Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Bacterial Strains and Culture Preparation
2.3. Preparation of Kisra Bread
2.3.1. First Fermentation (Sourdough—Ajin)
2.3.2. Second Fermentation (Back-Slopping)
2.4. Physicochemical and Microbiological Measurements
2.4.1. pH and Water Activity
2.4.2. Total Titratable Acidity
2.4.3. Enumeration of LAB
2.5. Quantification of BAs
2.5.1. Preparation of Standard Amine Solution
2.5.2. Derivatization of Standard BA Solutions and Sample Extracts
2.5.3. Chromatographic Separation of BAs by RP-HPLC
2.6. Antioxidant Compound Assays
2.6.1. Preparation of Extracts
2.6.2. DPPH Free Radical Scavenging Activity
2.6.3. Total Phenolic Content
2.6.4. Tannin Content
2.7. Isolation and Characterization of BA Producers from Naturally Fermented Kisra
2.7.1. Screening for BA Producers
2.7.2. Isolation and Characterization of BA Producers
2.7.3. In Vitro Determination of BA Production Capability of the Isolates
2.8. Statistical Analysis
3. Results and Discussion
3.1. Changes in Fermentation Parameters and Production of Antioxidant Compounds and BAs in Naturally Fermented Kisra
3.1.1. Changes in pH, Total Titratable Acidity, and LAB Counts during Natural Fermentation of Kisra
3.1.2. Changes in Antioxidant Activity, Total Phenolic Content, and Tannin Content during Natural Fermentation of Kisra
3.1.3. Changes in BA Content during Natural Fermentation of Kisra
3.2. Determination of the Causative Agents of BA Formation in Kisra
3.3. Effect of LAB Species on Fermentation Parameters and Production of Antioxidant Compounds and BAs during Kisra Fermentation
3.3.1. Effect of LAB Species on pH, Total Titratable Acidity, and LAB Counts during Kisra Fermentation
3.3.2. Effect of LAB Species on Antioxidant Activity, Total Phenolic Content, and Tannin Content during Kisra Fermentation
3.3.3. Effect of LAB Species on BA Content during Kisra Fermentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Corps and livestock products. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 April 2023).
- Correia, I.; Nunes, A.; Duarte, I.F.; Barros, A.; Delgadillo, I. Sorghum fermentation followed by spectroscopic techniques. Food Chem. 2005, 90, 853–859. [Google Scholar] [CrossRef]
- Dirar, H.A. The Indigenous Fermented Foods of the Sudan: A Study in African Food and Nutrition, 1st ed.; CAB International: Wallingford, UK, 1993; pp. 196–200. [Google Scholar]
- Vogel, S.; Graham, M. Sorghum and Millet: Food Production and Use, 1st ed.; IDRC: Ottawa, ON, Canada, 1979.
- Ejeta, G. Kisra quality: Testing new sorghum varieties and hybrids. In Proceedings of the International Symposium on Sorghum Grain Quality, ICRISAT, Hyderabad, India, 28–31 October 1981; pp. 67–73. [Google Scholar]
- Steinkraus, K.H. Handbook of Indigenous Fermented Foods, 2nd ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 817–835. [Google Scholar]
- Ali, A.A.; Mustafa, M.M. Isolation, characterization and identification of lactic acid bacteria from fermented sorghum dough used in Sudanese kisra preparation. Pak. J. Nutr. 2009, 8, 1814–1818. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Steenson, L.R.; Kirleis, A.W. Isolation and characterization of microorganisms associated with the traditional sorghum fermentation for production of Sudanese kisra. Appl. Environ. Microbiol. 1991, 57, 2529–2533. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.; Dieng, M.; Ehrmann, M.A.; Vogel, R.F. Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J. Appl. Microbiol. 1997, 83, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.H.; Böcker, G.; Vogel, R.F.; Hammes, W.P. Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl. Microbiol. Biotechnol. 1992, 37, 728–731. [Google Scholar] [CrossRef]
