catechin conjugate could effectively delay the oxidation and spoilage of pork
loins during chilled storage [22]. However, few studies have reported whether the use of
DAS–polyphenol conjugates in packaging films is more effective than directly adding DAS
and polyphenols.

In this study, a novel active packaging film, created by incorporating DAS-QR conju-
gate into an SPI film matrix, as well as another film created by directly adding DAS and QR,
were developed (Figure 1). The developed films were characterized in terms of structural,
physical, antioxidant, and antibacterial properties. Finally, the application potential of the
films in fresh-cut potato packaging was evaluated.
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2. Materials and Methods
2.1. Materials

SPI, QR, sodium periodate, choline chloride, and 2, 2-diphenyl-1-picrylhydrazyl
(DPPH) were obtained from Macklin (Shanghai, China). Staphylococcus aureus (S. aureus)
and E. coli were purchased from Huankai (Guangzhou, China). A 2, 2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) free-radical scavenging ability test kit was
obtained from Solarbio (Beijing, China). Malondialdehyde (MDA) and peroxidase (POD)
activity test kits were obtained from Grace (Beijing, China). All other reagents were of
analytical grade and purchased from Yuanye (Shanghai, China). Starch from Qingke (Ti-
betan barley) was extracted as described previously [23]. Potatoes (Solanum tuberosum L.)
were collected from a local farmers market (Beijing, China). The potatoes used for the
treatment exhibited a consistent size, shape, and color, and were devoid of any impairment
or deterioration.

2.2. Preparation of Qingke DAS-QR Conjugate

Qingke DAS-QR conjugate was prepared with an acid-catalyzed condensation
reaction, as described previously [24]. Briefly, 3.25 g of sodium periodate was dissolved
in 25 mL of distilled water, followed by 2.5 g of Qingke starch. The pH of the mixture was
adjusted to 3.5. The reaction was conducted at 40 ◦C for 4.5 h in the dark. The product
was washed, dialyzed, and dried to afford Qingke DAS. Then, 0.25 g of Qingke DAS
was dissolved in 6.5 mL of 1 M HCl solution. Meanwhile, 1.25 g of QR was dissolved in
15 mL of dimethyl sulfoxide. Next, the two solutions were mixed together and reacted
at 45 ◦C for 48 h in the dark. Finally, the product was dialyzed and lyophilized to give
Qingke DAS-QR conjugate. The conjugation efficiency was determined to be 58.98 mg/g
by colorimetric methods.

2.3. Development of the Films

First, deep eutectic solvent (DES) was prepared according to previous research [25].
Briefly, 4.64 g of choline chloride and 2.0 g of urea were dissolved in 1.0 mL of distilled
water. The mixture was heated to 80 ◦C and stirred until it formed a clear liquid to afford
DES. The films were prepared by the solution casting method [9]. Specifically, 6.0 g of
SPI was dissolved in 100 mL of distilled water and stirred at 80 ◦C for 1 h. The pH of the
solution was adjusted to 8 with sodium hydroxide solution (1 mol/L), followed by the
addition of DES (1.5 g). Then, 0.3 g of DAS, 0.24 g of QR, and 0.3 g of Qingke DAS-QR
conjugate were added to the SPI solution, followed by continuous stirring at 25 ◦C for
30 min and sonication at 400 W for 30 min. The film-forming solution (FFS) was poured
into molds and dried at 55 ◦C for 4 h. The SPI films containing DAS/QR and DAS-QR
were named SPI/DAS/QR and SPI/DAS-QR, respectively. All the films were placed in a
desiccator at 25 ◦C with 50% relative humidity (RH) for 48 h.

2.4. Structural Properties of Films

The internal morphologies of the films were observed using SEM SU8100 (Hitachi,
Tokyo, Japan) at a voltage of 5 kV. The FT-IR spectrum of the films was defined by a
TENSOR FTIR spectrometer (Bruker, SB, Ettlingen, Germany) from 4000 to 500 cm−1. The
crystallinity of the films was investigated with an Ultima IV X-ray diffractometer (Rigaku,
Tokyo, Japan) at 10◦–60◦.

2.5. Physical Properties of the Films

An electronic eye DigiEye System (Verivide, Leicester, UK) with a standard light source
D65 was used for investigating the color of the films. The total color difference (∆E) was
calculated according to the following equation [26]:
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∆E =

√
(L − L0)

2 + (a − a0)
2 + (b − b0)

2 (1)

where L0, a0, and b0 are the standard values of a white plate, and L, a, and b are the
measured color profile values of the film samples. The standard values of the white
calibration plate were L0 = 97.39, a0 = 0.03, and b0 = 1.77.