- Onyekwere, O.; Akinrele, I.; Koleoso, O.; Dirar, H. Industrialization of Indigenous Fermented Foods, 2nd ed.; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Bover-Cid, S.; Holzapfel, W.H. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 1999, 53, 33–41. [Google Scholar] [CrossRef]
- Venkateswarlu, R.; Biji, K.; Ravishankar, C.; Mohan, C.; Gopal, T.S. Biogenic amines in seafood: A review. J. Food Sci. Technol. 2016, 53, 2210–2218. [Google Scholar]
- Ezzat, M.; Zare, D.; Karim, R.; Ghazali, H.M. Trans-and cis-urocanic acid, biogenic amine and amino acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia (Oreochromis mossambicus). Food Chem. 2015, 172, 893–899. [Google Scholar] [CrossRef]
- Marcobal, A.; De Las Rivas, B.; Landete, J.M.; Tabera, L.; Muñoz, R. Tyramine and phenylethylamine biosynthesis by food bacteria. Crit. Rev. Food Sci. Nutr. 2012, 52, 448–467. [Google Scholar] [CrossRef]
- Rauscher-Gabernig, E.; Gabernig, R.; Brueller, W.; Grossgut, R.; Bauer, F.; Paulsen, P. Dietary exposure assessment of putrescine and cadaverine and derivation of tolerable levels in selected foods consumed in Austria. Eur. Food Res. Technol. 2012, 235, 209–220. [Google Scholar] [CrossRef]
- Matsheka, M.I.; Magwamba, C.C.; Mpuchane, S.; Gashe, B.A. Biogenic amines producing bacteria associated with three different commercially fermented beverages in Botswana. Afr. J. Microbiol. Res. 2013, 7, 342–350. [Google Scholar]
- Lasekan, O.; Lasekan, W. Biogenic amines in traditional alcoholic beverages produced in Nigeria. Food Chem. 2000, 69, 267–271. [Google Scholar] [CrossRef]
- Magwamba, C.; Matsheka, M.I.; Mpuchane, S.; Gashe, B.A. Detection and quantification of biogenic amines in fermented food products sold in Botswana. J. Food Prot. 2010, 73, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Mariod, A.A.; Idris, Y.M.; Osman, N.M.; Mohamed, M.A.; Sukrab, A.M.; Farag, M.Y.; Matthaus, B. Three Sudanese sorghum-based fermented foods (kisra, hulu-mur and abreh): Comparison of proximate, nutritional value, microbiological load and acrylamide content. Ukr. J. Food Sci. 2016, 4, 216–228. [Google Scholar] [CrossRef]
- Zaroug, M.; Orhan, I.E.; Senol, F.S.; Yagi, S. Comparative antioxidant activity appraisal of traditional Sudanese kisra prepared from two sorghum cultivars. Food Chem. 2014, 156, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N.; Novotny, L.; Crawford, A. AOAC International. AOAC Official Method 842.15: Acidity (titratable) of fruit products. J. AOAC 2007, 71, 86. [Google Scholar]
- Yoon, H.; Park, J.H.; Choi, A.; Hwang, H.-J.; Mah, J.-H. Validation of an HPLC analytical method for determination of biogenic amines in agricultural products and monitoring of biogenic amines in Korean fermented agricultural products. Toxicol. Res. 2015, 31, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ben-Gigirey, B.; De Sousa, J.M.V.B.; Villa, T.G.; Barros-Velazquez, J. Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. J. Food Prot. 1998, 61, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Ben-Gigirey, B.; De Sousa, J.M.V.B.; Villa, T.G.; Barros-Velazquez, J. Histamine and cadaverine production by bacteria isolated from fresh and frozen albacore (Thunnus alalunga). J. Food Prot. 1999, 62, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A comparative study on phenolic content, antioxidant activity and anti-inflammatory capacity of aqueous and ethanolic extracts of sorghum in lipopolysaccharide-induced RAW 264.7 macrophages. Antioxidants 2020, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.A.; AbdelRahman, I.E.; Hamad, S.H.; Dirar, H.A. Biochemical changes occurring during traditional Sudanese processing of Kisra bread. J. Food Agric. Environ. 2010, 8, 102–106. [Google Scholar]
- Dlamini, N.R.; Taylor, J.R.; Rooney, L.W. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007, 105, 1412–1419. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Lasekan, O.; Muhammad, K.; Baharin, B. Variability in the fermentation index, polyphenols and amino acids of seeds of rambutan (Nephelium lappaceum L.) during fermentation. J. Food Compos. Anal. 2015, 37, 128–135. [Google Scholar] [CrossRef]
- Hansen, C.E.; Del Olmo, M.; Burri, C. Enzyme activities in cocoa beans during fermentation. J. Sci. Food Agric. 1998, 77, 273–281. [Google Scholar] [CrossRef]
- Hithamani, G.; Srinivasan, K. Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as influenced by domestic food processing. J. Agric. Food Chem. 2014, 62, 11170–11179. [Google Scholar] [CrossRef] [PubMed]
- Paiva, C.L.; Netto, D.A.; Queiroz, V.A.; Gloria, M.B.A. Germinated sorghum (Sorghum bicolor L.) and seedlings show expressive contents of putrescine. LWT Food Sci. Technol. 2022, 161, 113367. [Google Scholar] [CrossRef]
- Cohen, S.S. A Guide to the Polyamines, 1st ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Juodeikiene, G.; Bartkiene, E.; Viskelis, P.; Urbonaviciene, D.; Eidukonyte, D.; Bobinas, C. Fermentation processes using lactic acid bacteria producing bacteriocins for preservation and improving functional properties of food products. Adv. Appl. Biotechnol. 2012, 2012, 63–100. [Google Scholar]
- Molenaar, D.; Bosscher, J.S.; Ten Brink, B.; Driessen, A.; Konings, W.N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 1993, 175, 2864–2870. [Google Scholar] [CrossRef]
- Lucas, P.M.; Wolken, W.A.; Claisse, O.; Lolkema, J.S.; Lonvaud-Funel, A. Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl. Environ. Microbiol. 2005, 71, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Nebesny, E. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res. Int. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, M.-J.; Moon, B. Various biogenic amines in Doenjang and changes in concentration depending on boiling and roasting. Appl. Biol. Chem. 2017, 60, 273–279. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Polo, M.C.; Jorganes, F.; Muñoz, R. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 2003, 84, 117–123. [Google Scholar] [CrossRef]
- Roig-Sagues, A.X.; Hernandez-Herrero, M.; Lopez-Sabater, E.I.; Rodriguez-Jerez, J.J.; Mora-Ventura, M.T. Histidine decarboxylase activity of bacteria isolated from raw and ripened salchichón, a Spanish cured sausage. J. Food Prot. 1996, 59, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Roig-Sagués, A.; Hernàndez-Herrero, M.; López-Sabater, E.; Rodríguez-Jerez, J.; Mora-Ventura, M. Evaluation of three decarboxylating agar media to detect histamine and tyramine-producing bacteria in ripened sausages. Lett. Appl. Microbiol. 1997, 25, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Kunene, N.F.; Geornaras, I.; von Holy, A.; Hastings, J.W. Characterization and determination of origin of lactic acid bacteria from a sorghum-based fermented weaning food by analysis of soluble proteins and amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol. 2000, 66, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Mustafa, M.M. Use of starter cultures of lactic acid bacteria and yeasts in the preparation of kisra, a Sudanese fermented food. Pak. J. Nutr. 2009, 8, 1349–1353. [Google Scholar] [CrossRef]
- Falasconi, I.; Fontana, A.; Patrone, V.; Rebecchi, A.; Duserm Garrido, G.; Principato, L.; Callegari, M.L.; Spigno, G.; Morelli, L. Genome-assisted characterization of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa strains isolated from sorghum as starters for sourdough fermentation. Microorganisms 2020, 8, 1388. [Google Scholar] [CrossRef]