The light transmittance of the films was measured by a UV–Vis spectrophotometer
UV8000s (Yuanxi, Shanghai, China) at 200–600 nm.

Thermal gravimetric analysis (TGA) was used for evaluating the thermal proper-
ties of the films, and was performed on the Pyris Diamond TGA instrument (Perkin
Elmer, Waltham, MA, USA). The film samples (3 mg) were heated from 30 ◦C to 500 ◦C at
10 ◦C/min in a N2 atmosphere. The flow rate of N2 was 20 mL/min.

The water contact angle (WCA) of the films was determined using OCA25 (Data-
Physics, Filderstadt, Germany). The volume of the sample was 2 µL.

The mechanical properties of the films, including tensile strength (TS) and elongation
at break (EB), were investigated according to previous research [27]. Briefly, a film strip
(1 × 5 cm) was placed on a TA.HD plus physical property tester (Stable Micro Systems,
Surrey, UK) and stretched at a speed of 1 mm/s. The TS and EB were calculated as follows:

TS =
F
S

(2)

EB(%) =
∆L
L0

× 100 (3)

where F (N) represents the maximum force, S (mm2) represents the cross-sectional area of
the film, ∆L (mm) is the length change of the film post-deformation, and L0 (mm) is the
original marking distance of the film.

2.6. Antioxidant Properties of the Films

The antioxidant activity of the films was expressed by DPPH and ABTS radical scav-
enging activity, and measured according to the previous method, with some modifica-
tions [28]. Briefly, film strips (2 × 2 cm) were immersed in 3 mL of DPPH methanol solution
(0.1 mmol/L) in the dark at 20 ◦C for 30 min. After centrifugation at 8000 rpm for 5 min,
the absorbance of the solution was recorded at 517 nm. The DPPH radical scavenging
activity was calculated via Formula (4). Film strips (2 × 2 cm) were immersed in 3 mL of
methanol in the dark at 20 ◦C for 30 min. The solution was used to determine the ABTS
radical scavenging activity according to the kit instructions. The absorbance at 405 nm was
measured and the ABTS radical scavenging activity was calculated via Formula (5).

DPPH radical scavenging activity(%) =
A1 − A2

A1
× 100 (4)

where A1 represents the absorbance of the reference (DPPH methanol solution) and A2
represents the absorbance of the test sample.

ABTS radical scavenging activity(%) =
A0 − (A t − Ac)

A0
× 100 (5)

where A0 represents the absorbance of the blank (distilled water), At represents the ab-
sorbance of the test sample under test-treated conditions, and Ac represents the absorbance
of the test sample under control-treated conditions.
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2.7. Antibacterial Properties of the Films

The antibacterial activity of the films was evaluated by referring to the method de-
scribed in previous research with slight modifications [29]. The tested bacteria were
Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli. An amount of 9 mL
of bacteria suspension (105 CFU/mL) was mixed with 1 mL of film-forming solution, and
incubated at 37 ◦C for 2 h. Afterwards, the mixture was diluted tenfold. Then, 150 µL of
the diluted mixture was inoculated onto an agarose Petri dish (Φ: 9 cm), which was then
incubated at 37 ◦C for 18 h. Finally, the bacterial count was determined.

2.8. Application of Coating Films for Fresh-cut Potato Preservation

Potatoes with a consistent size (Φ: 7 cm), shape, and color were washed, peeled, sliced
(T: 1.5 cm), and randomly divided into three groups. The fresh-cut potatoes were immersed
in SPI, SPI/DAS/QR, and SPI/DAS-QR film-forming solutions for 2 min, respectively.
After air-drying until there was no solvent on the surface, the fresh-cut potatoes were stored
(4 ◦C) for 12 d. During the storage, the quality of the potatoes was assessed every 3 d in
terms of color, weight loss, total soluble solids (TSS), MDA content, POD activity, and total
colony count.

The color of the fresh-cut potatoes was investigated by electronic eye with a standard
light source D65. ∆E was the index of total color change and was calculated via Formula (1).

The weight loss of the fresh-cut potatoes was expressed by the change in weight every
3 d. It was calculated as follows:

W(%) =
W1 − W2

W1
× 100 (6)

where W1 (g) and W2 (g) are the initial weight and the weight after every 3 d, respectively.
The fresh-cut potato samples were homogenized for 3 min at 5 Kr/min. The TSS

content was subsequently determined using a 2WAJ Abbe Refractometer (Shanghai Optical
Instrument, Shanghai, China).

The MDA and POD content of the fresh-cut potatoes were measured with test kits
according to the instructions. The results are expressed in mmol·g−1.