- Ricciardi, A.; Parente, E.; Zotta, T. Modelling the growth of Weissella cibaria as a function of fermentation conditions. J. Appl. Microbiol. 2009, 107, 1528–1535. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Gwon, H.-M.; Jeong, W.-S.; Yeo, S.-H.; Kim, S.-Y. Safety evaluation of Weissella cibaria JW15 by phenotypic and genotypic property analysis. Microorganisms 2021, 9, 2450. [Google Scholar] [CrossRef] [PubMed]
- Maślak, E.; Złoch, M.; Arendowski, A.; Sugajski, M.; Janczura, I.; Rudnicka, J.; Walczak-Skierska, J.; Buszewska-Forajta, M.; Rafińska, K.; Pomastowski, P. Isolation and identification of Lactococcus lactis and Weissella cibaria strains from fermented beetroot and an investigation of their properties as potential starter cultures and probiotics. Foods 2022, 11, 2257. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, H.; Zhang, P.; Ajlouni, S.; Fang, Z. Changes in phenolic content, antioxidant activity, and volatile compounds during processing of fermented sorghum grain tea. Cereal Chem. 2020, 97, 612–625. [Google Scholar] [CrossRef]
- Akinola, S.A.; Badejo, A.A.; Osundahunsi, O.F.; Edema, M.O. Effect of preprocessing techniques on pearl millet flour and changes in technological properties. Int. J. Food Sci. Technol. 2017, 52, 992–999. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Z.; Qin, P.; Ren, G. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Res. Int. 2013, 53, 678–685. [Google Scholar] [CrossRef]
- Randhir, R.; Kwon, Y.-I.; Shetty, K. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innov. Food Sci. Emerg. Technol. 2008, 9, 355–364. [Google Scholar] [CrossRef]
- Bartkiene, E.; Juodeikiene, G.; Vidmantiene, D.; Viskelis, P.; Urbonaviciene, D. Nutritional and quality aspects of wheat sourdough bread using L. luteus and L. angustifolius flours fermented by Pedioccocus acidilactici. Int. J. Food Sci. Technol. 2011, 46, 1724–1733. [Google Scholar] [CrossRef]
- Polak, T.; Mejaš, R.; Jamnik, P.; Kralj Cigić, I.; Poklar, U.N.; Cigić, B. Accumulation and transformation of biogenic amines and gamma-aminobutyric acid (GABA) in chickpea sourdough. Foods 2021, 10, 2840. [Google Scholar] [CrossRef]
- Bartkiene, E.; Krungleviciute, V.; Juodeikiene, G.; Vidmantiene, D.; Maknickiene, Z. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J. Sci. Food Agric. 2015, 95, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Larqué, E.; Sabater-Molina, M.; Zamora, S. Biological significance of dietary polyamines. Nutrition 2007, 23, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Ten Brink, B.; Damink, C.; Joosten, H.; In’t Veld, J.H. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990, 11, 73–84. [Google Scholar] [CrossRef] [PubMed]
Processing Stages | Antioxidant Parameters | ||
---|---|---|---|
DPPH (%) | TPC (μg/g) 1 | Tannin (μg/g) 2 | |
First fermentation | |||
0 h | 71.04 ± 1.43 3,b | 1171.80 ± 33.30 bc | 22.63 ± 0.00 ab |
24 h | 55.19 ± 2.65 cd | 1207.10 ± 8.30 b | 17.37 ± 0.00 b |
48 h | 55.91 ± 0.82 cd | 1162.90 ± 29.10 bc | 17.37 ± 0.00 b |
Second fermentation | |||
0 h | 56.92 ± 2.24 cd | 1198.20 ± 20.80 b | 17.37 ± 0.00 b |
6 h | 59.08 ± 2.04 c | 1233.50 ± 29.10 b | 20.00 ± 3.70 ab |
12 h | 54.61 ± 1.02 d | 1118.80 ± 49.90 c | 27.89 ± 7.40 ab |
Baking | |||
Kisra bread | 85.16 ± 0.61 a | 1386.50 ± 37.40 a | 33.16 ± 14.90 a |
Groups | NT 1 | NA 2 | Characterization of Isolate 3 | BA-Producing Intensity | BA Productivity (µg/mL) 4 | |||
---|---|---|---|---|---|---|---|---|
PUT | CAD | HIS | TYR | |||||
A | 123 | 34 | Tentative Enterococcus | Strong producer | 0.22 ± 0.04 (0.13–0.38) 5 | 0.16 ± 0.05 (0.11–0.32) | 0.21 ± 0.17 (0.09–0.68) | 184.19 ± 13.60 (168.30–212.80) |
B | 50 | 12 | Tentative Pediococcus | Weak producer | 0.39 ± 0.03 (0.36–0.43) | 0.08 ± 0.007 (0.07–0.09) | 0.07 ± 0.08 (ND 6–0.67) | 0.91 ± 0.25 (0.63–1.34) |
C | 40 | 7 | Tentative Yeast | Strong producer | 355.60 ± 51.30 (434.90–297.37) | 8.14 ± 3.71 (3.24–13.09) | 0.22 ± 0.13 (ND–0.34) | 1.41 ± 0.23 (0.98–1.85) |
5 | Weak producer | 3.82 ± 0.47 (3.65–4.06) | 2.16 ± 0.67 (1.43–2.85) | ND |
Groups 1 | Processing Stages | Antioxidant Parameters | |||
---|---|---|---|---|---|
DPPH (%) | TPC (μg/g) 2 | Tannin (μg/g) 3 | |||
Control group | First Fermentation | 0 h | 71.04 ± 1.43 4,b | 1171.80 ± 33.30 bc | 22.63 ± 0.00 ab |
24 h | 55.19 ± 2.65 cd | 1207.10 ± 8.30 b | 17.37 ± 0.00 b | ||
48 h | 55.91 ± 0.82 cd | 1162.90 ± 29.10 bc | 17.37 ± 0.00 b | ||
Second Fermentation | 0 h | 56.92 ± 2.24 cd | 1198.20 ± 20.80 b | 17.37 ± 0.00 b | |
6 h | 59.08 ± 2.04 c | 1233.50 ± 29.10 b | 20.00 ± 3.70 ab | ||
12 h | 54.61 ± 1.02 d | 1118.80 ± 49.90 c | 27.89 ± 7.40 ab | ||
Baking | Kisra | 85.16 ± 0.61 a | 1386.50 ± 37.40 a | 33.16 ± 14.90 a | |
LP group | First Fermentation | 0 h | 56.77 ± 0.41 e | 1098.20 ± 4.20 d | 17.37 ± 7.40 ab |
24 h | 67.00 ± 0.20 c | 1183.50 ± 49.90 c | 17.37 ± 0.00 b | ||
48 h | 73.20 ± 2.04 b | 1257.10 ± 45.80 b | 17.37 ± 0.00 b | ||
Second Fermentation | 0 h | 62.82 ± 0.41 d | 1177.60 ± 8.30 c | 22.63 ± 7.40 b | |
6 h | 67.15 ± 0.41 c | 1174.70 ± 12.50 c | 14.74 ± 3.70 ab | ||
12 h | 69.45 ± 1.63 c | 1286.50 ± 4.20 b | 20.00 ± 3.70 ab | ||
Baking | Kisra | 82.28 ± 1.02 a | 1610.00 ± 29.10 a | 35.79 ± 18.60 a | |
LF group | First Fermentation | 0 h | 56.77 ± 2.45 f | 1174.70 ± 20.80 d | 12.11 ± 7.40 b |
24 h | 68.16 ± 1.02 cd | 1239.40 ± 20.80 cd | 12.11 ± 0.00 b | ||
48 h | 73.05 ± 0.20 b | 1292.40 ± 20.80 bc | 33.16 ± 7.40 ab | ||
Second Fermentation | 0 h | 63.54 ± 1.83 e | 1365.90 ± 8.30 b | 12.11 ± 7.40 b | |
6 h | 65.71 ± 2.45 de | 1262.90 ± 54.10 c | 22.63 ± 7.40 ab | ||
12 h | 69.60 ± 1.02 bc | 1218.80 ± 16.60 cd | 27.89 ± 0.00 ab | ||
Baking | Kisra | 83.72 ± 0.61 a | 1574.7 ± 62.40 a | 38.42 ± 22.30 a | |
LB group | First Fermentation | 0 h | 56.92 ± 2.65 e | 998.20 ± 12.50 d | 12.11 ± 0.00 a |
24 h | 67.15 ± 1.22 bcd | 1127.60 ± 45.80 c | 14.74 ± 3.70 a | ||
48 h | 71.90 ± 0.20 b | 1239.40 ± 54.10 b | 17.37 ± 0.00 a | ||
Second Fermentation | 0 h | 65.42 ± 2.45 cd | 1239.40 ± 37.40 b | 20.00 ± 11.20 a | |
6 h | 63.83 ± 3.06 d | 1124.70 ± 49.90 c | 25.26 ± 3.70 a | ||
12 h | 69.88 ± 2.24 bc | 1118.80 ± 41.60 c | 22.63 ± 7.40 a | ||
Baking | Kisra | 79.39 ± 3.46 a | 1433.50 ± 12.50 a | 25.26 ± 3.70 a | |
WC group | First Fermentation | 0 h | 63.69 ± 1.22 c | 1112.90 ± 25.00 e | 17.37 ± 7.40 a |
24 h | 68.3 ± 2.04 bc | 1327.60 ± 20.80 bc | 17.37 ± 0.00 a | ||
48 h | 71.04 ± 0.61 b | 1357.10 ± 29.10 b | 12.11 ± 0.00 a | ||
Second Fermentation | 0 h | 70.75 ± 3.06 b | 1221.80 ± 20.80 d | 17.37 ± 0.00 a | |
6 h | 67.15 ± 2.45 bc | 1177.60 ± 33.30 d | 17.37 ± 7.40 a | ||
12 h | 69.31 ± 2.65 b | 1280.60 ± 4.20 c | 14.74 ± 3.70 a | ||
Baking | Kisra | 85.30 ± 0.00 a | 1668.80 ± 12.50 a | 27.89 ± 14.90 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.A.A.; Jin, Y.H.; Mah, J.-H. Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation. Antioxidants 2024, 13, 844. https://doi.org/10.3390/antiox13070844
Hassan AAA, Jin YH, Mah J-H. Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation. Antioxidants. 2024; 13(7):844. https://doi.org/10.3390/antiox13070844
Chicago/Turabian StyleHassan, Alaa Ahmed Alsiddig, Young Hun Jin, and Jae-Hyung Mah. 2024. "Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation" Antioxidants 13, no. 7: 844. https://doi.org/10.3390/antiox13070844
APA StyleHassan, A. A. A., Jin, Y. H., & Mah, J. -H. (2024). Effects of Lactic Acid Bacteria on Reducing the Formation of Biogenic Amines and Improving the Formation of Antioxidant Compounds in Traditional African Sourdough Flatbread Fermentation. Antioxidants, 13(7), 844. https://doi.org/10.3390/antiox13070844