The total colony count on the fresh-cut potatoes was measured according to previous
research [20]. Briefly, the fresh-cut potato samples (1 g) were added to a normal saline
solution (10 mL) and homogenized for 3 min at 5 Kr/min. The supernatant (100 µL) was
coated on an agar plate (Φ: 9 cm), which was incubated at 37 ◦C for 48 h. Then, the total
colony count was recorded.

2.9. Statistical Analysis

Statistical analysis was performed by one-way analysis of variance and Duncan’s
multiple range test (p < 0.05) using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Internal Morphological Properties of the Films

SEM is an important tool for investigating the microstructure of films and the compat-
ibility between components [30]. SEM images of the cross-sections of the different films
are shown in Figure 2. It can be observed that the neat SPI film was intact, smooth, and
uniform without any cracks, revealing the good compatibility of SPI and DES. After DAS
and QR were added to the matrix, the cross-section of the SPI/DAS/QR film displayed
particles, which may be due to the poor water solubility of QR. It was observed that the
cross-section of the SPI/DAS-QR film remained smooth and uniform, suggesting DAS-QR
is compatible with the matrix.
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3.2. FTIR Analysis of the Films

The interactions between SPI and the additives were investigated by FTIR spectroscopy.
As shown in Figure 3, the FTIR spectrum of the SPI film displayed characteristic absorp-
tion peaks at 3600–3000 cm−1 and 2915–2935 cm−1, corresponding to the O-H stretching
of amide A and the N-H stretching of amide B, respectively. There were characteristic
absorption peaks at 1626, 1531, and 1236 cm−1, assigned to the C=O stretching vibration
of amide I, the N-H bending band of amide II, and the C-N stretching of amide III [31].
The composite films SPI/DAS/QR and SPI/DAS-QR exhibited a similar FTIR spectrum
to the SPI film. Notably, the intensity of the broad absorption peak at 3600–3000 cm−1 for
the SPI film slightly decreased when DAS/ QR and DAS-QR were added. Meanwhile, the
characteristic absorption peak at 1626 cm−1 moved slightly to 1620 and 1624 cm−1, and
the characteristic absorption peak at 1531 cm−1 moved slightly to 1530 and 1529 cm−1,
respectively. The results revealed the formation of hydrogen bonding between the matrix
and the added substances [32]. This interaction enhanced the energy dissipation within the
film, contributing to an overall improvement in structural properties [5].
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3.3. XRD Analysis of the Films

Crystallinity is a vital index of materials, and can be determined by XRD analysis [32].
As shown in Figure 4, the SPI film exhibited two peaks near the 2θ values of 9.5◦ and 19.8◦,
corresponding to the α helix and β sheet structure of SPI’s secondary conformation [33].
The composite films SPI/DAS/QR and SPI/DAS-QR exhibited similar XRD spectra to the
SPI film. Notably, the intensity of the peaks slightly decreased, indicating a decrease in
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crystallinity. This may be attributed to the change in the structural order caused by the
cross-linking interaction between the phenolic hydroxyl in the QR moiety and the amino
group of the SPI through hydrogen bonding [33,34].
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3.4. Color and Light Transmittance of the Films

The SPI films with and without DAS/QR and DAS-QR are displayed in Figure 5, and
the color parameters are summarized in Table 1. The neat SPI film was bright and almost
colorless, with a high L and low a, b, and ∆E. The composite films SPI/DAS/QR and
SPI/DAS-QR became less bright and more yellow with the decreased L and increased a, b,
and ∆E. This was attributed to the color introduced by the QR moiety.
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Figure 5. The sample of (a) SPI film, (b) SPI/DAS/QR film, and (c) SPI/DAS-QR film.

Table 1. Color of the SPI, SPI/DAS/QR, and SPI/DAS-QR films.

Film L a b ∆E

SPI 91.47 ± 0.53 a 0.09 ± 0.00 c 0.72 ± 0.04 c 7.39 ± 0.05 c

SPI/DAS/QR 84.15 ± 1.16 b 4.72 ± 0.40 b 37.82 ± 0.53 a 45.44 ± 0.29 a

SPI/DAS-QR 83.03 ± 0.30 b 7.01 ± 0.81 a 27.45 ± 0.09 b 36.20 ± 0.32 b

Data are presented as mean ± standard deviation (SD). Distinct superscript letters (a–c) within a given column
denote statistically significant distinctions among the films (p < 0.05).
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Light has a negative impact on food quality. Ideal food packaging exhibits high
light-blocking capacity. The transmittance of the SPI, SPI/DAS/QR, and SPI/DAS-QR
films was evaluated. As shown in Figure 6, SPI/DAS/QR and SPI/DAS-QR displayed
lower transmittance compared with the SPI film. The results indicate that the composite
films exhibit higher light-blocking capacity than the neat film. This may be due to the
colored OR and DAS-QR, which are light absorbers [35]. In addition, the incorporation
of DAS/QR and DAS-QR enhanced the densification of the films, which altered the
refractive index [36]. Notably, SPI/DAS/QR displayed higher light-blocking capacity
than SPI/DAS-QR. This may be due to the higher amount of QR in the SPI/DAS/QR
film. However, food packaging that is too dark could affect consumer perceptions.
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3.5. TGA of the Films

Thermal stability is an essential property of food packaging that influences its
performance during storage [16]. The thermal decomposition behavior of SPI films
with and without DAS/QR and DAS-QR are shown in Figure 7. It was observed that
the SPI film underwent three distinct phases of weight loss. The first stage occurred
from 30 ◦C to 200 ◦C, which was due to the evaporation of free-bound water in the
film, accompanied by the loss of intramolecular and intermolecular hydrogen bonds.
The second stage occurred from 200 ◦C to 350 ◦C, which was associated with the
decomposition of polymer molecules and the loss of bound water [37]. The third stage
took place from 350 ◦C to 500 ◦C, which was caused by the combustion of the carbon
skeleton. The composite films SPI/DAS/QR and SPI/DAS-QR displayed similar
TGA curves with the neat SPI film. However, the SPI/DAS/QR and SPI/DAS-QR
films showed slower weight loss rates compared with the SPI film at the three stages.
This may be due to their more compact structures caused by the cross-linking of the
molecules. The results indicate that the addition of DAS/QR and DAS-QR could
increase the thermal stability of SPI film.
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3.6. WCA of the Films

WCA can reflect the hydrophobicity and interfacial wettability of food packaging [38].
As shown in Figure 8, the SPI film exhibited a small WCA (33.10◦), suggesting a low
hydrophobicity. This was attributed to the interaction of hydroxyl and amino groups with
water in the SPI film. The SPI/DAS/QR (42.10◦) and SPI/DAS-QR (52.83◦) films exhibited
bigger WCA, indicating a higher hydrophobicity. This may be due to the consumption
of the inherent hydrophilic groups of SPI with the addition of DAS/QR and DAS-QR. In
addition, the decrease in free volume in the composite films due to the denser structures
led to the enhancement of hydrophobicity.
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3.7. Mechanical Properties of the Films

Mechanical properties are an important indicator of food packaging. As shown in
Figure 9, the TS of the SPI film was 5.56 MPa, and the EB was 28.85%. The incorporation
of DAS/QR and DAS-QR with SPI significantly improved the TS. The TS values of the
SPI/DAS/QR and SPI/DAS-QR films were 7.95 and 8.81 MPa, respectively. The decrease
in TS was attributed to the increase in rigidity caused by the hydrogen bond interaction
between the amino groups of SPI and the hydroxyl groups of the OR moiety. The incorpo-
ration of DAS/QR and DAS-QR with SPI slightly improved the EB. The EB values of the
SPI/DAS/QR and SPI/DAS-QR films were 91.09% and 87.69%, respectively. This may be
due to the slight change in the entanglement of the film structures [9].
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3.8. Antioxidant Activities of the Films

Oxidation is a key factor that contributes to fruit spoilage and the degradation of nu-
tritional components. Therefore, food packaging with antioxidant activity helps extend the
shelf life of food. The antioxidant capacity of the SPI, SPI/DAS/QR, and SPI/DAS-QR films
was determined by DPPH and ABTS radical scavenging assays. As shown in Figure 10,
the SPI film exhibited weak antioxidant activity (DPPH: 5.5%; ABTS: 13.8%). The incorpo-
ration of DAS/QR and DAS-QR with SPI significantly improved the antioxidant activity.
The DPPH radical scavenging activity was 71.4% and 79.8% for the SPI/DAS/QR and
SPI/DAS-QR films, respectively, and the ABTS radical scavenging activity was 56.0% and
62.1%, respectively. The enhancement in the antioxidant capacity of the composite films
was attributed to the QR moiety [39,40]. Notably, the antioxidant activity of SPI/DAS-QR
was higher than that of SPI/DAS/QR. This may be because the stability of QR was im-
proved by conjugating it with DAS, which resulted in the exertion of sustained and stable
antioxidant activity [41].
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3.9. Antibacterial Properties of the Films

Antibacterial capacity is another important indicator for active food packaging. As
shown in Figure 11, the SPI film did not show antibacterial activity against S. aureus,
while both SPI/DAS/QR and SPI/DAS-QR displayed significant antibacterial activity
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against S. aureus. SPI/DAS/QR and SPI/DAS-QR films exhibited inhibition rates of
83.4% and 92.7%, respectively. The improvement in the antibacterial capacity of the
composite films was attributed to the QR moiety [39]. Notably, the antibacterial activity
of SPI/DAS-QR was higher than that of SPI/DAS/QR. This may be because the stability
of QR was improved by conjugating it with DAS, which resulted in the exertion of
sustained and stable antibacterial activity [41]. In contrast, none of the films showed
inhibitory activity against the Gram-negative bacteria E. coli, which may be attributed to
its multi-layered cell wall structure.
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3.10. Fresh-Cut Potato Preservation Application

Fresh-cut products are prone to oxidation and microbial contamination, leading
to deterioration in appearance and texture, a loss of nutrients, and thus an affected
consumption. The active packaging application was expected to maintain quality and
decrease bacteria. As shown in Figure 12, the fresh-cut potatoes in the SPI, SPI/DAS/QR,
and SPI/DAS-QR groups exhibited bright appearances at the beginning of the storage
period. After the 12 d storage, the fresh-cut potatoes in the SPI group were more browned
than those in the SPI/DAS/QR and SPI/DAS-QR groups. Notably, the samples in the
SPI/DAS-QR group exhibited a brighter appearance than those in the SPI/DAS/QR
group. The determined ∆E values could support this finding (Figure 13a). The results
indicate that the SPI/DAS-QR coating film was helpful for maintaining the appearance
of fresh-cut potatoes.

Figure 13b shows the effect of the SPI, SPI/DAS/QR, and SPI/DAS-QR coating
films on the weight loss of the fresh-cut potatoes. SPI/DAS/QR and SPI/DAS-QR
exhibited lower weight loss rates during the storage compared with the SPI group. The
reason may be that the denser structures of SPI/DAS/QR and SPI/DAS-QR exhibited
higher moisture-blocking capacity than that of SPI [42]. As shown in Figure 13c, the
TSS content of the fresh-cut potatoes in all three groups decreased during the storage,
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which was caused by respiration that led to the consumption of carbohydrates. The
SPI/DAS-QR coating film was more effective in delaying the decrease in the TSS
content of the fresh-cut potatoes than the SPI and SPI /DAS/QR coating films. This
may be due to its compact structure, endowing a high gas-blocking capacity that
effectively reduced the respiration of the fresh-cut potatoes. MDA is an important
indicator of plant senescence [43]. As shown in Figure 13d, the MDA content of fresh-
cut potatoes in all three groups increased during the storage. The SPI/DAS-QR group
exhibited the lowest MDA content compared with the SPI and SPI /DAS/QR groups.
POD is one of the most important oxidoreductases in plants and an important enzyme
involved in enzymatic browning [44]. Figure 13e displays the trend of POD activity,
which was similar to that of MDA content. Overall, SPI/DAS-QR could effectively
decrease the MDA content and the POD activity of fresh-cut potatoes. The reason
may be that the dense SPI/DAS-QR coating film reduced the oxygen exchange and
blocked the light, as well as its antioxidant activity. Figure 13f shows the effect of the
SPI, SPI/DAS/QR, and SPI/DAS-QR coating films on the total colony count of the
fresh-cut potatoes. The total colony count of all three groups increased during the
storage. The SPI/DAS-QR group exhibited the lowest total colony count compared
with the SPI and SPI /DAS/QR groups. This result was consistent with the result of
the antibacterial assay. Notably, the total colony count of the fresh-cut potatoes in the
SPI/DAS-QR group was less than 5.0 log CFU/g in the first 9 d of the storage period,
which is within the acceptable microbiological limit of food.
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4. Conclusions

In this study, SPI films incorporating DAS-QR and DAS/QR were developed, re-
spectively. The light-blocking capacity, thermal stability, hydrophobicity, TS, EB, and
antioxidant and antibacterial abilities of SPI film were improved by DAS-QR and DAS/QR.
Notably, the SPI film incorporated with DAS-QR exhibited better performance than that
with DAS/QR in terms of hydrophobicity, and antioxidant and antibacterial abilities. The
composite coating film SPI/DAS-QR was more effective than SPI/DAS/QR in maintaining
appearance quality, delaying the loss of weight and TSS, postponing MDA accumulation,
and decreasing POD activity and microbial contamination in fresh-cut potatoes. The results
suggest that the SPI/DAS-QR coating film possesses a good preservation effect on fresh-cut
products. Therefore, the multifunctional coating film can be used as an active packaging
material for fresh-cut product preservation.
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